Convex Optimization Algorithms for Active Balancing of Humanoid Robots

We show that a large class of active balancing problems for legged robots can be framed as a second-order cone programming (SOCP) problem, a convex optimization problem for which efficient and numerically robust algorithms exist. We describe this general SOCP balancing framework, show that several e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics Jg. 23; H. 4; S. 817 - 822
Hauptverfasser: Juyong Park, Jaeyoung Haan, Park, F.C.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.08.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1552-3098, 1941-0468
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that a large class of active balancing problems for legged robots can be framed as a second-order cone programming (SOCP) problem, a convex optimization problem for which efficient and numerically robust algorithms exist. We describe this general SOCP balancing framework, show that several existing optimization-based balancing strategies reduce to special cases of this more general formulation, and investigate the computational performance of our SOCP algorithms through simulation studies involving a humanoid model.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2007.900639