Adaptive Learning in Complex Reproducing Kernel Hilbert Spaces Employing Wirtinger's Subgradients

This paper presents a wide framework for non-linear online supervised learning tasks in the context of complex valued signal processing. The (complex) input data are mapped into a complex reproducing kernel Hilbert space (RKHS), where the learning phase is taking place. Both pure complex kernels and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 23; H. 3; S. 425 - 438
Hauptverfasser: Bouboulis, P., Slavakis, K., Theodoridis, S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.03.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents a wide framework for non-linear online supervised learning tasks in the context of complex valued signal processing. The (complex) input data are mapped into a complex reproducing kernel Hilbert space (RKHS), where the learning phase is taking place. Both pure complex kernels and real kernels (via the complexification trick) can be employed. Moreover, any convex, continuous and not necessarily differentiable function can be used to measure the loss between the output of the specific system and the desired response. The only requirement is the subgradient of the adopted loss function to be available in an analytic form. In order to derive analytically the subgradients, the principles of the (recently developed) Wirtinger's calculus in complex RKHS are exploited. Furthermore, both linear and widely linear (in RKHS) estimation filters are considered. To cope with the problem of increasing memory requirements, which is present in almost all online schemes in RKHS, the sparsification scheme, based on projection onto closed balls, has been adopted. We demonstrate the effectiveness of the proposed framework in a non-linear channel identification task, a non-linear channel equalization problem and a quadrature phase shift keying equalization scheme, using both circular and non circular synthetic signal sources.
AbstractList This paper presents a wide framework for non-linear online supervised learning tasks in the context of complex valued signal processing. The (complex) input data are mapped into a complex reproducing kernel Hilbert space (RKHS), where the learning phase is taking place. Both pure complex kernels and real kernels (via the complexification trick) can be employed. Moreover, any convex, continuous and not necessarily differentiable function can be used to measure the loss between the output of the specific system and the desired response. The only requirement is the subgradient of the adopted loss function to be available in an analytic form. In order to derive analytically the subgradients, the principles of the (recently developed) Wirtinger's calculus in complex RKHS are exploited. Furthermore, both linear and widely linear (in RKHS) estimation filters are considered. To cope with the problem of increasing memory requirements, which is present in almost all online schemes in RKHS, the sparsification scheme, based on projection onto closed balls, has been adopted. We demonstrate the effectiveness of the proposed framework in a non-linear channel identification task, a non-linear channel equalization problem and a quadrature phase shift keying equalization scheme, using both circular and non circular synthetic signal sources.
This paper presents a wide framework for non-linear online supervised learning tasks in the context of complex valued signal processing. The (complex) input data are mapped into a complex reproducing kernel Hilbert space (RKHS), where the learning phase is taking place. Both pure complex kernels and real kernels (via the complexification trick) can be employed. Moreover, any convex, continuous and not necessarily differentiable function can be used to measure the loss between the output of the specific system and the desired response. The only requirement is the subgradient of the adopted loss function to be available in an analytic form. In order to derive analytically the subgradients, the principles of the (recently developed) Wirtinger's calculus in complex RKHS are exploited. Furthermore, both linear and widely linear (in RKHS) estimation filters are considered. To cope with the problem of increasing memory requirements, which is present in almost all online schemes in RKHS, the sparsification scheme, based on projection onto closed balls, has been adopted. We demonstrate the effectiveness of the proposed framework in a non-linear channel identification task, a non-linear channel equalization problem and a quadrature phase shift keying equalization scheme, using both circular and non circular synthetic signal sources.This paper presents a wide framework for non-linear online supervised learning tasks in the context of complex valued signal processing. The (complex) input data are mapped into a complex reproducing kernel Hilbert space (RKHS), where the learning phase is taking place. Both pure complex kernels and real kernels (via the complexification trick) can be employed. Moreover, any convex, continuous and not necessarily differentiable function can be used to measure the loss between the output of the specific system and the desired response. The only requirement is the subgradient of the adopted loss function to be available in an analytic form. In order to derive analytically the subgradients, the principles of the (recently developed) Wirtinger's calculus in complex RKHS are exploited. Furthermore, both linear and widely linear (in RKHS) estimation filters are considered. To cope with the problem of increasing memory requirements, which is present in almost all online schemes in RKHS, the sparsification scheme, based on projection onto closed balls, has been adopted. We demonstrate the effectiveness of the proposed framework in a non-linear channel identification task, a non-linear channel equalization problem and a quadrature phase shift keying equalization scheme, using both circular and non circular synthetic signal sources.
Author Slavakis, K.
Bouboulis, P.
Theodoridis, S.
Author_xml – sequence: 1
  givenname: P.
  surname: Bouboulis
  fullname: Bouboulis, P.
  email: pbouboulis@sch.gr
  organization: Dept. of Inf. & Telecommun., Univ. of Athens, Athens, Greece
– sequence: 2
  givenname: K.
  surname: Slavakis
  fullname: Slavakis, K.
  email: slavakis@uop.gr
  organization: Dept. of Telecommun. Sci. & Technol., Univ. of Peloponnese, Tripolis, Greece
– sequence: 3
  givenname: S.
  surname: Theodoridis
  fullname: Theodoridis, S.
  email: stheodor@di.uoa.gr
  organization: Dept. of Inf. & Telecommun., Univ. of Athens, Athens, Greece
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25610449$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24808549$$D View this record in MEDLINE/PubMed
BookMark eNqFkVFvFCEUhYmpsbX2D2hiJiZGX3YFBhh4bDbVmm5q4tboG2HgTkMzy4zANO2_l-2ua9KHel8uge8A95yX6CAMARB6TfCcEKw-XV1eLldzigmZU9IoSfAzdESJoDNaS3mwXze_DtFJSje4lMBcMPUCHVImseRMHSFz6syY_S1USzAx-HBd-VAthvXYw131HcY4uMluti8gBuirc9-3EHO1Go2FVJ0VcLjfnP_0MZcO8UOqVlN7HY3zEHJ6hZ53pk9wsuvH6Mfns6vF-Wz57cvXxelyZlmj8sx2tWid6oRyLaei7joCDTaqa12tDIdOAAZoqWLYMYJ56xjURrasFC2z1Mfo4_be8uXfE6Ss1z5Z6HsTYJiSJpzWrFjA1P9RTJTgnEhR0HeP0JthiqEMohWtFRWSyQK93UFTuwanx-jXJt7rvzYX4P0OMMmavosmWJ_-cVwQzB44uuVsHFKK0O0RgvUmdv0Qu97ErnexF5F8JLI-m-yHkKPx_dPSN1upB4D9W4LQYlNT_wEob7lR
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_JIOT_2020_3015489
crossref_primary_10_1109_ACCESS_2019_2963360
crossref_primary_10_1109_TGRS_2020_3034102
crossref_primary_10_1016_j_sigpro_2013_02_012
crossref_primary_10_1109_TGRS_2021_3087610
crossref_primary_10_1109_TNNLS_2013_2256367
crossref_primary_10_1016_j_sigpro_2024_109573
crossref_primary_10_1109_TNNLS_2012_2200500
crossref_primary_10_1109_TWC_2019_2961673
crossref_primary_10_1109_TNNLS_2020_2995482
crossref_primary_10_1137_100807004
crossref_primary_10_1016_j_acha_2019_05_004
crossref_primary_10_1109_TSP_2012_2200479
crossref_primary_10_1109_TSP_2019_2912139
crossref_primary_10_1007_s00034_021_01804_8
crossref_primary_10_1109_MSP_2013_2287951
crossref_primary_10_1016_j_csda_2022_107557
crossref_primary_10_1109_LGRS_2021_3131201
crossref_primary_10_1109_TCSII_2022_3142167
crossref_primary_10_1109_TNNLS_2012_2229293
crossref_primary_10_1016_j_dsp_2021_103087
crossref_primary_10_1109_TCSII_2019_2957817
crossref_primary_10_1109_TNNLS_2012_2201261
crossref_primary_10_3390_s19204540
crossref_primary_10_1109_TNNLS_2012_2198889
crossref_primary_10_1109_TNNLS_2013_2242091
crossref_primary_10_1016_j_ecosta_2024_06_003
crossref_primary_10_1109_TNNLS_2013_2271356
crossref_primary_10_1109_TNNLS_2014_2336679
crossref_primary_10_1109_TNNLS_2013_2265397
crossref_primary_10_1109_TNNLS_2013_2241788
crossref_primary_10_1109_TSP_2013_2296881
crossref_primary_10_1016_j_sigpro_2019_107263
crossref_primary_10_1016_j_sigpro_2016_06_029
crossref_primary_10_1109_TNNLS_2013_2285783
crossref_primary_10_1109_TSP_2013_2254481
crossref_primary_10_1109_ACCESS_2020_2996796
Cites_doi 10.1007/BF01447872
10.1109/TSP.2009.2027771
10.1109/TSP.2010.2046637
10.1109/TNN.2009.2024202
10.1109/TSP.2007.911278
10.1109/TIT.2006.881713
10.1109/MSP.2007.361610
10.1109/TWC.2010.01.080897
10.1002/9780470608593
10.1109/TSP.2004.830991
10.1109/TSP.2003.822359
10.1109/TSP.2010.2096420
10.1109/TSP.2007.895997
10.1109/TIT.2010.2048440
10.1081/NFA-200045806
10.1109/MSP.2010.938752
10.1080/01630560600884661
10.1109/MSP.2004.1296543
10.1109/TSP.2009.2027461
10.1109/TNNLS.2011.2178321
10.1109/TNN.2004.824259
10.1098/rsta.1909.0016
10.1109/TNN.2007.900237
10.7551/mitpress/4057.001.0001
10.1109/TSP.2008.923807
10.1109/78.403373
10.1016/j.cam.2011.02.003
10.1109/78.340781
10.1007/978-3-642-04174-7_32
10.1109/TSP.2008.926104
10.1109/TSP.2006.877638
10.1109/TSP.2007.907881
10.1109/TSP.2008.2011828
10.1109/TIP.2010.2042995
10.1109/TSP.2005.862946
10.1016/0022-247X(71)90184-3
10.1090/S0002-9947-1950-0051437-7
10.1109/TCOMM.2009.0901.060565
10.1109/TSP.2008.917376
10.1049/el:20030945
10.1109/TSP.2008.2005085
10.1109/TNN.2010.2059042
10.1109/TSP.2007.908937
10.1002/9780470575758
10.1017/CBO9780511809682
10.1002/9780470742624
10.1007/978-1-4419-9467-7
10.1002/0471725250
10.1109/TSP.2004.830985
10.1109/TNN.2009.2014060
10.1007/BF00670335
10.1109/TSP.2006.870639
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2012
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2012
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2011.2179810
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Technology Research Database
PubMed

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 2162-2388
EndPage 438
ExternalDocumentID 2597240561
24808549
25610449
10_1109_TNNLS_2011_2179810
6126047
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
IQODW
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c479t-cf36bd9f69db5263ff1e70a9fbd39a5ef6e0eeb2940d4105bd4e3a8b444428543
IEDL.DBID RIE
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302705100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
IngestDate Thu Oct 02 07:03:04 EDT 2025
Sun Nov 09 09:39:03 EST 2025
Sun Nov 30 05:07:24 EST 2025
Mon Jul 21 05:54:45 EDT 2025
Mon Jul 21 09:14:39 EDT 2025
Tue Nov 18 21:45:10 EST 2025
Sat Nov 29 01:39:45 EST 2025
Tue Aug 26 17:19:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords complex kernels
subgradient
Non linear channel
Complex signal
Equalization
widely linear estimation
Adaptive method
Quadrature phase shift keying
Kernel method
Complex variable method
Loss function
Supervised learning
Efficiency
Linear filter
Signal processing
Sparse representation
Signal sources
Adaptive kernel learning
Hilbert space
Linear estimation
projection
Wirtinger's calculus
Learning algorithm
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-cf36bd9f69db5263ff1e70a9fbd39a5ef6e0eeb2940d4105bd4e3a8b444428543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 24808549
PQID 923926848
PQPubID 85436
PageCount 14
ParticipantIDs crossref_primary_10_1109_TNNLS_2011_2179810
pubmed_primary_24808549
proquest_journals_923926848
pascalfrancis_primary_25610449
crossref_citationtrail_10_1109_TNNLS_2011_2179810
proquest_miscellaneous_1523406049
ieee_primary_6126047
proquest_miscellaneous_1019655186
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
ref15
bouboulis (ref58) 0
ref14
ref53
paulsen (ref52) 2009
ref55
ref11
ref54
sayed (ref49) 2003
bauschke (ref47) 2011
ref17
ref16
ref19
ref18
haykin (ref48) 1996
ref50
scholkopf (ref20) 2004
ref45
ref42
ref41
ref44
bouboulis (ref62) 2011
scholkopf (ref1) 2002
li (ref56) 2008
ref8
ref7
ref9
ref4
slavakis (ref46) 2011
ref6
ref5
ref40
hastie (ref63) 2009
ref35
sayed (ref64) 2003
ref34
ref37
rockafellar (ref61) 1970
ref36
ref31
ref30
ref33
ref32
wachman (ref21) 2009; 5782
vapnik (ref3) 1999
ref39
ref38
theodoridis (ref2) 2008
rockafellar (ref59) 2004
ref24
ref23
ref26
ref25
pun (ref43) 2008; 56
ref66
ref22
ref65
ref28
ref27
ref29
huber (ref51) 1981
ref60
xu (ref10) 2008; 56
References_xml – ident: ref55
  doi: 10.1007/BF01447872
– ident: ref12
  doi: 10.1109/TSP.2009.2027771
– year: 2004
  ident: ref59
  publication-title: Variational Analysis
– year: 2008
  ident: ref56
  publication-title: Complex-valued adaptive signal processing using Wirtinger calculus and its application to independent component analysis
– year: 2009
  ident: ref63
  publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction
– ident: ref24
  doi: 10.1109/TSP.2010.2046637
– ident: ref13
  doi: 10.1109/TNN.2009.2024202
– year: 1999
  ident: ref3
  publication-title: The Nature of Statistical Learning Theory
– ident: ref31
  doi: 10.1109/TSP.2007.911278
– ident: ref54
  doi: 10.1109/TIT.2006.881713
– ident: ref16
  doi: 10.1109/MSP.2007.361610
– ident: ref34
  doi: 10.1109/TWC.2010.01.080897
– ident: ref5
  doi: 10.1002/9780470608593
– ident: ref6
  doi: 10.1109/TSP.2004.830991
– ident: ref40
  doi: 10.1109/TSP.2003.822359
– ident: ref19
  doi: 10.1109/TSP.2010.2096420
– year: 1970
  ident: ref61
  publication-title: Convex Analysis Princeton Mathematics Series
– ident: ref42
  doi: 10.1109/TSP.2007.895997
– ident: ref35
  doi: 10.1109/TIT.2010.2048440
– year: 0
  ident: ref58
  publication-title: Wirtinger's Calculus in General Hilbert Spaces
– year: 2011
  ident: ref46
  publication-title: The Adaptive Projected Subgradient Method Constrained by Families of Quasi-Nonexpansive Mappings and Its Application to Online Learning
– ident: ref44
  doi: 10.1081/NFA-200045806
– ident: ref50
  doi: 10.1109/MSP.2010.938752
– start-page: 1
  year: 2011
  ident: ref62
  article-title: Widely linear kernel-based adaptive filters
  publication-title: Proc 19th Eur Sig Process Conf
– ident: ref45
  doi: 10.1080/01630560600884661
– ident: ref8
  doi: 10.1109/MSP.2004.1296543
– ident: ref39
  doi: 10.1109/TSP.2009.2027461
– ident: ref60
  doi: 10.1109/TNNLS.2011.2178321
– ident: ref14
  doi: 10.1109/TNN.2004.824259
– ident: ref26
  doi: 10.1098/rsta.1909.0016
– ident: ref15
  doi: 10.1109/TNN.2007.900237
– year: 2004
  ident: ref20
  publication-title: Kernel Methods in Computational Biology
  doi: 10.7551/mitpress/4057.001.0001
– volume: 56
  start-page: 4544
  year: 2008
  ident: ref43
  article-title: Widely linear filter bank equalizer for real STBC
  publication-title: IEEE Trans Sig Process
  doi: 10.1109/TSP.2008.923807
– ident: ref29
  doi: 10.1109/78.403373
– ident: ref53
  doi: 10.1016/j.cam.2011.02.003
– ident: ref30
  doi: 10.1109/78.340781
– volume: 5782
  start-page: 489
  year: 2009
  ident: ref21
  article-title: Kernels for periodic time series arising in astronomy
  publication-title: Machine Learn Knowledge Discovery Databases Lecture Notes Comput Sci
  doi: 10.1007/978-3-642-04174-7_32
– ident: ref57
  doi: 10.1109/TSP.2008.926104
– ident: ref66
  doi: 10.1109/TSP.2006.877638
– ident: ref11
  doi: 10.1109/TSP.2007.907881
– year: 1996
  ident: ref48
  publication-title: Adaptive Filter Theory
– ident: ref37
  doi: 10.1109/TSP.2008.2011828
– ident: ref18
  doi: 10.1109/TIP.2010.2042995
– ident: ref32
  doi: 10.1109/TSP.2005.862946
– ident: ref65
  doi: 10.1016/0022-247X(71)90184-3
– ident: ref25
  doi: 10.1090/S0002-9947-1950-0051437-7
– ident: ref38
  doi: 10.1109/TCOMM.2009.0901.060565
– ident: ref9
  doi: 10.1109/TSP.2008.917376
– ident: ref41
  doi: 10.1049/el:20030945
– year: 2003
  ident: ref64
  publication-title: Fundamentals of Adaptive Filtering
– volume: 56
  start-page: 5891
  year: 2008
  ident: ref10
  article-title: A reproducing kernel Hilbert space framework for information theoretic learning
  publication-title: IEEE Trans Sig Process
  doi: 10.1109/TSP.2008.2005085
– ident: ref23
  doi: 10.1109/TNN.2010.2059042
– ident: ref36
  doi: 10.1109/TSP.2007.908937
– ident: ref28
  doi: 10.1002/9780470575758
– ident: ref4
  doi: 10.1017/CBO9780511809682
– ident: ref27
  doi: 10.1002/9780470742624
– year: 2011
  ident: ref47
  publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  doi: 10.1007/978-1-4419-9467-7
– year: 2009
  ident: ref52
  publication-title: An Introduction to the Theory of Reproducing Kernel Hilbert Spaces
– year: 1981
  ident: ref51
  publication-title: Robust Statistics
  doi: 10.1002/0471725250
– ident: ref7
  doi: 10.1109/TSP.2004.830985
– year: 2002
  ident: ref1
  publication-title: Learning With Kernels Support Vector Machines Regularization Optimization and Beyond
– ident: ref17
  doi: 10.1109/TNN.2009.2014060
– ident: ref22
  doi: 10.1007/BF00670335
– year: 2003
  ident: ref49
  publication-title: Fundamentals of Adaptive Filtering
– year: 2008
  ident: ref2
  publication-title: Pattern Recognition
– ident: ref33
  doi: 10.1109/TSP.2006.870639
SSID ssj0000605649
Score 2.2928789
Snippet This paper presents a wide framework for non-linear online supervised learning tasks in the context of complex valued signal processing. The (complex) input...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 425
SubjectTerms Adaptive kernel learning
Applied sciences
Artificial intelligence
Calculus
Channels
complex kernels
Computer science; control theory; systems
Context
Equalization
Exact sciences and technology
Hilbert space
Kernel
Kernels
Learning
Learning and adaptive systems
Loss measurement
Machine learning
Mathematical analysis
Nonlinearity
On-line systems
projection
Signal processing
Studies
subgradient
Tasks
widely linear estimation
Wirtinger's calculus
Title Adaptive Learning in Complex Reproducing Kernel Hilbert Spaces Employing Wirtinger's Subgradients
URI https://ieeexplore.ieee.org/document/6126047
https://www.ncbi.nlm.nih.gov/pubmed/24808549
https://www.proquest.com/docview/923926848
https://www.proquest.com/docview/1019655186
https://www.proquest.com/docview/1523406049
Volume 23
WOSCitedRecordID wos000302705100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_uDh988dTzo965RBB80HppmqbN4yEeBx6LcCfuW-nHZFlYukvbFf98M0m2p6AH9qk006bJZDKTZOY3AG9N1ihT0KluW2SxTGTt0rzE0movtMsJmXmQpOt8Pi8WC_31AD5MsTCI6JzP8CPdurP8dtPsaKvs3GpjxWV-CId5rnys1rSfwq1drpy1KxIlYpHmi32MDNfnt_P59Y0H7BQE0ZVQBjghC2twEIrmbyrJ5VghD8lqsJ1kfHaLf5ufTg1dHv9fAx7Do2Busgs_Pp7AAXZP4XifyoEFyT6B6qKttjTzsQC4umSrjhHdGn8ya6U7YFh6_AX7DtfsakXgWCO72ZJPF_OJg6n8-4pwCZbYvxuYnZWWvfMpG4dn8O3y8-2nqzhkX4gbmesxbkyq6lYbpds6Eyo1JsGcV9rUbaqrDI1CjnZdriVvyVe0biWmVVFLe1FYZvocjrpNhy-B2W_Yj9lul0rIlIvKNCkqU_PEEGBYFkGyZ0DZBGhyypCxLt0ShevS8a8k_pWBfxG8n97ZemCOe6lPiBsTZWBEBLM_-DyVCzIrpdQRnO4ZXwbhHkprE2sCySkieDOVWqmko5aqw81uIMc5rQjsTt1Dk4lUEnaRreWFH1N39Yeh-erv_30KD23rhPeFO4Ojsd_ha3jQ_BhXQz-z4rEoZk48fgHo4QhQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgQQvDBgbYWMYCYkHyOY4jhM_ToipaCVCWhF9i_JxripVaZWkiD8fn5MGkMYk8hTFlzj2-Xxn--53AG9NVCqT0KlulUS-DGTh0rz40movtMsJGfUgSdM4TZP5XH_dgw9jLAwiOuczPKdbd5ZfrcstbZVdWG2suIzvwf1ISsH7aK1xR4Vby1w5e1cESvgijOe7KBmuL2ZpOr3pITsFgXQFlANOyMSaHISj-YdScllWyEcyb203mT6_xb8NUKeIrg7-rwlP4PFgcLLLfoQ8hT2sn8HBLpkDG2T7EPLLKt_Q3McGyNUFW9aM6Fb4k1k73UHD0uNrbGpcscmS4LE6drMhry7Wpw6m8u9LQiZYYPOuZXZeWjTOq6xrn8O3q0-zjxN_yL_glzLWnV-aUBWVNkpXRSRUaEyAMc-1KapQ5xEahRztylxLXpG3aFFJDPOkkPaiwMzwCPbrdY0vgNlv2I_ZbpdKyJCL3JQhKlPwwBBkWORBsGNAVg7g5JQjY5W5RQrXmeNfRvzLBv558H58Z9NDc9xJfUjcGCkHRnhw9hefx3JBhqWU2oOTHeOzQbzbzFrFmmByEg_ejKVWLumwJa9xvW3JdU4rgrtTd9BEIpSEXmRrOe7H1O_6h6H58vb_fg0PJ7Mv02z6Ob0-gUe2paL3jDuF_a7Z4it4UP7olm1z5oTkF4xrCq8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+learning+in+complex+reproducing+kernel+Hilbert+spaces+employing+Wirtinger%27s+subgradients&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Bouboulis%2C+Pantelis&rft.au=Slavakis%2C+Konstantinos&rft.au=Theodoridis%2C+Sergios&rft.date=2012-03-01&rft.issn=2162-237X&rft.volume=23&rft.issue=3&rft.spage=425&rft_id=info:doi/10.1109%2FTNNLS.2011.2179810&rft_id=info%3Apmid%2F24808549&rft.externalDocID=24808549
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon