Integration and transfer learning of single-cell transcriptomes via cFIT
Large, comprehensive collections of single-cell RNA sequencing (scRNA-seq) datasets have been generated that allow for the full transcriptional characterization of cell types across a wide variety of biological and clinical conditions. As new methods arise to measure distinct cellular modalities, a...
Uložené v:
| Vydané v: | Proceedings of the National Academy of Sciences - PNAS Ročník 118; číslo 10 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
09.03.2021
|
| Predmet: | |
| ISSN: | 1091-6490, 1091-6490 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!