A sequential cutting plane algorithm for solving convex NLP problems

In this paper we look at a new algorithm for solving convex nonlinear programming optimization problems. The algorithm is a cutting plane-based method, where the sizes of the subproblems remain fixed, thus avoiding the issue with constantly growing subproblems we have for the classical Kelley’s cutt...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European journal of operational research Ročník 173; číslo 2; s. 444 - 464
Hlavní autori: Still, Claus, Westerlund, Tapio
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.09.2006
Elsevier
Elsevier Sequoia S.A
Edícia:European Journal of Operational Research
Predmet:
ISSN:0377-2217, 1872-6860
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper we look at a new algorithm for solving convex nonlinear programming optimization problems. The algorithm is a cutting plane-based method, where the sizes of the subproblems remain fixed, thus avoiding the issue with constantly growing subproblems we have for the classical Kelley’s cutting plane algorithm. Initial numerical experiments indicate that the algorithm is considerably faster than Kelley’s cutting plane algorithm and also competitive with existing nonlinear programming algorithms.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2005.02.045