Recent Studies on Chicken Swarm Optimization algorithm: a review (2014–2018)

Solving a complex optimization problem in a limited timeframe is a tedious task. Conventional gradient-based optimization algorithms have their limitations in solving complex problems such as unit commitment, microgrid planning, vehicle routing, feature selection, and community detection in social n...

Full description

Saved in:
Bibliographic Details
Published in:The Artificial intelligence review Vol. 53; no. 3; pp. 1737 - 1765
Main Authors: Deb, Sanchari, Gao, Xiao-Zhi, Tammi, Kari, Kalita, Karuna, Mahanta, Pinakeswar
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.03.2020
Springer
Springer Nature B.V
Subjects:
ISSN:0269-2821, 1573-7462
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Solving a complex optimization problem in a limited timeframe is a tedious task. Conventional gradient-based optimization algorithms have their limitations in solving complex problems such as unit commitment, microgrid planning, vehicle routing, feature selection, and community detection in social networks. In recent years population-based bio-inspired algorithms have demonstrated competitive performance on a wide range of optimization problems. Chicken Swarm Optimization Algorithm (CSO) is one of such bio-inspired meta-heuristic algorithms mimicking the behaviour of chicken swarm. It is reported in many literature that CSO outperforms a number of well-known meta-heuristics in a wide range of benchmark problems. This paper presents a review of various issues related to CSO like general biology, fundamentals, variants of CSO, performance of CSO, and applications of CSO.
AbstractList Solving a complex optimization problem in a limited timeframe is a tedious task. Conventional gradient-based optimization algorithms have their limitations in solving complex problems such as unit commitment, microgrid planning, vehicle routing, feature selection, and community detection in social networks. In recent years population-based bio-inspired algorithms have demonstrated competitive performance on a wide range of optimization problems. Chicken Swarm Optimization Algorithm (CSO) is one of such bio-inspired meta-heuristic algorithms mimicking the behaviour of chicken swarm. It is reported in many literature that CSO outperforms a number of well-known meta-heuristics in a wide range of benchmark problems. This paper presents a review of various issues related to CSO like general biology, fundamentals, variants of CSO, performance of CSO, and applications of CSO.
Audience Academic
Author Mahanta, Pinakeswar
Deb, Sanchari
Gao, Xiao-Zhi
Tammi, Kari
Kalita, Karuna
Author_xml – sequence: 1
  givenname: Sanchari
  surname: Deb
  fullname: Deb, Sanchari
  email: sancharideb@yahoo.co.in
  organization: Centre for Energy, Indian Institute of Technology
– sequence: 2
  givenname: Xiao-Zhi
  surname: Gao
  fullname: Gao, Xiao-Zhi
  organization: School of Computing, University of Eastern Finland
– sequence: 3
  givenname: Kari
  surname: Tammi
  fullname: Tammi, Kari
  organization: Department of Mechanical Engineering, Aalto University
– sequence: 4
  givenname: Karuna
  surname: Kalita
  fullname: Kalita, Karuna
  organization: Department of Mechanical Engineering, Indian Institute of Technology
– sequence: 5
  givenname: Pinakeswar
  surname: Mahanta
  fullname: Mahanta, Pinakeswar
  organization: Department of Mechanical Engineering, Indian Institute of Technology
BookMark eNp9kctKBDEQRYMoOD5-wFWDG120JqlOJ3Engy8QBR_rkMkkY3S6e0wyDrryH_xDv8RoC4KLIYuCyj1V1L0baLXtWovQDsEHBGN-GAmualpiIkssORElrKABYRxKnvuraIBpLUsqKFlHGzE-YowZrWCArm6ssW0qbtN87G0surYYPnjzZNvidqFDU1zPkm_8m04-f-nppAs-PTRHhS6CffF2UexRTKrP949cxP4WWnN6Gu32b91E96cnd8Pz8vL67GJ4fFmaiotUytoJKrjkdS24Fo4BpxVnI5Bu7Kq6lnJMLDgqGQbBBMajijoYCTlyYJw0sIl2-7mz0D3PbUzqsZuHNq9UQCQTogbJlqkozcMJVAKy6qBXTfTUKt-6LgVt8hvbxpvss_O5f5xdpYQB8AyIHjChizFYp4xPPwZl0E8Vweo7FNWHonIo6icU9b2L_kNnwTc6vC6HoIdiFrcTG_7OWEJ9Abf6nTM
CitedBy_id crossref_primary_10_1007_s11042_023_17109_8
crossref_primary_10_1186_s44147_024_00533_4
crossref_primary_10_3390_biomimetics9050270
crossref_primary_10_3390_s22103910
crossref_primary_10_1002_cjce_70053
crossref_primary_10_1109_ACCESS_2019_2947297
crossref_primary_10_3390_a15050156
crossref_primary_10_3390_electronics10060712
crossref_primary_10_1016_j_heliyon_2024_e25465
crossref_primary_10_1007_s41062_025_02083_x
crossref_primary_10_38124_ijisrt_25mar2010
crossref_primary_10_1007_s10462_023_10435_1
crossref_primary_10_3390_app13074439
crossref_primary_10_3390_e25030450
crossref_primary_10_1088_1402_4896_addaf4
crossref_primary_10_1007_s11277_022_09927_0
crossref_primary_10_1166_jmihi_2021_3905
crossref_primary_10_3390_biomimetics8040355
crossref_primary_10_1007_s10614_023_10400_8
crossref_primary_10_1007_s10489_021_02980_5
crossref_primary_10_1007_s00366_021_01530_4
crossref_primary_10_1007_s00366_021_01591_5
crossref_primary_10_1007_s13349_022_00592_2
crossref_primary_10_1109_ACCESS_2020_2983483
crossref_primary_10_1007_s11277_023_10299_2
crossref_primary_10_1038_s41598_022_23121_z
crossref_primary_10_1109_ACCESS_2023_3272556
crossref_primary_10_1007_s00500_023_07990_8
crossref_primary_10_3390_axioms10010030
crossref_primary_10_1007_s11831_024_10090_x
crossref_primary_10_1007_s40747_021_00510_x
crossref_primary_10_3390_app14010381
crossref_primary_10_3390_pr12091979
crossref_primary_10_1155_2022_5359732
crossref_primary_10_1109_TSUSC_2024_3418136
crossref_primary_10_12677_aps_2024_125120
crossref_primary_10_1038_s41598_025_88846_z
crossref_primary_10_1007_s12145_024_01575_1
crossref_primary_10_3390_app12136787
crossref_primary_10_1142_S0218625X25500118
crossref_primary_10_1038_s41598_025_89840_1
crossref_primary_10_1088_1742_6596_2467_1_012021
crossref_primary_10_1007_s41870_023_01157_2
crossref_primary_10_1016_j_jhydrol_2021_126757
crossref_primary_10_1109_ACCESS_2020_2994298
crossref_primary_10_1016_j_sna_2025_116732
crossref_primary_10_1007_s00500_019_04280_0
Cites_doi 10.1109/CompComm.2017.8322928
10.1145/2480741.2480752
10.1088/1755-1315/69/1/012086
10.1109/IHMSC.2016.107
10.1109/CIS.2017.00052
10.1155/2015/258491
10.1016/j.compstruc.2014.03.007
10.1109/ROEDUNET.2018.8514152
10.1080/0952813X.2015.1042530
10.1504/IJBIC.2010.032124
10.1061/(ASCE)AS.1943-5525.0000757
10.1109/ICEEIE.2017.8328774
10.1007/978-3-319-11857-4_10
10.1016/j.applanim.2016.08.010
10.1109/PCITC.2015.7438173
10.1063/1.4982562
10.1504/IJBIC.2016.078666
10.1016/j.tcs.2005.05.020
10.1007/s11721-007-0002-0
10.1109/SOCPAR.2015.7492775
10.3390/en11010178
10.1049/iet-map.2016.0083
10.1016/j.advengsoft.2013.12.007
10.1109/JSEN.2018.2832216
10.1016/j.future.2017.08.060
10.1109/ICRCICN.2017.8234486
10.1109/CYBER.2015.7288023
10.1016/j.energy.2016.05.128
10.1504/IJBIC.2016.081335
10.1016/j.cnsns.2012.05.010
10.4018/978-1-5225-2229-4.ch047
10.1142/S0218213008003893
10.1109/TEVC.2010.2059031
10.1007/s11227-018-2291-z
10.1109/ICCSN.2017.8230156
10.1109/ACCESS.2016.2604738
10.1109/ACCESS.2017.2783969
10.1109/MLDS.2017.5
10.1016/j.asoc.2007.05.007
10.1007/s10071-016-1064-4
10.1007/978-3-642-32894-7_27
10.1080/01430750.2017.1345010
10.1016/S0377-2217(99)00435-X
10.1109/ICRCICN.2017.8234517
10.1023/A:1022602019183
10.3390/su8030235
10.1016/j.eswa.2015.04.026
10.1109/AINA.2018.00073
10.1109/CompComm.2016.7925083
10.1016/j.neucom.2015.08.092
10.1007/978-3-319-74690-6_6
10.1007/s11277-017-4803-1
10.1007/978-3-319-61833-3_2
ContentType Journal Article
Copyright Springer Nature B.V. 2019
COPYRIGHT 2020 Springer
Artificial Intelligence Review is a copyright of Springer, (2019). All Rights Reserved.
Copyright Springer Nature B.V. Mar 2020
Copyright_xml – notice: Springer Nature B.V. 2019
– notice: COPYRIGHT 2020 Springer
– notice: Artificial Intelligence Review is a copyright of Springer, (2019). All Rights Reserved.
– notice: Copyright Springer Nature B.V. Mar 2020
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
DOI 10.1007/s10462-019-09718-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
Library & Information Science Collection
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Library Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Biology
EISSN 1573-7462
EndPage 1765
ExternalDocumentID A718215337
10_1007_s10462_019_09718_3
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
77K
7WY
8AO
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M1O
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
PRQQA
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c478t-96f8287976687a8f5372475b39fdf46699d1e3f2950385800b42f3b89bf3cf9c3
IEDL.DBID RSV
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519571700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0269-2821
IngestDate Fri Nov 14 18:56:14 EST 2025
Sat Nov 15 05:51:06 EST 2025
Sat Nov 29 09:49:11 EST 2025
Tue Nov 18 21:10:27 EST 2025
Sat Nov 29 02:43:24 EST 2025
Fri Feb 21 02:37:00 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Optimization algorithm
Review
Nature inspired intelligence
Applications
Chicken Swarm Optimization algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-96f8287976687a8f5372475b39fdf46699d1e3f2950385800b42f3b89bf3cf9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://aaltodoc.aalto.fi/handle/123456789/39510
PQID 2229513483
PQPubID 36790
PageCount 29
ParticipantIDs proquest_journals_3195886395
proquest_journals_2229513483
gale_infotracacademiconefile_A718215337
crossref_citationtrail_10_1007_s10462_019_09718_3
crossref_primary_10_1007_s10462_019_09718_3
springer_journals_10_1007_s10462_019_09718_3
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationYear 2020
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Pei Y, Hao J (2017) Non-dominated sorting and crowding distance based multi-objective chaotic evolution. In: International conference in swarm intelligence. Springer, Cham, pp 15–22
Zareiegovar G, Fesaghandis RR, Azad MJ (2012) Optimal DG location and sizing in distribution system to minimize losses, improve voltage stability, and voltage profile. In: Proceedings of 17th conference on electrical power distribution networks (EPDC), pp 1–6
ShayokhMShinSYBio inspired distributed WSN localization based on Chicken Swarm OptimizationWireless Pers Commun20179745691570610.1007/s11277-017-4803-1
Wang Q, Zhu L (2017) Optimization of wireless sensor networks based on chicken swarm optimization algorithm. In: AIP conference proceedings, vol 1839, no 1. AIP Publishing, p 020197
Hafez AI, Zawbaa HM, Emary E, Mahmoud HA, Hassanien AE (2015) An innovative approach for feature selection based on chicken swarm optimization. In: 2015 7th international conference of soft computing and pattern recognition (SoCPaR). IEEE, pp 19–24
MengXBLiHXGaoXZAn adaptive reinforcement learning-based bat algorithm for structural design problemsInt J Bio Inspir Comput2018111(in press)
ChenYLHePLZhangYHCombining penalty function with modified chicken swarm optimization for constrained optimizationAdv Intell Syst Res201512618991907
Abbas Z, Javaid N, Khan AJ, Rehman MHA, Sahi J, Saboor A (2018) Demand side energy management using hybrid chicken swarm and bacterial foraging optimization techniques. In: 2018 IEEE 32nd international conference on advanced information networking and applications (AINA), IEEE, pp 445–456
LiYWuYQuXChicken Swarm-based method for ascent trajectory optimization of hypersonic vehiclesJ Aerosp Eng20173050401704310.1061/(ASCE)AS.1943-5525.0000757
Deb S, Kalita K, Gao XZ, Tammi K, Mahanta P (2017) Optimal placement of charging stations using CSO-TLBO algorithm. In: 2017 Third international conference on research in computational intelligence and communication networks (ICRCICN). IEEE, pp 84–89
ChenSYangRYangRYangLYangXXuCLiuWA parameter estimation method for nonlinear systems based on improved boundary chicken swarm optimizationDiscrete Dyn Nat Soc2016201611
WangGGDebSGaoXZCoelhoLDSA new metaheuristic optimisation algorithm motivated by elephant herding behaviourInt J Bio-Inspir Comput20168639440910.1504/IJBIC.2016.081335
MengXBGaoXZLiuYZhangHA novel bat algorithm with habitat selection and Doppler effect in echoes for optimizationExpert Syst Appl20154217–186350636410.1016/j.eswa.2015.04.026
Poli R, Langdon WB (1998) On the search properties of different crossover operators in genetic programming. In: Genetic programming 1998: proceedings of third annual conference, University of Wisconsin, Madison. Morgan Kaufmann, pp 293–301
Moldovan D, Chifu V, Pop C, Cioara T, Anghel I, Salomie I (2018) Chicken Swarm Optimization and deep learning for manufacturing processes. In: 2018 17th RoEduNet conference: networking in education and research (RoEduNet). IEEE, pp 1–6
Yi Z, Liu J, Wang S, Zeng X, Lu J (2016) PAPR reduction technology based on CSO algorithm in CO-OFDM system. In: 2016 15th international conference on optical communications and networks (ICOCN). IEEE, pp 1–3
SultanaUKhairuddinABMokhtarASZareenNSultanaBGrey wolf optimizer based placement and sizing of multiple distributed generation in the distribution systemEnergy201611152553610.1016/j.energy.2016.05.128
KarabogaDBasturkBOn the performance of artificial bee colony (ABC) algorithmAppl Soft Comput20088168769710.1016/j.asoc.2007.05.007
DasSSuganthanPNDifferential evolution: a survey of the state-of-the-artIEEE Trans Evol Comput201115143110.1109/TEVC.2010.2059031
GandomiAHAlaviAHKrill herd: a new bio-inspired optimization algorithmCommun Nonlinear Sci Numer Simul201217124831484529602791266.6509210.1016/j.cnsns.2012.05.010
MengXBGaoXZLuLLiuYZhangHA new bio-inspired optimisation algorithm: bird swarm algorithmJ Exp Theor Artif Intell201628467368710.1080/0952813X.2015.1042530
Meng XB, Liu Y, Gao X, Zhang H (2014) A new bio-inspired algorithm: Chicken Swarm Optimization. In: International conference in swarm intelligence. Springer, Cham, pp 86–94
TorabiSSafi-EsfahaniFA dynamic task scheduling framework based on chicken swarm and improved raven roosting optimization methods in cloud computingJ Supercomput20187462581262610.1007/s11227-018-2291-z
Ahmed K, Hassanien AE, Ezzat E, Bhattacharyya S (2018) Swarming behaviors of chicken for predicting posts on facebook branding pages. In: International conference on advanced machine learning technologies and applications. Springer, Cham, pp 52–61
Han M, Liu S (2017) An improved binary chicken swarm optimization algorithm for solving 0–1 Knapsack problem. In: 2017 13th international conference on computational intelligence and security (CIS). IEEE, pp 207–210
PoliRKennedyJBlackwellTParticle swarm optimizationSwarm Intell200711335710.1007/s11721-007-0002-0
Taie SA, Ghonaim W (2017) CSO-based algorithm with support vector machine for brain tumor’s disease diagnosis. In: 2017 IEEE international conference on pervasive computing and communications workshops (PerCom Workshops). IEEE, pp 183–187
QuCZhaoSAFuYHeWChicken swarm optimization based on elite opposition-based learningMath Probl Eng20172017203633344
DorigoMBlumCAnt colony optimization theory: a surveyTheoret Comput Sci20053442–324327821788551154.9062610.1016/j.tcs.2005.05.020
GoldbergDEHollandJHGenetic algorithms and machine learningMach Learn198832959910.1023/A:1022602019183
Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: World congress on nature and biologically inspired computing, 2009. NaBIC 2009. IEEE, pp 210–214
MarinakisYDouniasGNature inspired intelligence in medicine: ant colony optimization for pap-smear diagnosisInt J Artif Intell Tools2008170227930110.1142/S0218213008003893
MohamedTMEnhancing The performance of the greedy algorithm using Chicken Swarm Optimization: an application to exam scheduling problemEgypt Comput Sci J201842113776448
LiuDLiuCFuQLiTKhanMICuiSFaizMAProjection pursuit evaluation model of regional surface water environment based on improved Chicken Swarm Optimization algorithmWater Resour Manag201732118
AhmedKBabersRDarwishAHassanienAEPandaMAbrahamAHassanienAESwarm-based analysis for community detection in complex networksBig data analytics a social network approach2018LondonTaylor and Francis18
Liang S, Feng T, Sun G, Zhang J, Zhang H (2016) Transmission power optimization for reducing sidelobe via bat-chicken swarm optimization in distributed collaborative beamforming. In: 2016 2nd IEEE international conference on computer and communications (ICCC). IEEE, pp 2164–2168
KumarDSVeniSEnhanced energy steady clustering using convergence node based path optimization with hybrid Chicken Swarm algorithm in MANETInt J Pure Appl Math2018118767788
LogeshRSubramaniyaswamyVVijayakumarVGaoXZIndragandhiVA hybrid quantum-induced swarm intelligence clustering for the urban trip recommendation in smart cityFuture Gener Comput Syst20188365367310.1016/j.future.2017.08.060
YangXSFirefly algorithm, stochastic test functions and design optimisationInt J Bio-Inspir Comput201022788410.1504/IJBIC.2010.032124
Awal AR, Dou Z, Al Shayokh M, Zahoor MI (2017) Implementation of chicken swarm optimization (CSO) with partial transmit sequences for the reduction of PAPR in OFDM system. In: 2017 IEEE 9th international conference on communication software and networks (ICCSN). IEEE, pp 468–472
Deb S, Kalita K, Gao XZ, Tammi K, Mahanta P (2018a) A pareto dominance based multi-objective Chicken Swarm Optimization and teaching learning based optimization algorithm for charging station placement problem. Int Trans Electr Energy Syst (to be communicated)
HuHLiJHuangJEconomic operation optimization of micro-grid based on Chicken Swarm Optimization algorithmHigh Volt Appar20171020
MohsenzadehAPazoukiSArdalanSHaghifamMROptimal placing and sizing of parking lots including different levels of charging stations in electric distribution networksInt J Ambient Energy201839774375010.1080/01430750.2017.1345010
Wang K, Li Z, Cheng H, Zhang K (2017) Mutation chicken swarm optimization based on nonlinear inertia weight. In: 2017 3rd IEEE international conference on computer and communications (ICCC). IEEE, pp 2206–2211
Yang XS (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation. Springer, Berlin, pp 240–249
Banerjee S, Chattopadhyay S (2015) Improved serially concatenated convolution turbo code (SCCTC) using chicken swarm optimization. In: Power, communication and information technology conference (PCITC), 2015 IEEE. IEEE, pp 268–273
DebSTammiKKalitaKMahantaPImpact of electric vehicle charging station load on distribution networkEnergies201811117810.3390/en11010178
Ahmed K, Hassanien AE, Ezzat E, Tsai PW (2016) An adaptive approach for community detection based on chicken swarm optimization algorithm. In: International conference on genetic and evolutionary computing. Springer, Cham, pp 281–288
IrsalindaNThobirinAWijayantiDEChicken swarm as a multi step algorithm for global optimizationInt J Eng Sci Invent201761814
AhmedKHassanienAEEzzatEHassanienAEGaberTAn efficient approach for community detection in complex social networks based on elephant swarm optimization algorithmHandbook of research on machine learning innovations and trends2017HersheyIGI Global1062107510.4018/978-1-5225-2229-4.ch047
ČrepinšekMLiuSHMernikMExploration and exploitation in evolutionary algorithms: a surveyACM Comput Surv (CSUR)2013453351293.6825110.1145/2480741.2480752
McGrathNBurmanODwyerCPhillipsCJDoes the anticipatory behaviour of chickens communicate reward quality?Appl Anim Behav Sci2016184809010.1016/j.applanim.2016.08.010
Basha SH, Tharwat A, Ahmed K, Hassanien AE (2018) A predictive model for seminal quality using neutrosophic rule-based classification system. In: International conference on advanced intelligent systems and informatics. Springer, Cham, pp 495–504
MishraKKHaritSA fast alg
N Irsalinda (9718_CR77) 2017; 6
S Das (9718_CR17) 2011; 15
S Chen (9718_CR14) 2016; 2016
XB Meng (9718_CR46) 2018; 1
9718_CR18
9718_CR19
MY Cheng (9718_CR15) 2014; 139
9718_CR10
9718_CR54
9718_CR11
L Marino (9718_CR39) 2017; 20
D Liu (9718_CR36) 2017; 32
9718_CR57
AH Gandomi (9718_CR23) 2012; 17
K Ahmed (9718_CR5) 2017
9718_CR51
R Logesh (9718_CR37) 2018; 83
9718_CR52
9718_CR53
J Heng (9718_CR28) 2016; 8
N McGrath (9718_CR40) 2016; 184
A Hertz (9718_CR29) 2000; 126
X Cai (9718_CR12) 2016; 8
H Zhang (9718_CR76) 2016; 173
C Qu (9718_CR56) 2017; 2017
XB Meng (9718_CR43) 2015; 42
Y Marinakis (9718_CR38) 2008; 17
YL Chen (9718_CR13) 2015; 126
TM Mohamed (9718_CR49) 2018; 42
9718_CR21
9718_CR66
A Mohsenzadeh (9718_CR50) 2018; 39
XB Meng (9718_CR44) 2016; 28
9718_CR68
9718_CR69
9718_CR26
9718_CR27
XZ Gao (9718_CR24) 2015; 2015
H Hu (9718_CR30) 2017; 1
DS Kumar (9718_CR32) 2018; 118
9718_CR63
9718_CR64
S Mirjalili (9718_CR47) 2014; 69
9718_CR9
D Karaboga (9718_CR31) 2008; 8
DE Goldberg (9718_CR25) 1988; 3
KK Mishra (9718_CR48) 2010; 1
G Sun (9718_CR62) 2018; 6
XS Yang (9718_CR71) 2010; 2
9718_CR1
D Wu (9718_CR70) 2016; 4
9718_CR2
9718_CR3
9718_CR34
9718_CR4
9718_CR6
K Ahmed (9718_CR8) 2018
9718_CR7
9718_CR72
9718_CR73
9718_CR74
Y Li (9718_CR33) 2017; 30
9718_CR75
S Liang (9718_CR35) 2017; 11
R Poli (9718_CR55) 2007; 1
U Sultana (9718_CR61) 2016; 111
M Črepinšek (9718_CR16) 2013; 45
M Dorigo (9718_CR22) 2005; 344
W Shi (9718_CR59) 2018; 18
S Sivasakthi (9718_CR60) 2016; 2
S Torabi (9718_CR65) 2018; 74
M Shayokh (9718_CR58) 2017; 97
GG Wang (9718_CR67) 2016; 8
S Deb (9718_CR20) 2018; 11
XB Meng (9718_CR45) 2018; 1
9718_CR41
9718_CR42
References_xml – reference: LiangSFengTSunGSidelobe-level suppression for linear and circular antenna arrays via the cuckoo search–chicken swarm optimisation algorithmIET Microw Antennas Propag201711220921810.1049/iet-map.2016.0083
– reference: MengXBGaoXZLiuYZhangHA novel bat algorithm with habitat selection and Doppler effect in echoes for optimizationExpert Syst Appl20154217–186350636410.1016/j.eswa.2015.04.026
– reference: KumarDSVeniSEnhanced energy steady clustering using convergence node based path optimization with hybrid Chicken Swarm algorithm in MANETInt J Pure Appl Math2018118767788
– reference: SivasakthiSMuralikrishnanNChicken Swarm Optimization for economic dispatch with disjoint prohibited zones considering network lossesJ Appl Sci Eng Methodol201622255259
– reference: Dhiman G, Kaur A (2017) Spotted hyena optimizer for solving engineering design problems. In: 2017 International conference on machine learning and data science (MLDS). IEEE, pp 114–119
– reference: Sutoyo E, Saedudin RR, Yanto ITR, Apriani A (2017) Application of adaptive neuro-fuzzy inference system and chicken swarm optimization for classifying river water quality. In: 2017 5th international conference on electrical, electronics and information engineering (ICEEIE). IEEE, pp 118–122
– reference: Wu D, Kong F, Gao W, Shen Y, Ji Z (2015) Improved Chicken Swarm Optimization. In: 2015 IEEE international conference on cyber technology in automation, control, and intelligent systems (CYBER). IEEE, pp 681–686
– reference: Yang XS (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation. Springer, Berlin, pp 240–249
– reference: Moldovan D, Chifu V, Pop C, Cioara T, Anghel I, Salomie I (2018) Chicken Swarm Optimization and deep learning for manufacturing processes. In: 2018 17th RoEduNet conference: networking in education and research (RoEduNet). IEEE, pp 1–6
– reference: PoliRKennedyJBlackwellTParticle swarm optimizationSwarm Intell200711335710.1007/s11721-007-0002-0
– reference: Basha SH, Tharwat A, Ahmed K, Hassanien AE (2018) A predictive model for seminal quality using neutrosophic rule-based classification system. In: International conference on advanced intelligent systems and informatics. Springer, Cham, pp 495–504
– reference: KarabogaDBasturkBOn the performance of artificial bee colony (ABC) algorithmAppl Soft Comput20088168769710.1016/j.asoc.2007.05.007
– reference: Zareiegovar G, Fesaghandis RR, Azad MJ (2012) Optimal DG location and sizing in distribution system to minimize losses, improve voltage stability, and voltage profile. In: Proceedings of 17th conference on electrical power distribution networks (EPDC), pp 1–6
– reference: SultanaUKhairuddinABMokhtarASZareenNSultanaBGrey wolf optimizer based placement and sizing of multiple distributed generation in the distribution systemEnergy201611152553610.1016/j.energy.2016.05.128
– reference: Hafez AI, Zawbaa HM, Emary E, Mahmoud HA, Hassanien AE (2015) An innovative approach for feature selection based on chicken swarm optimization. In: 2015 7th international conference of soft computing and pattern recognition (SoCPaR). IEEE, pp 19–24
– reference: YangXSFirefly algorithm, stochastic test functions and design optimisationInt J Bio-Inspir Comput201022788410.1504/IJBIC.2010.032124
– reference: Banerjee S, Chattopadhyay S (2015) Improved serially concatenated convolution turbo code (SCCTC) using chicken swarm optimization. In: Power, communication and information technology conference (PCITC), 2015 IEEE. IEEE, pp 268–273
– reference: HertzAKoblerDA framework for the description of evolutionary algorithmsEur J Oper Res2000126111217816040970.9012210.1016/S0377-2217(99)00435-X
– reference: LiuDLiuCFuQLiTKhanMICuiSFaizMAProjection pursuit evaluation model of regional surface water environment based on improved Chicken Swarm Optimization algorithmWater Resour Manag201732118
– reference: QuCZhaoSAFuYHeWChicken swarm optimization based on elite opposition-based learningMath Probl Eng20172017203633344
– reference: Taie SA, Ghonaim W (2017) CSO-based algorithm with support vector machine for brain tumor’s disease diagnosis. In: 2017 IEEE international conference on pervasive computing and communications workshops (PerCom Workshops). IEEE, pp 183–187
– reference: Meng XB, Liu Y, Gao X, Zhang H (2014) A new bio-inspired algorithm: Chicken Swarm Optimization. In: International conference in swarm intelligence. Springer, Cham, pp 86–94
– reference: Han M, Liu S (2017) An improved binary chicken swarm optimization algorithm for solving 0–1 Knapsack problem. In: 2017 13th international conference on computational intelligence and security (CIS). IEEE, pp 207–210
– reference: ChenYLHePLZhangYHCombining penalty function with modified chicken swarm optimization for constrained optimizationAdv Intell Syst Res201512618991907
– reference: DebSTammiKKalitaKMahantaPImpact of electric vehicle charging station load on distribution networkEnergies201811117810.3390/en11010178
– reference: GoldbergDEHollandJHGenetic algorithms and machine learningMach Learn198832959910.1023/A:1022602019183
– reference: DasSSuganthanPNDifferential evolution: a survey of the state-of-the-artIEEE Trans Evol Comput201115143110.1109/TEVC.2010.2059031
– reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201469466110.1016/j.advengsoft.2013.12.007
– reference: MohsenzadehAPazoukiSArdalanSHaghifamMROptimal placing and sizing of parking lots including different levels of charging stations in electric distribution networksInt J Ambient Energy201839774375010.1080/01430750.2017.1345010
– reference: Liang S, Feng T, Sun G, Zhang J, Zhang H (2016) Transmission power optimization for reducing sidelobe via bat-chicken swarm optimization in distributed collaborative beamforming. In: 2016 2nd IEEE international conference on computer and communications (ICCC). IEEE, pp 2164–2168
– reference: ShiWGuoYYanSYuYLuoPLiJOptimizing directional reader antennas deployment in UHF RFID localization system by using a MPCSO algorithmIEEE Sens J201818125035504810.1109/JSEN.2018.2832216
– reference: ZhangHZhangXGaoXZSongSSelf-organizing multiobjective optimization based on decomposition with neighborhood ensembleNeurocomputing20161731868188410.1016/j.neucom.2015.08.092
– reference: McGrathNBurmanODwyerCPhillipsCJDoes the anticipatory behaviour of chickens communicate reward quality?Appl Anim Behav Sci2016184809010.1016/j.applanim.2016.08.010
– reference: IrsalindaNThobirinAWijayantiDEChicken swarm as a multi step algorithm for global optimizationInt J Eng Sci Invent201761814
– reference: LiYWuYQuXChicken Swarm-based method for ascent trajectory optimization of hypersonic vehiclesJ Aerosp Eng20173050401704310.1061/(ASCE)AS.1943-5525.0000757
– reference: MengXBLiHXGaoXZAn adaptive reinforcement learning-based bat algorithm for structural design problemsInt J Bio Inspir Comput2018111(in press)
– reference: WangGGDebSGaoXZCoelhoLDSA new metaheuristic optimisation algorithm motivated by elephant herding behaviourInt J Bio-Inspir Comput20168639440910.1504/IJBIC.2016.081335
– reference: ČrepinšekMLiuSHMernikMExploration and exploitation in evolutionary algorithms: a surveyACM Comput Surv (CSUR)2013453351293.6825110.1145/2480741.2480752
– reference: Ahmed K, Ewees AA, Hassanien AE (2017) Prediction and management system for forest fires based on hybrid flower pollination optimization algorithm and adaptive neuro-fuzzy inference system. In: 2017 Eighth international conference on intelligent computing and information systems (ICICIS). IEEE, pp 299–304
– reference: Mu Y, Zhang L, Chen X, Gao X (2016) Optimal trajectory planning for robotic manipulators using chicken swarm optimization. In: 2016 8th international conference on intelligent human–machine systems and cybernetics (IHMSC), vol 2. IEEE, pp 369–373
– reference: Abbas Z, Javaid N, Khan AJ, Rehman MHA, Sahi J, Saboor A (2018) Demand side energy management using hybrid chicken swarm and bacterial foraging optimization techniques. In: 2018 IEEE 32nd international conference on advanced information networking and applications (AINA), IEEE, pp 445–456
– reference: Ahmed K, Hassanien AE, Bhattacharyya S (2017) A novel chaotic chicken swarm optimization algorithm for feature selection. In: 2017 Third international conference on research in computational intelligence and communication networks (ICRCICN). IEEE, pp 259–264
– reference: Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: World congress on nature and biologically inspired computing, 2009. NaBIC 2009. IEEE, pp 210–214
– reference: ChengMYPrayogoDSymbiotic organisms search: a new metaheuristic optimization algorithmComput Struc20141399811210.1016/j.compstruc.2014.03.007
– reference: HuHLiJHuangJEconomic operation optimization of micro-grid based on Chicken Swarm Optimization algorithmHigh Volt Appar20171020
– reference: Pei Y, Hao J (2017) Non-dominated sorting and crowding distance based multi-objective chaotic evolution. In: International conference in swarm intelligence. Springer, Cham, pp 15–22
– reference: Poli R, Langdon WB (1998) On the search properties of different crossover operators in genetic programming. In: Genetic programming 1998: proceedings of third annual conference, University of Wisconsin, Madison. Morgan Kaufmann, pp 293–301
– reference: LogeshRSubramaniyaswamyVVijayakumarVGaoXZIndragandhiVA hybrid quantum-induced swarm intelligence clustering for the urban trip recommendation in smart cityFuture Gener Comput Syst20188365367310.1016/j.future.2017.08.060
– reference: DorigoMBlumCAnt colony optimization theory: a surveyTheoret Comput Sci20053442–324327821788551154.9062610.1016/j.tcs.2005.05.020
– reference: ShayokhMShinSYBio inspired distributed WSN localization based on Chicken Swarm OptimizationWireless Pers Commun20179745691570610.1007/s11277-017-4803-1
– reference: CaiXGaoXZXueYImproved bat algorithm with optimal forage strategy and random disturbance strategyInt J Bio-Inspir Comput20168420521410.1504/IJBIC.2016.078666
– reference: GaoXZGovindasamyVXuHWangXZengerKHarmony search method: theory and applicationsComput Intell Neurosci201520153910.1155/2015/258491
– reference: MishraKKHaritSA fast algorithm for finding the non dominated set in multi objective optimizationInt J Comput Appl20101253539
– reference: MohamedTMEnhancing The performance of the greedy algorithm using Chicken Swarm Optimization: an application to exam scheduling problemEgypt Comput Sci J201842113776448
– reference: AhmedKHassanienAEEzzatEHassanienAEGaberTAn efficient approach for community detection in complex social networks based on elephant swarm optimization algorithmHandbook of research on machine learning innovations and trends2017HersheyIGI Global1062107510.4018/978-1-5225-2229-4.ch047
– reference: SunGLiuYLiangSChenZWangAJuQZhangYA sidelobe and energy optimization array node selection algorithm for collaborative beamforming in wireless sensor networksIEEE Access201862515253010.1109/ACCESS.2017.2783969
– reference: MarinoLThinking chickens: a review of cognition, emotion, and behavior in the domestic chickenAnim Cogn201720212714710.1007/s10071-016-1064-4
– reference: Yi Z, Liu J, Wang S, Zeng X, Lu J (2016) PAPR reduction technology based on CSO algorithm in CO-OFDM system. In: 2016 15th international conference on optical communications and networks (ICOCN). IEEE, pp 1–3
– reference: WuDXuSKongFConvergence analysis and improvement of the chicken swarm optimization algorithmIEEE Access201649400941210.1109/ACCESS.2016.2604738
– reference: AhmedKBabersRDarwishAHassanienAEPandaMAbrahamAHassanienAESwarm-based analysis for community detection in complex networksBig data analytics a social network approach2018LondonTaylor and Francis18
– reference: MengXBLiHXYangHDEvolutionary design of spatiotemporal leaning model for thermal distribution in Lithium-ion batteriesIEEE Trans Industr Inf20181199
– reference: Ahmed K, Ewees AA, El Aziz MA, Hassanien AE, Gaber T, Tsai PW, Pan JS (2016) A hybrid krill-ANFIS model for wind speed forecasting. In: International conference on advanced intelligent systems and informatics. Springer, Cham, pp 365–372
– reference: Ahmed K, Hassanien AE, Ezzat E, Tsai PW (2016) An adaptive approach for community detection based on chicken swarm optimization algorithm. In: International conference on genetic and evolutionary computing. Springer, Cham, pp 281–288
– reference: TorabiSSafi-EsfahaniFA dynamic task scheduling framework based on chicken swarm and improved raven roosting optimization methods in cloud computingJ Supercomput20187462581262610.1007/s11227-018-2291-z
– reference: MarinakisYDouniasGNature inspired intelligence in medicine: ant colony optimization for pap-smear diagnosisInt J Artif Intell Tools2008170227930110.1142/S0218213008003893
– reference: Meng XB, Li HX (2017) Dempster–Shafer based probabilistic fuzzy logic system for wind speed prediction. In: 2017 international conference on fuzzy theory and its applications (iFUZZY). IEEE, pp 1–5
– reference: Deb S, Kalita K, Gao XZ, Tammi K, Mahanta P (2017) Optimal placement of charging stations using CSO-TLBO algorithm. In: 2017 Third international conference on research in computational intelligence and communication networks (ICRCICN). IEEE, pp 84–89
– reference: MengXBGaoXZLuLLiuYZhangHA new bio-inspired optimisation algorithm: bird swarm algorithmJ Exp Theor Artif Intell201628467368710.1080/0952813X.2015.1042530
– reference: Ren W, Deng C, Zhang C, Mao Y (2017) Identification of fast-steering mirror based on chicken swarm optimization algorithm. In: IOP conference series: earth and environmental science, vol 69, no 1. IOP Publishing, p 012086
– reference: GandomiAHAlaviAHKrill herd: a new bio-inspired optimization algorithmCommun Nonlinear Sci Numer Simul201217124831484529602791266.6509210.1016/j.cnsns.2012.05.010
– reference: Awal AR, Dou Z, Al Shayokh M, Zahoor MI (2017) Implementation of chicken swarm optimization (CSO) with partial transmit sequences for the reduction of PAPR in OFDM system. In: 2017 IEEE 9th international conference on communication software and networks (ICCSN). IEEE, pp 468–472
– reference: Deb S, Kalita K, Gao XZ, Tammi K, Mahanta P (2018a) A pareto dominance based multi-objective Chicken Swarm Optimization and teaching learning based optimization algorithm for charging station placement problem. Int Trans Electr Energy Syst (to be communicated)
– reference: ChenSYangRYangRYangLYangXXuCLiuWA parameter estimation method for nonlinear systems based on improved boundary chicken swarm optimizationDiscrete Dyn Nat Soc2016201611
– reference: Ahmed K, Hassanien AE, Ezzat E, Bhattacharyya S (2018) Swarming behaviors of chicken for predicting posts on facebook branding pages. In: International conference on advanced machine learning technologies and applications. Springer, Cham, pp 52–61
– reference: HengJWangCZhaoXXiaoLResearch and application based on adaptive boosting strategy and modified CGFPA algorithm: a case study for wind speed forecastingSustainability20168323510.3390/su8030235
– reference: Wang Q, Zhu L (2017) Optimization of wireless sensor networks based on chicken swarm optimization algorithm. In: AIP conference proceedings, vol 1839, no 1. AIP Publishing, p 020197
– reference: Wang K, Li Z, Cheng H, Zhang K (2017) Mutation chicken swarm optimization based on nonlinear inertia weight. In: 2017 3rd IEEE international conference on computer and communications (ICCC). IEEE, pp 2206–2211
– ident: 9718_CR68
  doi: 10.1109/CompComm.2017.8322928
– ident: 9718_CR19
– ident: 9718_CR11
– volume: 45
  start-page: 35
  issue: 3
  year: 2013
  ident: 9718_CR16
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/2480741.2480752
– ident: 9718_CR57
  doi: 10.1088/1755-1315/69/1/012086
– ident: 9718_CR73
– ident: 9718_CR52
  doi: 10.1109/IHMSC.2016.107
– start-page: 18
  volume-title: Big data analytics a social network approach
  year: 2018
  ident: 9718_CR8
– ident: 9718_CR54
– ident: 9718_CR27
  doi: 10.1109/CIS.2017.00052
– volume: 2015
  start-page: 39
  year: 2015
  ident: 9718_CR24
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2015/258491
– volume: 1
  start-page: 020
  year: 2017
  ident: 9718_CR30
  publication-title: High Volt Appar
– volume: 139
  start-page: 98
  year: 2014
  ident: 9718_CR15
  publication-title: Comput Struc
  doi: 10.1016/j.compstruc.2014.03.007
– ident: 9718_CR51
  doi: 10.1109/ROEDUNET.2018.8514152
– volume: 28
  start-page: 673
  issue: 4
  year: 2016
  ident: 9718_CR44
  publication-title: J Exp Theor Artif Intell
  doi: 10.1080/0952813X.2015.1042530
– volume: 2
  start-page: 78
  issue: 2
  year: 2010
  ident: 9718_CR71
  publication-title: Int J Bio-Inspir Comput
  doi: 10.1504/IJBIC.2010.032124
– ident: 9718_CR4
– volume: 30
  start-page: 04017043
  issue: 5
  year: 2017
  ident: 9718_CR33
  publication-title: J Aerosp Eng
  doi: 10.1061/(ASCE)AS.1943-5525.0000757
– volume: 42
  start-page: 1
  issue: 1
  year: 2018
  ident: 9718_CR49
  publication-title: Egypt Comput Sci J
– ident: 9718_CR63
  doi: 10.1109/ICEEIE.2017.8328774
– ident: 9718_CR42
  doi: 10.1007/978-3-319-11857-4_10
– volume: 184
  start-page: 80
  year: 2016
  ident: 9718_CR40
  publication-title: Appl Anim Behav Sci
  doi: 10.1016/j.applanim.2016.08.010
– ident: 9718_CR41
– ident: 9718_CR10
  doi: 10.1109/PCITC.2015.7438173
– ident: 9718_CR66
  doi: 10.1063/1.4982562
– volume: 8
  start-page: 205
  issue: 4
  year: 2016
  ident: 9718_CR12
  publication-title: Int J Bio-Inspir Comput
  doi: 10.1504/IJBIC.2016.078666
– volume: 2
  start-page: 255
  issue: 2
  year: 2016
  ident: 9718_CR60
  publication-title: J Appl Sci Eng Methodol
– volume: 344
  start-page: 243
  issue: 2–3
  year: 2005
  ident: 9718_CR22
  publication-title: Theoret Comput Sci
  doi: 10.1016/j.tcs.2005.05.020
– volume: 126
  start-page: 1899
  year: 2015
  ident: 9718_CR13
  publication-title: Adv Intell Syst Res
– volume: 118
  start-page: 767
  year: 2018
  ident: 9718_CR32
  publication-title: Int J Pure Appl Math
– volume: 1
  start-page: 33
  issue: 1
  year: 2007
  ident: 9718_CR55
  publication-title: Swarm Intell
  doi: 10.1007/s11721-007-0002-0
– ident: 9718_CR26
  doi: 10.1109/SOCPAR.2015.7492775
– volume: 1
  start-page: 99
  issue: 1
  year: 2018
  ident: 9718_CR45
  publication-title: IEEE Trans Industr Inf
– volume: 11
  start-page: 178
  issue: 1
  year: 2018
  ident: 9718_CR20
  publication-title: Energies
  doi: 10.3390/en11010178
– volume: 11
  start-page: 209
  issue: 2
  year: 2017
  ident: 9718_CR35
  publication-title: IET Microw Antennas Propag
  doi: 10.1049/iet-map.2016.0083
– volume: 2017
  start-page: 20
  year: 2017
  ident: 9718_CR56
  publication-title: Math Probl Eng
– volume: 69
  start-page: 46
  year: 2014
  ident: 9718_CR47
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 18
  start-page: 5035
  issue: 12
  year: 2018
  ident: 9718_CR59
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2018.2832216
– volume: 83
  start-page: 653
  year: 2018
  ident: 9718_CR37
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2017.08.060
– ident: 9718_CR18
  doi: 10.1109/ICRCICN.2017.8234486
– ident: 9718_CR69
  doi: 10.1109/CYBER.2015.7288023
– volume: 111
  start-page: 525
  year: 2016
  ident: 9718_CR61
  publication-title: Energy
  doi: 10.1016/j.energy.2016.05.128
– volume: 8
  start-page: 394
  issue: 6
  year: 2016
  ident: 9718_CR67
  publication-title: Int J Bio-Inspir Comput
  doi: 10.1504/IJBIC.2016.081335
– volume: 17
  start-page: 4831
  issue: 12
  year: 2012
  ident: 9718_CR23
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2012.05.010
– start-page: 1062
  volume-title: Handbook of research on machine learning innovations and trends
  year: 2017
  ident: 9718_CR5
  doi: 10.4018/978-1-5225-2229-4.ch047
– volume: 17
  start-page: 279
  issue: 02
  year: 2008
  ident: 9718_CR38
  publication-title: Int J Artif Intell Tools
  doi: 10.1142/S0218213008003893
– volume: 15
  start-page: 4
  issue: 1
  year: 2011
  ident: 9718_CR17
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2010.2059031
– volume: 74
  start-page: 2581
  issue: 6
  year: 2018
  ident: 9718_CR65
  publication-title: J Supercomput
  doi: 10.1007/s11227-018-2291-z
– ident: 9718_CR75
– ident: 9718_CR9
  doi: 10.1109/ICCSN.2017.8230156
– volume: 4
  start-page: 9400
  year: 2016
  ident: 9718_CR70
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2604738
– volume: 1
  start-page: 1
  issue: 1
  year: 2018
  ident: 9718_CR46
  publication-title: Int J Bio Inspir Comput
– volume: 6
  start-page: 2515
  year: 2018
  ident: 9718_CR62
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2783969
– ident: 9718_CR21
  doi: 10.1109/MLDS.2017.5
– volume: 8
  start-page: 687
  issue: 1
  year: 2008
  ident: 9718_CR31
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.05.007
– volume: 32
  start-page: 1
  year: 2017
  ident: 9718_CR36
  publication-title: Water Resour Manag
– ident: 9718_CR2
– volume: 20
  start-page: 127
  issue: 2
  year: 2017
  ident: 9718_CR39
  publication-title: Anim Cogn
  doi: 10.1007/s10071-016-1064-4
– ident: 9718_CR72
  doi: 10.1007/978-3-642-32894-7_27
– volume: 39
  start-page: 743
  issue: 7
  year: 2018
  ident: 9718_CR50
  publication-title: Int J Ambient Energy
  doi: 10.1080/01430750.2017.1345010
– volume: 126
  start-page: 1
  issue: 1
  year: 2000
  ident: 9718_CR29
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(99)00435-X
– volume: 1
  start-page: 35
  issue: 25
  year: 2010
  ident: 9718_CR48
  publication-title: Int J Comput Appl
– ident: 9718_CR64
– ident: 9718_CR6
  doi: 10.1109/ICRCICN.2017.8234517
– volume: 3
  start-page: 95
  issue: 2
  year: 1988
  ident: 9718_CR25
  publication-title: Mach Learn
  doi: 10.1023/A:1022602019183
– volume: 2016
  start-page: 11
  year: 2016
  ident: 9718_CR14
  publication-title: Discrete Dyn Nat Soc
– volume: 8
  start-page: 235
  issue: 3
  year: 2016
  ident: 9718_CR28
  publication-title: Sustainability
  doi: 10.3390/su8030235
– volume: 42
  start-page: 6350
  issue: 17–18
  year: 2015
  ident: 9718_CR43
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.04.026
– ident: 9718_CR1
  doi: 10.1109/AINA.2018.00073
– volume: 6
  start-page: 8
  issue: 1
  year: 2017
  ident: 9718_CR77
  publication-title: Int J Eng Sci Invent
– ident: 9718_CR34
  doi: 10.1109/CompComm.2016.7925083
– volume: 173
  start-page: 1868
  year: 2016
  ident: 9718_CR76
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.092
– ident: 9718_CR7
  doi: 10.1007/978-3-319-74690-6_6
– volume: 97
  start-page: 5691
  issue: 4
  year: 2017
  ident: 9718_CR58
  publication-title: Wireless Pers Commun
  doi: 10.1007/s11277-017-4803-1
– ident: 9718_CR74
– ident: 9718_CR53
  doi: 10.1007/978-3-319-61833-3_2
– ident: 9718_CR3
SSID ssj0005243
Score 2.4832618
Snippet Solving a complex optimization problem in a limited timeframe is a tedious task. Conventional gradient-based optimization algorithms have their limitations in...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1737
SubjectTerms Algorithms
Artificial Intelligence
Biology
Birds
Computer Science
Distributed generation
Feature selection
Food
Foraging behavior
Genetic algorithms
Heuristic
Heuristic methods
Mathematical optimization
Mechanical engineering
Meta-analysis
Optimization
Optimization algorithms
Poultry
Route planning
Social networks
Unit commitment
Variants
Vehicle routing
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RoBKX8mgrtjzkAxJUbcQmthO7F4QQqJcuSFCJm-V4Y6hgs7C7UPXGf-Af8ks6kzgsj8KlpxycOJbnbX8zA7AmrZci1xidaKciwS3KXNvLSMQCudlj_CNs1Wwi63TU8bE-CAduwwCrbHRipai7fUdn5JucqqIotKdy6-Iyoq5RdLsaWmi8gSnybAjS96O98wDiUaPmklRHGFrEIWkmpM6JlEAJBBhC_RzxR4bpqXp-dk9amZ-92f9d-By8C44n2645ZR4minIB3tatKP8swGzT3oEFaX8PHXQp0SSxADVk_ZIRcOOsKNnhbzvosX1UN72Qx8ns-Qn-dXTa-8YsqxNi2AbafXF3c4sP9fkD_NzbPdr5HoX2C5ETmRpFOvVUDR_9lVRlVnnJs0RkMufad71IU627ccF9omV1u9hu5yLxPFc699x57fhHmCz7ZbEILENHKM5VYXEfhM26SnpeCOcKL7yQLm5B3Oy9caE2ObXIODfjqspEL4P0MhW9DG_Bl_tvLurKHK--vU4kNSS2OLOzIfsA10cFsMw2vpWQ75u1YLmhownyPDRV1_OYC8X_OTymcQu-NowyHn55WZ9en20JZhKK7yvM2zJMjgZXxQpMu-vRr-FgtWL2v_TO_yM
  priority: 102
  providerName: ProQuest
Title Recent Studies on Chicken Swarm Optimization algorithm: a review (2014–2018)
URI https://link.springer.com/article/10.1007/s10462-019-09718-3
https://www.proquest.com/docview/2229513483
https://www.proquest.com/docview/3195886395
Volume 53
WOSCitedRecordID wos000519571700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals - Owned
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6Vx4FLgQJiKax8QGoRRNrEdmz3BgiEVLGseMPFcrwxRbDZanfbXvsf-g_5JYyzDm-Q6MVRZMdyxp6X_M0MwDI3jrNMoXeirIwYNchzDccjFjM8zQ79H2bKYhOi2ZSnp6oVgsL6Fdq9upIsJfWDYDeWehiBh_igRI3oCIyhupO-YMP-wfEDYMcQK5ekKkKHIg6hMi_P8UgdPRXKz25HS6WzPfl_y52Cj8HIJOvDUzENH_LiE0xWBRxI4OcZaKLRiEqHBDAh6RbEQzOu8oIc_DG9DtlDgdIJkZrEXF90e5eDH51vxJBhyAv5ipqd3fz9hw-5MgtH21uHmztRKLAQWSbkIFKp8_nu0SJJpTDScSoSJnhGlWs7lqZKteOcukTx8v6w0chY4mgmVeaodcrSORgtukU-D0SgqRNnMjcypcyItuSO5sza3DHHuI1rEFd01jZkH_dFMK71fd5kTzCNBNMlwTStwerdNz-HuTfeHP3Fb5_2jIkzWxPiC3B9PsWVXsdRibduRQ0Wqx3WgWP7uqxrHlMm6Yvd1CflwX9TvAZr1Ybfd7--rIX3Df8ME4n36EuU2yKMDnq_8iUYt78Hl_1eHUbEyVkdxja2mq19fPsuImx3G5u-jfewbfHzeskOt1AG-H8
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL0qBQQbCqWIQAEvQICo1czYHttICFVA1SolIFGk7lyPYwOimZQkUHXHP_AffFS_pNczHsKzuy5YzcIey49zX_Z9ANwVNghearROtFOUM4s01w2C8owjmgPaP9zWxSZkv692dvTrOfjexsJEt8qWJ9aMejBy8Y58lcWsKArlqXi6_4nGqlHxdbUtodHAoucPD9BkmzzZfI7ney_P119sP9ugqaoAdVyqKdVFiEneUQwXSloVBJM5l6JkOgwCLwqtB5lnIdeifjTrdkueB1YqXQbmgnYMxz0DZzlTMtJVT9KfXEoaL7280BRNmSwF6aRQPV5EJ4jooITygLJfBOHv4uCPd9la3K0v_G8bdRkuJcWarDWUcAXmfLUI55tSm4eLsNCWryCJm12FPqrMKHJJcqUko4pEx5SPviJvDux4SF4hOx2mOFVi997hKqfvh4-JJU3AD3mAeg0_-voNP-rhErw9lfVdg_lqVPnrQCQqelmpvMV951YOlAjMc-d84IELl3Uga8_auJR7PZYA2TOzrNERHwbxYWp8GNaBRz_-2W8yj5zY-36EkIlsCUd2NkVX4Pxigi-zhr3yqNvLDiy3uDGJX01MXdU9Y1yxvzbPMNWBlRaYs-Z_T-vGyaPdgQsb2y-3zNZmv3cTLubxLqP271uG-en4s78F59yX6YfJ-HZNaAR2Txuwx6UDWTQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dThQxFD5B_Ak3oqhhEbEXGjUyYWfaTlsTQ4i4kWDWTdSEeFM63VYI7CzsLhLufAffxsfxSTyd6bj-cseFV3PRmaadfj0_7XfOAXjAjeesUOidKCsTRg3uubbnCUsZotmj_8NMVWxCdLtyZ0f1ZuBrEwsTaJWNTKwEdX9owxn5Gg1ZUSTqU77mIy2it9lZPzpOQgWpcNPalNOoIbLtzk7RfRs_39rEtX6YZZ2X7168SmKFgcQyISeJyn1I-I4qOZfCSM-pyJjgBVW-71meK9VPHfWZ4tUFWrtdsMzTQqrCU-uVpdjvJbgs0McMdMIe__ATvaRm7GW5StCtSWPATgzbY3kgRASyEuqGhP6iFH9XDX_c0VaqrzP_P_-0G3A9Gtxko94hN2HGlQtwtS7BebYA801ZCxKl3C3ooimNqphEiiUZliQQVg5cSd6emtGAvEExO4jxq8QcfsRZTvYGz4ghdSAQeYz2Dvv2-Qs-5JPb8P5C5ncHZsth6RaBCDQA00I6g2vAjOhL7qlj1jrPPOM2bUHarLu2MSd7KA1yqKfZpANWNGJFV1jRtAVPf3xzVGckOfftRwFOOogr7NmaGHWB4wuJv_QGvpUFm1-0YLnBkI5ybKyrau8pZZL-tXmKrxasNiCdNv97WEvn93YfriFO9eut7vZdmMvCEUdF-1uG2cnoxN2DK_bTZH88Wqn2HIHdi8brdzkxYlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Studies+on+Chicken+Swarm+Optimization+algorithm%3A+a+review+%282014%E2%80%932018%29&rft.jtitle=The+Artificial+intelligence+review&rft.au=Deb%2C+Sanchari&rft.au=Gao%2C+Xiao-Zhi&rft.au=Tammi%2C+Kari&rft.au=Kalita%2C+Karuna&rft.date=2020-03-01&rft.pub=Springer+Netherlands&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=53&rft.issue=3&rft.spage=1737&rft.epage=1765&rft_id=info:doi/10.1007%2Fs10462-019-09718-3&rft.externalDocID=10_1007_s10462_019_09718_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon