How Stringent Is the Linear Independence Assumption for Mathematical Programs with Complementarity Constraints?

The linear independence constraint qualifications (LICQ) plays an important role in the analysis of mathematical programs with complementarity constraints (MPCCs) and is a vital ingredient to convergence analyses of SQP-type or smoothing methods, cf., e.g., Fukushima and Pang (1999), Luo et al. (199...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics of operations research Ročník 26; číslo 4; s. 851 - 863
Hlavní autoři: Scholtes, Stefan, Stohr, Michael
Médium: Journal Article
Jazyk:angličtina
Vydáno: Linthicum INFORMS 01.11.2001
Institute for Operations Research and the Management Sciences
Témata:
ISSN:0364-765X, 1526-5471
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The linear independence constraint qualifications (LICQ) plays an important role in the analysis of mathematical programs with complementarity constraints (MPCCs) and is a vital ingredient to convergence analyses of SQP-type or smoothing methods, cf., e.g., Fukushima and Pang (1999), Luo et al. (1996), Scholtes and Stöhr (1999), Scholtes (2001), Stöhr (2000). We will argue in this paper that LICQ is not a particularly stringent assumption for MPCCs. Our arguments are based on an extension of Jongen's (1977) genericity analysis to MPCCs. His definitions of nondegenerate critical points and regular programs extend naturally to MPCCs and his genericity results generalize straightforwardly to MPCCs in standard form. An extension is not as straightforward for MPCCs with the particular structure induced by lower-level stationarity conditions for variational inequalities or optimization problems. We show that LICQ remains a generic property for this class of MPCCs.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0364-765X
1526-5471
DOI:10.1287/moor.26.4.851.10007