Boreholes Data Analysis Architecture Based on Clustering and Prediction Models for Enhancing Underground Safety Verification

During the last decade, substantial resources have been invested to exploit massive amounts of boreholes data collected through groundwater extraction. Furthermore, boreholes depth can be considered one of the crucial factors in digging borehole efficiency. Therefore, a new solution is needed to pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 9; S. 78428 - 78451
Hauptverfasser: Iqbal, Naeem, Rizwan, Atif, Khan, Anam Nawaz, Ahmad, Rashid, Kim, Bong Wan, Kim, Kwangsoo, Kim, Do-Hyeun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract During the last decade, substantial resources have been invested to exploit massive amounts of boreholes data collected through groundwater extraction. Furthermore, boreholes depth can be considered one of the crucial factors in digging borehole efficiency. Therefore, a new solution is needed to process and analyze boreholes data to monitor digging operations and identify the boreholes shortcomings. This research study presents a boreholes data analysis architecture based on data and predictive analysis models to improve borehole efficiency, underground safety verification, and risk evaluation. The proposed architecture aims to process and analyze borehole data based on different hydrogeological characteristics using data and predictive analytics to enhance underground safety verification and planning of borehole resources. The proposed architecture is developed based on two modules; descriptive data analysis and predictive analysis modules. The descriptive analysis aims to utilize data and clustering analysis techniques to process and extract hidden hydrogeological characteristics from borehole history data. The predictive analysis aims to develop a bi-directional long short-term memory (BD-LSTM) to predict the boreholes depth to minimize the cost and time of the digging operations. Furthermore, different performance measures are utilized to evaluate the performance of the proposed clustering and regression models. Moreover, our proposed BD-LSTM model is evaluated and compared with conventional machine learning (ML) regression models. The <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula> score of the proposed BD-LSTM is 0.989, which indicates that the proposed model accurately and precisely predicts boreholes depth compared to the conventional regression models. The experimental and comparative analysis results reveal the significance and effectiveness of the proposed borehole data analysis architecture. The experimental results will improve underground safety management and the efficiency of boreholes for future wells.
AbstractList During the last decade, substantial resources have been invested to exploit massive amounts of boreholes data collected through groundwater extraction. Furthermore, boreholes depth can be considered one of the crucial factors in digging borehole efficiency. Therefore, a new solution is needed to process and analyze boreholes data to monitor digging operations and identify the boreholes shortcomings. This research study presents a boreholes data analysis architecture based on data and predictive analysis models to improve borehole efficiency, underground safety verification, and risk evaluation. The proposed architecture aims to process and analyze borehole data based on different hydrogeological characteristics using data and predictive analytics to enhance underground safety verification and planning of borehole resources. The proposed architecture is developed based on two modules; descriptive data analysis and predictive analysis modules. The descriptive analysis aims to utilize data and clustering analysis techniques to process and extract hidden hydrogeological characteristics from borehole history data. The predictive analysis aims to develop a bi-directional long short-term memory (BD-LSTM) to predict the boreholes depth to minimize the cost and time of the digging operations. Furthermore, different performance measures are utilized to evaluate the performance of the proposed clustering and regression models. Moreover, our proposed BD-LSTM model is evaluated and compared with conventional machine learning (ML) regression models. The <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula> score of the proposed BD-LSTM is 0.989, which indicates that the proposed model accurately and precisely predicts boreholes depth compared to the conventional regression models. The experimental and comparative analysis results reveal the significance and effectiveness of the proposed borehole data analysis architecture. The experimental results will improve underground safety management and the efficiency of boreholes for future wells.
During the last decade, substantial resources have been invested to exploit massive amounts of boreholes data collected through groundwater extraction. Furthermore, boreholes depth can be considered one of the crucial factors in digging borehole efficiency. Therefore, a new solution is needed to process and analyze boreholes data to monitor digging operations and identify the boreholes shortcomings. This research study presents a boreholes data analysis architecture based on data and predictive analysis models to improve borehole efficiency, underground safety verification, and risk evaluation. The proposed architecture aims to process and analyze borehole data based on different hydrogeological characteristics using data and predictive analytics to enhance underground safety verification and planning of borehole resources. The proposed architecture is developed based on two modules; descriptive data analysis and predictive analysis modules. The descriptive analysis aims to utilize data and clustering analysis techniques to process and extract hidden hydrogeological characteristics from borehole history data. The predictive analysis aims to develop a bi-directional long short-term memory (BD-LSTM) to predict the boreholes depth to minimize the cost and time of the digging operations. Furthermore, different performance measures are utilized to evaluate the performance of the proposed clustering and regression models. Moreover, our proposed BD-LSTM model is evaluated and compared with conventional machine learning (ML) regression models. The <tex-math notation="LaTeX">$R^{2}$ </tex-math> score of the proposed BD-LSTM is 0.989, which indicates that the proposed model accurately and precisely predicts boreholes depth compared to the conventional regression models. The experimental and comparative analysis results reveal the significance and effectiveness of the proposed borehole data analysis architecture. The experimental results will improve underground safety management and the efficiency of boreholes for future wells.
During the last decade, substantial resources have been invested to exploit massive amounts of boreholes data collected through groundwater extraction. Furthermore, boreholes depth can be considered one of the crucial factors in digging borehole efficiency. Therefore, a new solution is needed to process and analyze boreholes data to monitor digging operations and identify the boreholes shortcomings. This research study presents a boreholes data analysis architecture based on data and predictive analysis models to improve borehole efficiency, underground safety verification, and risk evaluation. The proposed architecture aims to process and analyze borehole data based on different hydrogeological characteristics using data and predictive analytics to enhance underground safety verification and planning of borehole resources. The proposed architecture is developed based on two modules; descriptive data analysis and predictive analysis modules. The descriptive analysis aims to utilize data and clustering analysis techniques to process and extract hidden hydrogeological characteristics from borehole history data. The predictive analysis aims to develop a bi-directional long short-term memory (BD-LSTM) to predict the boreholes depth to minimize the cost and time of the digging operations. Furthermore, different performance measures are utilized to evaluate the performance of the proposed clustering and regression models. Moreover, our proposed BD-LSTM model is evaluated and compared with conventional machine learning (ML) regression models. The [Formula Omitted] score of the proposed BD-LSTM is 0.989, which indicates that the proposed model accurately and precisely predicts boreholes depth compared to the conventional regression models. The experimental and comparative analysis results reveal the significance and effectiveness of the proposed borehole data analysis architecture. The experimental results will improve underground safety management and the efficiency of boreholes for future wells.
Author Kim, Bong Wan
Kim, Do-Hyeun
Kim, Kwangsoo
Ahmad, Rashid
Iqbal, Naeem
Khan, Anam Nawaz
Rizwan, Atif
Author_xml – sequence: 1
  givenname: Naeem
  orcidid: 0000-0003-2749-6344
  surname: Iqbal
  fullname: Iqbal, Naeem
  organization: Department of Computer Engineering, Jeju National University, Jeju, Republic of Korea
– sequence: 2
  givenname: Atif
  orcidid: 0000-0001-6669-8147
  surname: Rizwan
  fullname: Rizwan, Atif
  organization: Department of Computer Engineering, Jeju National University, Jeju, Republic of Korea
– sequence: 3
  givenname: Anam Nawaz
  orcidid: 0000-0001-6260-5820
  surname: Khan
  fullname: Khan, Anam Nawaz
  organization: Department of Computer Engineering, Jeju National University, Jeju, Republic of Korea
– sequence: 4
  givenname: Rashid
  surname: Ahmad
  fullname: Ahmad, Rashid
  organization: Department of Computer Science, COMSATS University Islamabad at Attock, Attock, Pakistan
– sequence: 5
  givenname: Bong Wan
  surname: Kim
  fullname: Kim, Bong Wan
  organization: Electronics and Telecommunications Research Institute (ETRI), Daejeon, Republic of Korea
– sequence: 6
  givenname: Kwangsoo
  surname: Kim
  fullname: Kim, Kwangsoo
  organization: Electronics and Telecommunications Research Institute (ETRI), Daejeon, Republic of Korea
– sequence: 7
  givenname: Do-Hyeun
  orcidid: 0000-0002-3457-2301
  surname: Kim
  fullname: Kim, Do-Hyeun
  email: kimdh@jejunu.ac.kr
  organization: Department of Computer Engineering, Jeju National University, Jeju, Republic of Korea
BookMark eNqFkUFr3DAQhU1IIWmaX5CLIOfdSpZtWceNu2kCKS1sk6sYS6NdLa6VSvJhoT--2jiEkkt10TDzvjcw72NxOvoRi-KK0SVjVH5edd16s1mWtGRLTlvORH1SnJeskQte8-b0n_qsuIxxT_Nrc6sW58WfGx9w5weM5AskIKsRhkN0kayC3rmEOk0ByQ1ENMSPpBummDC4cUtgNORHQON0cnnyzRscIrE-kPW4g1EfNY-jwbANfsraDVhMB_KUaes0HKFPxQcLQ8TL1_-ieLxd_-zuFg_fv953q4eFrkSbFshR97Vuja76vhKyLy1HW9coZK4otBw406zRKJrWMmBlb0otrLAcTFXV_KK4n32Nh716Du4XhIPy4NRLw4etgpCcHlAxKdoeWQ-lNZXgEkQjebawrKmltE32up69noP_PWFMau-nkK8WVZkvTDmVVGQVn1U6-BgD2retjKpjampOTR1TU6-pZUq-o7RLL5dKAdzwH_ZqZh0ivm2TFZdVw_hfc-ioxA
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3133889
crossref_primary_10_1007_s41748_024_00516_8
crossref_primary_10_1186_s42408_023_00203_5
crossref_primary_10_3390_bioengineering11060533
crossref_primary_10_1109_ACCESS_2022_3211528
crossref_primary_10_1016_j_pce_2025_104093
crossref_primary_10_1109_ACCESS_2021_3111112
crossref_primary_10_1016_j_future_2023_11_036
crossref_primary_10_3390_math12243980
crossref_primary_10_3390_s21216972
Cites_doi 10.1016/j.apgeochem.2011.03.041
10.1016/j.petrol.2019.106682
10.1007/s10586-014-0413-9
10.1007/s10639-017-9645-7
10.1016/j.petrol.2018.12.013
10.1007/s12145-019-00381-4
10.1007/s10040-007-0165-1
10.1002/2016WR019933
10.3390/info10030103
10.1016/j.asoc.2014.02.002
10.3390/sym13030405
10.1016/j.cie.2018.08.018
10.1016/j.neucom.2018.12.093
10.1016/j.neucom.2018.09.082
10.1109/ACCESS.2019.2934179
10.1016/j.petrol.2018.08.083
10.1016/j.cageo.2015.05.019
10.1016/j.ijrmms.2019.03.010
10.1007/s00366-019-00715-2
10.1162/neco.1997.9.8.1735
10.1016/B978-0-12-815739-8.00013-4
10.3390/su11061678
10.1145/2996913.2996984
10.3390/su13052461
10.1029/2004WR003299
10.1109/ACCESS.2021.3060457
10.1109/ICECA.2017.8212735
10.3390/su8010087
10.1109/ACCESS.2018.2866364
10.1007/s11269-014-0810-0
10.1007/s10040-002-0196-6
10.1016/j.ins.2014.01.015
10.3390/w9100781
10.1016/j.energy.2020.119708
10.1016/j.oregeorev.2016.10.002
10.1016/j.ijinfomgt.2014.10.007
10.1109/ACCESS.2021.3049325
10.1109/MSP.2012.2205597
10.1016/j.compchemeng.2014.05.008
10.5120/8282-1278
10.5194/hess-20-2611-2016
10.3390/s20164410
10.2118/191141-PA
10.1016/j.apenergy.2017.12.051
10.1016/j.tust.2020.103450
10.1109/ACCESS.2020.3042598
10.1109/CloudTech.2015.7336964
10.1109/ICCCNT.2013.6726842
10.1109/ACCESS.2020.2990765
10.1016/j.ins.2020.04.009
10.1109/ACCESS.2020.2988173
10.1016/j.jngse.2018.06.006
10.1016/j.jbi.2017.05.002
10.1627/jpi.57.65
10.1016/j.petrol.2018.09.027
10.1016/j.coldregions.2017.08.009
10.1097/EDE.0b013e3181c30fb2
10.1109/JIOT.2020.3028743
10.1016/j.jngse.2017.02.019
10.1016/j.compchemeng.2017.08.009
10.1109/TPAMI.2013.50
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3083175
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 78451
ExternalDocumentID oai_doaj_org_article_1978be1ba2fd4739a7693453f16599f6
10_1109_ACCESS_2021_3083175
9439461
Genre orig-research
GrantInformation_xml – fundername: Korea Agency for Infrastructure Technology Advancement (KAIA)
  funderid: 10.13039/501100007694
– fundername: Energy Cloud Research and Development Program through the National Research Foundation of Korea (NRF)
  funderid: 10.13039/501100003725
– fundername: Ministry of Science, ICT
  grantid: 2019M3F2A1073387
– fundername: Ministry of Land, Infrastructure and Transport
  grantid: 20DCRU-B158151-01
  funderid: 10.13039/501100003565
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c478t-e3ecb5c8dc4bb479b2f3ef55e792f30a83a31c16ce768f1a12bd2c7f7f3ad4453
IEDL.DBID DOA
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673783400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:34:01 EDT 2025
Mon Jun 30 06:52:47 EDT 2025
Sat Nov 29 06:12:18 EST 2025
Tue Nov 18 21:42:24 EST 2025
Wed Aug 27 02:29:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-e3ecb5c8dc4bb479b2f3ef55e792f30a83a31c16ce768f1a12bd2c7f7f3ad4453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3457-2301
0000-0003-2749-6344
0000-0001-6260-5820
0000-0001-6669-8147
OpenAccessLink https://doaj.org/article/1978be1ba2fd4739a7693453f16599f6
PQID 2536030907
PQPubID 4845423
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_1978be1ba2fd4739a7693453f16599f6
crossref_citationtrail_10_1109_ACCESS_2021_3083175
ieee_primary_9439461
crossref_primary_10_1109_ACCESS_2021_3083175
proquest_journals_2536030907
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref55
ref11
ref10
kelleher (ref28) 2020
ref17
reimann (ref54) 2011
ref16
ref19
ref18
widodo (ref52) 2016
ref51
ref50
iqbal (ref37) 2021; 13
ref46
ref45
ref48
ref42
ref41
ref44
ref43
kristjansson (ref47) 2016
ref49
(ref1) 2021
ref8
ref7
ref9
ref4
ref3
ref5
ref40
ref35
ref34
ref36
ref31
ref30
ref33
russom (ref6) 2011; 19
ref32
ref2
ref39
ref38
alasadi (ref66) 2017; 12
ref68
ref24
ref67
ref23
ref26
ref25
ref64
ref20
ref63
ref22
ref65
ref21
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref55
  doi: 10.1016/j.apgeochem.2011.03.041
– ident: ref23
  doi: 10.1016/j.petrol.2019.106682
– year: 2011
  ident: ref54
  publication-title: Statistical Data Analysis Explained Applied Environmental Statistics With R
– ident: ref56
  doi: 10.1007/s10586-014-0413-9
– ident: ref35
  doi: 10.1007/s10639-017-9645-7
– ident: ref63
  doi: 10.1016/j.petrol.2018.12.013
– ident: ref64
  doi: 10.1007/s12145-019-00381-4
– ident: ref50
  doi: 10.1007/s10040-007-0165-1
– ident: ref15
  doi: 10.1002/2016WR019933
– ident: ref44
  doi: 10.3390/info10030103
– ident: ref31
  doi: 10.1016/j.asoc.2014.02.002
– ident: ref38
  doi: 10.3390/sym13030405
– ident: ref65
  doi: 10.1016/j.cie.2018.08.018
– ident: ref34
  doi: 10.1016/j.neucom.2018.12.093
– ident: ref24
  doi: 10.1016/j.neucom.2018.09.082
– ident: ref46
  doi: 10.1109/ACCESS.2019.2934179
– ident: ref30
  doi: 10.1016/j.petrol.2018.08.083
– ident: ref11
  doi: 10.1016/j.cageo.2015.05.019
– ident: ref48
  doi: 10.1016/j.ijrmms.2019.03.010
– ident: ref58
  doi: 10.1007/s00366-019-00715-2
– ident: ref22
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref45
  doi: 10.1016/B978-0-12-815739-8.00013-4
– ident: ref5
  doi: 10.3390/su11061678
– ident: ref36
  doi: 10.1145/2996913.2996984
– volume: 13
  start-page: 2461
  year: 2021
  ident: ref37
  article-title: Towards mountain fire safety using fire spread predictive analytics and mountain fire containment in IoT environment
  publication-title: Sustainability
  doi: 10.3390/su13052461
– ident: ref49
  doi: 10.1029/2004WR003299
– ident: ref40
  doi: 10.1109/ACCESS.2021.3060457
– ident: ref67
  doi: 10.1109/ICECA.2017.8212735
– ident: ref7
  doi: 10.3390/su8010087
– ident: ref42
  doi: 10.1109/ACCESS.2018.2866364
– volume: 12
  start-page: 4102
  year: 2017
  ident: ref66
  article-title: Review of data preprocessing techniques in data mining
  publication-title: J Eng Appl Sci
– ident: ref29
  doi: 10.1007/s11269-014-0810-0
– ident: ref51
  doi: 10.1007/s10040-002-0196-6
– ident: ref10
  doi: 10.1016/j.ins.2014.01.015
– ident: ref57
  doi: 10.3390/w9100781
– ident: ref25
  doi: 10.1016/j.energy.2020.119708
– ident: ref53
  doi: 10.1016/j.oregeorev.2016.10.002
– year: 2016
  ident: ref52
  article-title: Application of clustering system to analyze geological, geotechnical and hydrogeological data base according to HC-system approach
  publication-title: Proc 9th Asian Rock Mech Symp
– volume: 19
  start-page: 1
  year: 2011
  ident: ref6
  article-title: Big data analytics
  publication-title: TDWI Best Practices Report TDWI
– ident: ref3
  doi: 10.1016/j.ijinfomgt.2014.10.007
– ident: ref19
  doi: 10.1109/ACCESS.2021.3049325
– ident: ref17
  doi: 10.1109/MSP.2012.2205597
– ident: ref27
  doi: 10.1016/j.compchemeng.2014.05.008
– ident: ref43
  doi: 10.5120/8282-1278
– ident: ref12
  doi: 10.5194/hess-20-2611-2016
– ident: ref18
  doi: 10.3390/s20164410
– ident: ref61
  doi: 10.2118/191141-PA
– ident: ref21
  doi: 10.1016/j.apenergy.2017.12.051
– ident: ref2
  doi: 10.1016/j.tust.2020.103450
– ident: ref14
  doi: 10.1109/ACCESS.2020.3042598
– ident: ref4
  doi: 10.1109/CloudTech.2015.7336964
– ident: ref9
  doi: 10.1109/ICCCNT.2013.6726842
– ident: ref8
  doi: 10.1109/ACCESS.2020.2990765
– ident: ref41
  doi: 10.1016/j.ins.2020.04.009
– ident: ref13
  doi: 10.1109/ACCESS.2020.2988173
– start-page: 1
  year: 2016
  ident: ref47
  article-title: Use of historic data to improve drilling efficiency: A pattern recognition method and trial results
  publication-title: Proceedings of IADC/SPE Drilling Conference and Exhibition
– ident: ref60
  doi: 10.1016/j.jngse.2018.06.006
– ident: ref16
  doi: 10.1016/j.jbi.2017.05.002
– ident: ref59
  doi: 10.1627/jpi.57.65
– ident: ref62
  doi: 10.1016/j.petrol.2018.09.027
– ident: ref32
  doi: 10.1016/j.coldregions.2017.08.009
– ident: ref68
  doi: 10.1097/EDE.0b013e3181c30fb2
– year: 2021
  ident: ref1
  publication-title: Ministry of Environment to Carry Out Detailed Investigation of Old Sewage Pipes Within the Year
– ident: ref39
  doi: 10.1109/JIOT.2020.3028743
– ident: ref33
  doi: 10.1016/j.jngse.2017.02.019
– ident: ref26
  doi: 10.1016/j.compchemeng.2017.08.009
– year: 2020
  ident: ref28
  publication-title: Fundamentals of machine learning for predictive data analytics algorithms worked examples and case studies
– ident: ref20
  doi: 10.1109/TPAMI.2013.50
SSID ssj0000816957
Score 2.26389
Snippet During the last decade, substantial resources have been invested to exploit massive amounts of boreholes data collected through groundwater extraction....
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 78428
SubjectTerms Analytical models
Boreholes
boreholes data
Cluster analysis
Clustering
Data analysis
data and predictive analytics
Data mining
Data models
deep learning
Efficiency
Groundwater
Hydrogeology
Long short term memory
Machine learning
Modules
Performance evaluation
Prediction models
Predictive analytics
Predictive models
Regression models
Risk assessment
ROP
Safety management
Verification
Water resources
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEBZp6KE9JG3TUjdp0aHHbGKtVq-j7Sb0FAJ9kJvQ6kELZl3sdSCQH98ZrbwYWgq9CaERWj5pRyNpvo-Qj0qAVwmsqRSXvmoghKi0Q8LLxLRSHhx4DFlsQt3c6Ls7c3tAzsdcmBhjfnwWL7CY7_LDym_xqOzSYBonxjpPlJJDrtZ4noICEkaoQizEpuZytljAN0AIWLMLjoJa-JZwz_lkjv4iqvLHnzi7l-vj_xvYC3JUtpF0NuD-khzE7hV5vkcueEIe59ALqt9u6CfXO7qjH6GzvbsDOgcvFuiqo4vlFjkTwJS6LtDbNd7gIGoU5dKWGwq7W3rV_UB-DmiT9ZIwJQTafnEp9g_0O1incgT4mny7vvq6-FwVrYXKN0r3VeTRt8Lr4Ju2bZRp68RjEiIqA6Wp09xx5pn0EeKTxByr21B7lVTiLjSN4G_IYbfq4ltCVZRgJSREKq7hWmrpNeZoQwVPEPJNSL0DwfpCRI56GEubA5KpsQNyFpGzBbkJOR-Nfg08HP9uPkd0x6ZIop0rADZb1qRlEEG3kbWuTqFR3DjUhYRPSUwKYxIM9AShHjspKE_I2W6u2LLgN7YWXOJt1VS9-7vVKXmGAxxOb87IYb_exvfkqb_vf27WH_Jc_g28MfGK
  priority: 102
  providerName: IEEE
Title Boreholes Data Analysis Architecture Based on Clustering and Prediction Models for Enhancing Underground Safety Verification
URI https://ieeexplore.ieee.org/document/9439461
https://www.proquest.com/docview/2536030907
https://doaj.org/article/1978be1ba2fd4739a7693453f16599f6
Volume 9
WOSCitedRecordID wos000673783400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-y7EEP4rqKo-uSg0frNs33cWacxYvLgh_sLaRpgsLQkZnuwoL4t_temhkKgl68lBJe2ibvNS8vyfv9CHmjJXiVjolKcxUqASFEZTwCXiZmtA7gwGOXySb01ZW5ubHXE6ovPBM2wgOPHXfBIMxpI2t9kzqhufVI3ickT0xJa1MG2661nQRTeQw2TFmpC8wQq-3FfLmEFkFA2LB3HOm18GThxBVlxP5CsfLHuJydzeUT8rjMEul8_LoT8iD2T8mjCXbgKfm52Gwjktvu6Hs_eLpHF6HzydYAXYCT6uimp8v1LUIiQFXq-45eb3GDBpVCkQ1tvaMweaWr_hvCb4BMpkPCjA-Q_eRTHO7pV6idygrfM_LlcvV5-aEqVApVENoMVeQxtDKYLoi2Fdq2TeIxSRm1hbvaG-45C0yFCOFHYp41bdcEnXTivhPQ3c_JUb_p4wtCdVRQSyoIRLzgRhkVDKZgQwFPENHNSLPvVRcKzjjSXaxdjjdq60ZVOFSFK6qYkbeHSj9GmI2_iy9QXQdRxMjOBWA5rliO-5flzMgpKvvwEItJworNyNle-a78zzvXSK5wM6rWL__Hq1-Rh9iccSnnjBwN29v4mhyHu-H7bnueTRmuH3-tznNC4m9PPvXK
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BaxQxFA6lFbSHVq3i2qo5eOy0k0kySY67a0vFuhSs0lvIZBIqLLOyO1sQ_PG-N5MdFhTBWwh5IcOXzMtL8r6PkPdKglepmcgUL30mIITItEPCy8i0Uh4ceKg7sQk1m-m7O3OzQ06HXJgQQvf4LJxhsbvLrxd-jUdl5wbTODHW2ZNCFHmfrTWcqKCEhJEqUQux3JyPp1P4CggCC3bGUVILXxNuuZ-OpT_JqvzxL-4czOXh_w3tKTlIG0k67pF_RnZC85zsb9ELHpFfE-gF9W9X9INrHd0QkNDx1u0BnYAfq-miodP5GlkTwJS6pqY3S7zDQdwoCqbNVxT2t_SiuUeGDmjTKSZhUgi0_eJiaH_Sb2Ad0yHgC_L18uJ2epUltYXMC6XbLPDgK-l17UVVCWWqIvIQpQzKQCl3mjvOPCt9gAglMseKqi68iipyVwsh-Uuy2yya8IpQFUqwkiXEKk5wXerSa8zShgoeIegbkWIDgvWJihwVMea2C0lyY3vkLCJnE3IjcjoY_eiZOP7dfILoDk2RRrurANhsWpWWQQxdBVa5ItZCceNQGRI-JbJSGhNhoEcI9dBJQnlETjZzxaYlv7KF5CXeV-Xq9d-t3pHHV7efr-31x9mnY_IEB9uf5ZyQ3Xa5Dm_II__Qfl8t33bz-jdsLvTR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boreholes+Data+Analysis+Architecture+Based+on+Clustering+and+Prediction+Models+for+Enhancing+Underground+Safety+Verification&rft.jtitle=IEEE+access&rft.au=Iqbal%2C+Naeem&rft.au=Rizwan%2C+Atif&rft.au=Khan%2C+Anam+Nawaz&rft.au=Ahmad%2C+Rashid&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=78428&rft.epage=78451&rft_id=info:doi/10.1109%2FACCESS.2021.3083175&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3083175
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon