A sequential cutting plane algorithm for solving convex NLP problems
In this paper we look at a new algorithm for solving convex nonlinear programming optimization problems. The algorithm is a cutting plane-based method, where the sizes of the subproblems remain fixed, thus avoiding the issue with constantly growing subproblems we have for the classical Kelley’s cutt...
Uložené v:
| Vydané v: | European journal of operational research Ročník 173; číslo 2; s. 444 - 464 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
01.09.2006
Elsevier Elsevier Sequoia S.A |
| Edícia: | European Journal of Operational Research |
| Predmet: | |
| ISSN: | 0377-2217, 1872-6860 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper we look at a new algorithm for solving convex nonlinear programming optimization problems. The algorithm is a cutting plane-based method, where the sizes of the subproblems remain fixed, thus avoiding the issue with constantly growing subproblems we have for the classical Kelley’s cutting plane algorithm. Initial numerical experiments indicate that the algorithm is considerably faster than Kelley’s cutting plane algorithm and also competitive with existing nonlinear programming algorithms. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0377-2217 1872-6860 |
| DOI: | 10.1016/j.ejor.2005.02.045 |