Recent Studies on Chicken Swarm Optimization algorithm: a review (2014–2018)
Solving a complex optimization problem in a limited timeframe is a tedious task. Conventional gradient-based optimization algorithms have their limitations in solving complex problems such as unit commitment, microgrid planning, vehicle routing, feature selection, and community detection in social n...
Saved in:
| Published in: | The Artificial intelligence review Vol. 53; no. 3; pp. 1737 - 1765 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Netherlands
01.03.2020
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 0269-2821, 1573-7462 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Solving a complex optimization problem in a limited timeframe is a tedious task. Conventional gradient-based optimization algorithms have their limitations in solving complex problems such as unit commitment, microgrid planning, vehicle routing, feature selection, and community detection in social networks. In recent years population-based bio-inspired algorithms have demonstrated competitive performance on a wide range of optimization problems. Chicken Swarm Optimization Algorithm (CSO) is one of such bio-inspired meta-heuristic algorithms mimicking the behaviour of chicken swarm. It is reported in many literature that CSO outperforms a number of well-known meta-heuristics in a wide range of benchmark problems. This paper presents a review of various issues related to CSO like general biology, fundamentals, variants of CSO, performance of CSO, and applications of CSO. |
|---|---|
| AbstractList | Solving a complex optimization problem in a limited timeframe is a tedious task. Conventional gradient-based optimization algorithms have their limitations in solving complex problems such as unit commitment, microgrid planning, vehicle routing, feature selection, and community detection in social networks. In recent years population-based bio-inspired algorithms have demonstrated competitive performance on a wide range of optimization problems. Chicken Swarm Optimization Algorithm (CSO) is one of such bio-inspired meta-heuristic algorithms mimicking the behaviour of chicken swarm. It is reported in many literature that CSO outperforms a number of well-known meta-heuristics in a wide range of benchmark problems. This paper presents a review of various issues related to CSO like general biology, fundamentals, variants of CSO, performance of CSO, and applications of CSO. |
| Audience | Academic |
| Author | Mahanta, Pinakeswar Deb, Sanchari Gao, Xiao-Zhi Tammi, Kari Kalita, Karuna |
| Author_xml | – sequence: 1 givenname: Sanchari surname: Deb fullname: Deb, Sanchari email: sancharideb@yahoo.co.in organization: Centre for Energy, Indian Institute of Technology – sequence: 2 givenname: Xiao-Zhi surname: Gao fullname: Gao, Xiao-Zhi organization: School of Computing, University of Eastern Finland – sequence: 3 givenname: Kari surname: Tammi fullname: Tammi, Kari organization: Department of Mechanical Engineering, Aalto University – sequence: 4 givenname: Karuna surname: Kalita fullname: Kalita, Karuna organization: Department of Mechanical Engineering, Indian Institute of Technology – sequence: 5 givenname: Pinakeswar surname: Mahanta fullname: Mahanta, Pinakeswar organization: Department of Mechanical Engineering, Indian Institute of Technology |
| BookMark | eNp9kctKBDEQRYMoOD5-wFWDG120JqlOJ3Engy8QBR_rkMkkY3S6e0wyDrryH_xDv8RoC4KLIYuCyj1V1L0baLXtWovQDsEHBGN-GAmualpiIkssORElrKABYRxKnvuraIBpLUsqKFlHGzE-YowZrWCArm6ssW0qbtN87G0surYYPnjzZNvidqFDU1zPkm_8m04-f-nppAs-PTRHhS6CffF2UexRTKrP949cxP4WWnN6Gu32b91E96cnd8Pz8vL67GJ4fFmaiotUytoJKrjkdS24Fo4BpxVnI5Bu7Kq6lnJMLDgqGQbBBMajijoYCTlyYJw0sIl2-7mz0D3PbUzqsZuHNq9UQCQTogbJlqkozcMJVAKy6qBXTfTUKt-6LgVt8hvbxpvss_O5f5xdpYQB8AyIHjChizFYp4xPPwZl0E8Vweo7FNWHonIo6icU9b2L_kNnwTc6vC6HoIdiFrcTG_7OWEJ9Abf6nTM |
| CitedBy_id | crossref_primary_10_1007_s11042_023_17109_8 crossref_primary_10_1186_s44147_024_00533_4 crossref_primary_10_3390_biomimetics9050270 crossref_primary_10_3390_s22103910 crossref_primary_10_1002_cjce_70053 crossref_primary_10_1109_ACCESS_2019_2947297 crossref_primary_10_3390_a15050156 crossref_primary_10_3390_electronics10060712 crossref_primary_10_1016_j_heliyon_2024_e25465 crossref_primary_10_1007_s41062_025_02083_x crossref_primary_10_38124_ijisrt_25mar2010 crossref_primary_10_1007_s10462_023_10435_1 crossref_primary_10_3390_app13074439 crossref_primary_10_3390_e25030450 crossref_primary_10_1088_1402_4896_addaf4 crossref_primary_10_1007_s11277_022_09927_0 crossref_primary_10_1166_jmihi_2021_3905 crossref_primary_10_3390_biomimetics8040355 crossref_primary_10_1007_s10614_023_10400_8 crossref_primary_10_1007_s10489_021_02980_5 crossref_primary_10_1007_s00366_021_01530_4 crossref_primary_10_1007_s00366_021_01591_5 crossref_primary_10_1007_s13349_022_00592_2 crossref_primary_10_1109_ACCESS_2020_2983483 crossref_primary_10_1007_s11277_023_10299_2 crossref_primary_10_1038_s41598_022_23121_z crossref_primary_10_1109_ACCESS_2023_3272556 crossref_primary_10_1007_s00500_023_07990_8 crossref_primary_10_3390_axioms10010030 crossref_primary_10_1007_s11831_024_10090_x crossref_primary_10_1007_s40747_021_00510_x crossref_primary_10_3390_app14010381 crossref_primary_10_3390_pr12091979 crossref_primary_10_1155_2022_5359732 crossref_primary_10_1109_TSUSC_2024_3418136 crossref_primary_10_12677_aps_2024_125120 crossref_primary_10_1038_s41598_025_88846_z crossref_primary_10_1007_s12145_024_01575_1 crossref_primary_10_3390_app12136787 crossref_primary_10_1142_S0218625X25500118 crossref_primary_10_1038_s41598_025_89840_1 crossref_primary_10_1088_1742_6596_2467_1_012021 crossref_primary_10_1007_s41870_023_01157_2 crossref_primary_10_1016_j_jhydrol_2021_126757 crossref_primary_10_1109_ACCESS_2020_2994298 crossref_primary_10_1016_j_sna_2025_116732 crossref_primary_10_1007_s00500_019_04280_0 |
| Cites_doi | 10.1109/CompComm.2017.8322928 10.1145/2480741.2480752 10.1088/1755-1315/69/1/012086 10.1109/IHMSC.2016.107 10.1109/CIS.2017.00052 10.1155/2015/258491 10.1016/j.compstruc.2014.03.007 10.1109/ROEDUNET.2018.8514152 10.1080/0952813X.2015.1042530 10.1504/IJBIC.2010.032124 10.1061/(ASCE)AS.1943-5525.0000757 10.1109/ICEEIE.2017.8328774 10.1007/978-3-319-11857-4_10 10.1016/j.applanim.2016.08.010 10.1109/PCITC.2015.7438173 10.1063/1.4982562 10.1504/IJBIC.2016.078666 10.1016/j.tcs.2005.05.020 10.1007/s11721-007-0002-0 10.1109/SOCPAR.2015.7492775 10.3390/en11010178 10.1049/iet-map.2016.0083 10.1016/j.advengsoft.2013.12.007 10.1109/JSEN.2018.2832216 10.1016/j.future.2017.08.060 10.1109/ICRCICN.2017.8234486 10.1109/CYBER.2015.7288023 10.1016/j.energy.2016.05.128 10.1504/IJBIC.2016.081335 10.1016/j.cnsns.2012.05.010 10.4018/978-1-5225-2229-4.ch047 10.1142/S0218213008003893 10.1109/TEVC.2010.2059031 10.1007/s11227-018-2291-z 10.1109/ICCSN.2017.8230156 10.1109/ACCESS.2016.2604738 10.1109/ACCESS.2017.2783969 10.1109/MLDS.2017.5 10.1016/j.asoc.2007.05.007 10.1007/s10071-016-1064-4 10.1007/978-3-642-32894-7_27 10.1080/01430750.2017.1345010 10.1016/S0377-2217(99)00435-X 10.1109/ICRCICN.2017.8234517 10.1023/A:1022602019183 10.3390/su8030235 10.1016/j.eswa.2015.04.026 10.1109/AINA.2018.00073 10.1109/CompComm.2016.7925083 10.1016/j.neucom.2015.08.092 10.1007/978-3-319-74690-6_6 10.1007/s11277-017-4803-1 10.1007/978-3-319-61833-3_2 |
| ContentType | Journal Article |
| Copyright | Springer Nature B.V. 2019 COPYRIGHT 2020 Springer Artificial Intelligence Review is a copyright of Springer, (2019). All Rights Reserved. Copyright Springer Nature B.V. Mar 2020 |
| Copyright_xml | – notice: Springer Nature B.V. 2019 – notice: COPYRIGHT 2020 Springer – notice: Artificial Intelligence Review is a copyright of Springer, (2019). All Rights Reserved. – notice: Copyright Springer Nature B.V. Mar 2020 |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO E3H F2A FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U |
| DOI | 10.1007/s10462-019-09718-3 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College Library & Information Science Collection ProQuest Central Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Library Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Biology |
| EISSN | 1573-7462 |
| EndPage | 1765 |
| ExternalDocumentID | A718215337 10_1007_s10462_019_09718_3 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6J9 6NX 77K 7WY 8AO 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU CNYFK COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M1O M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~A9 ~EX 77I AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFFHD AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT PQGLB PRQQA 7SC 7XB 8AL 8FD 8FK E3H F2A JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c478t-96f8287976687a8f5372475b39fdf46699d1e3f2950385800b42f3b89bf3cf9c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519571700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0269-2821 |
| IngestDate | Fri Nov 14 18:56:14 EST 2025 Sat Nov 15 05:51:06 EST 2025 Sat Nov 29 09:49:11 EST 2025 Tue Nov 18 21:10:27 EST 2025 Sat Nov 29 02:43:24 EST 2025 Fri Feb 21 02:37:00 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Optimization algorithm Review Nature inspired intelligence Applications Chicken Swarm Optimization algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-96f8287976687a8f5372475b39fdf46699d1e3f2950385800b42f3b89bf3cf9c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://aaltodoc.aalto.fi/handle/123456789/39510 |
| PQID | 2229513483 |
| PQPubID | 36790 |
| PageCount | 29 |
| ParticipantIDs | proquest_journals_3195886395 proquest_journals_2229513483 gale_infotracacademiconefile_A718215337 crossref_citationtrail_10_1007_s10462_019_09718_3 crossref_primary_10_1007_s10462_019_09718_3 springer_journals_10_1007_s10462_019_09718_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-01 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Science and Engineering Journal |
| PublicationTitle | The Artificial intelligence review |
| PublicationTitleAbbrev | Artif Intell Rev |
| PublicationYear | 2020 |
| Publisher | Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | Pei Y, Hao J (2017) Non-dominated sorting and crowding distance based multi-objective chaotic evolution. In: International conference in swarm intelligence. Springer, Cham, pp 15–22 Zareiegovar G, Fesaghandis RR, Azad MJ (2012) Optimal DG location and sizing in distribution system to minimize losses, improve voltage stability, and voltage profile. In: Proceedings of 17th conference on electrical power distribution networks (EPDC), pp 1–6 ShayokhMShinSYBio inspired distributed WSN localization based on Chicken Swarm OptimizationWireless Pers Commun20179745691570610.1007/s11277-017-4803-1 Wang Q, Zhu L (2017) Optimization of wireless sensor networks based on chicken swarm optimization algorithm. In: AIP conference proceedings, vol 1839, no 1. AIP Publishing, p 020197 Hafez AI, Zawbaa HM, Emary E, Mahmoud HA, Hassanien AE (2015) An innovative approach for feature selection based on chicken swarm optimization. In: 2015 7th international conference of soft computing and pattern recognition (SoCPaR). IEEE, pp 19–24 MengXBLiHXGaoXZAn adaptive reinforcement learning-based bat algorithm for structural design problemsInt J Bio Inspir Comput2018111(in press) ChenYLHePLZhangYHCombining penalty function with modified chicken swarm optimization for constrained optimizationAdv Intell Syst Res201512618991907 Abbas Z, Javaid N, Khan AJ, Rehman MHA, Sahi J, Saboor A (2018) Demand side energy management using hybrid chicken swarm and bacterial foraging optimization techniques. In: 2018 IEEE 32nd international conference on advanced information networking and applications (AINA), IEEE, pp 445–456 LiYWuYQuXChicken Swarm-based method for ascent trajectory optimization of hypersonic vehiclesJ Aerosp Eng20173050401704310.1061/(ASCE)AS.1943-5525.0000757 Deb S, Kalita K, Gao XZ, Tammi K, Mahanta P (2017) Optimal placement of charging stations using CSO-TLBO algorithm. In: 2017 Third international conference on research in computational intelligence and communication networks (ICRCICN). IEEE, pp 84–89 ChenSYangRYangRYangLYangXXuCLiuWA parameter estimation method for nonlinear systems based on improved boundary chicken swarm optimizationDiscrete Dyn Nat Soc2016201611 WangGGDebSGaoXZCoelhoLDSA new metaheuristic optimisation algorithm motivated by elephant herding behaviourInt J Bio-Inspir Comput20168639440910.1504/IJBIC.2016.081335 MengXBGaoXZLiuYZhangHA novel bat algorithm with habitat selection and Doppler effect in echoes for optimizationExpert Syst Appl20154217–186350636410.1016/j.eswa.2015.04.026 Poli R, Langdon WB (1998) On the search properties of different crossover operators in genetic programming. In: Genetic programming 1998: proceedings of third annual conference, University of Wisconsin, Madison. Morgan Kaufmann, pp 293–301 Moldovan D, Chifu V, Pop C, Cioara T, Anghel I, Salomie I (2018) Chicken Swarm Optimization and deep learning for manufacturing processes. In: 2018 17th RoEduNet conference: networking in education and research (RoEduNet). IEEE, pp 1–6 Yi Z, Liu J, Wang S, Zeng X, Lu J (2016) PAPR reduction technology based on CSO algorithm in CO-OFDM system. In: 2016 15th international conference on optical communications and networks (ICOCN). IEEE, pp 1–3 SultanaUKhairuddinABMokhtarASZareenNSultanaBGrey wolf optimizer based placement and sizing of multiple distributed generation in the distribution systemEnergy201611152553610.1016/j.energy.2016.05.128 KarabogaDBasturkBOn the performance of artificial bee colony (ABC) algorithmAppl Soft Comput20088168769710.1016/j.asoc.2007.05.007 DasSSuganthanPNDifferential evolution: a survey of the state-of-the-artIEEE Trans Evol Comput201115143110.1109/TEVC.2010.2059031 GandomiAHAlaviAHKrill herd: a new bio-inspired optimization algorithmCommun Nonlinear Sci Numer Simul201217124831484529602791266.6509210.1016/j.cnsns.2012.05.010 MengXBGaoXZLuLLiuYZhangHA new bio-inspired optimisation algorithm: bird swarm algorithmJ Exp Theor Artif Intell201628467368710.1080/0952813X.2015.1042530 Meng XB, Liu Y, Gao X, Zhang H (2014) A new bio-inspired algorithm: Chicken Swarm Optimization. In: International conference in swarm intelligence. Springer, Cham, pp 86–94 TorabiSSafi-EsfahaniFA dynamic task scheduling framework based on chicken swarm and improved raven roosting optimization methods in cloud computingJ Supercomput20187462581262610.1007/s11227-018-2291-z Ahmed K, Hassanien AE, Ezzat E, Bhattacharyya S (2018) Swarming behaviors of chicken for predicting posts on facebook branding pages. In: International conference on advanced machine learning technologies and applications. Springer, Cham, pp 52–61 Han M, Liu S (2017) An improved binary chicken swarm optimization algorithm for solving 0–1 Knapsack problem. In: 2017 13th international conference on computational intelligence and security (CIS). IEEE, pp 207–210 PoliRKennedyJBlackwellTParticle swarm optimizationSwarm Intell200711335710.1007/s11721-007-0002-0 Taie SA, Ghonaim W (2017) CSO-based algorithm with support vector machine for brain tumor’s disease diagnosis. In: 2017 IEEE international conference on pervasive computing and communications workshops (PerCom Workshops). IEEE, pp 183–187 QuCZhaoSAFuYHeWChicken swarm optimization based on elite opposition-based learningMath Probl Eng20172017203633344 DorigoMBlumCAnt colony optimization theory: a surveyTheoret Comput Sci20053442–324327821788551154.9062610.1016/j.tcs.2005.05.020 GoldbergDEHollandJHGenetic algorithms and machine learningMach Learn198832959910.1023/A:1022602019183 Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: World congress on nature and biologically inspired computing, 2009. NaBIC 2009. IEEE, pp 210–214 MarinakisYDouniasGNature inspired intelligence in medicine: ant colony optimization for pap-smear diagnosisInt J Artif Intell Tools2008170227930110.1142/S0218213008003893 MohamedTMEnhancing The performance of the greedy algorithm using Chicken Swarm Optimization: an application to exam scheduling problemEgypt Comput Sci J201842113776448 LiuDLiuCFuQLiTKhanMICuiSFaizMAProjection pursuit evaluation model of regional surface water environment based on improved Chicken Swarm Optimization algorithmWater Resour Manag201732118 AhmedKBabersRDarwishAHassanienAEPandaMAbrahamAHassanienAESwarm-based analysis for community detection in complex networksBig data analytics a social network approach2018LondonTaylor and Francis18 Liang S, Feng T, Sun G, Zhang J, Zhang H (2016) Transmission power optimization for reducing sidelobe via bat-chicken swarm optimization in distributed collaborative beamforming. In: 2016 2nd IEEE international conference on computer and communications (ICCC). IEEE, pp 2164–2168 KumarDSVeniSEnhanced energy steady clustering using convergence node based path optimization with hybrid Chicken Swarm algorithm in MANETInt J Pure Appl Math2018118767788 LogeshRSubramaniyaswamyVVijayakumarVGaoXZIndragandhiVA hybrid quantum-induced swarm intelligence clustering for the urban trip recommendation in smart cityFuture Gener Comput Syst20188365367310.1016/j.future.2017.08.060 YangXSFirefly algorithm, stochastic test functions and design optimisationInt J Bio-Inspir Comput201022788410.1504/IJBIC.2010.032124 Awal AR, Dou Z, Al Shayokh M, Zahoor MI (2017) Implementation of chicken swarm optimization (CSO) with partial transmit sequences for the reduction of PAPR in OFDM system. In: 2017 IEEE 9th international conference on communication software and networks (ICCSN). IEEE, pp 468–472 Deb S, Kalita K, Gao XZ, Tammi K, Mahanta P (2018a) A pareto dominance based multi-objective Chicken Swarm Optimization and teaching learning based optimization algorithm for charging station placement problem. Int Trans Electr Energy Syst (to be communicated) HuHLiJHuangJEconomic operation optimization of micro-grid based on Chicken Swarm Optimization algorithmHigh Volt Appar20171020 MohsenzadehAPazoukiSArdalanSHaghifamMROptimal placing and sizing of parking lots including different levels of charging stations in electric distribution networksInt J Ambient Energy201839774375010.1080/01430750.2017.1345010 Wang K, Li Z, Cheng H, Zhang K (2017) Mutation chicken swarm optimization based on nonlinear inertia weight. In: 2017 3rd IEEE international conference on computer and communications (ICCC). IEEE, pp 2206–2211 Yang XS (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation. Springer, Berlin, pp 240–249 Banerjee S, Chattopadhyay S (2015) Improved serially concatenated convolution turbo code (SCCTC) using chicken swarm optimization. In: Power, communication and information technology conference (PCITC), 2015 IEEE. IEEE, pp 268–273 DebSTammiKKalitaKMahantaPImpact of electric vehicle charging station load on distribution networkEnergies201811117810.3390/en11010178 Ahmed K, Hassanien AE, Ezzat E, Tsai PW (2016) An adaptive approach for community detection based on chicken swarm optimization algorithm. In: International conference on genetic and evolutionary computing. Springer, Cham, pp 281–288 IrsalindaNThobirinAWijayantiDEChicken swarm as a multi step algorithm for global optimizationInt J Eng Sci Invent201761814 AhmedKHassanienAEEzzatEHassanienAEGaberTAn efficient approach for community detection in complex social networks based on elephant swarm optimization algorithmHandbook of research on machine learning innovations and trends2017HersheyIGI Global1062107510.4018/978-1-5225-2229-4.ch047 ČrepinšekMLiuSHMernikMExploration and exploitation in evolutionary algorithms: a surveyACM Comput Surv (CSUR)2013453351293.6825110.1145/2480741.2480752 McGrathNBurmanODwyerCPhillipsCJDoes the anticipatory behaviour of chickens communicate reward quality?Appl Anim Behav Sci2016184809010.1016/j.applanim.2016.08.010 Basha SH, Tharwat A, Ahmed K, Hassanien AE (2018) A predictive model for seminal quality using neutrosophic rule-based classification system. In: International conference on advanced intelligent systems and informatics. Springer, Cham, pp 495–504 MishraKKHaritSA fast alg N Irsalinda (9718_CR77) 2017; 6 S Das (9718_CR17) 2011; 15 S Chen (9718_CR14) 2016; 2016 XB Meng (9718_CR46) 2018; 1 9718_CR18 9718_CR19 MY Cheng (9718_CR15) 2014; 139 9718_CR10 9718_CR54 9718_CR11 L Marino (9718_CR39) 2017; 20 D Liu (9718_CR36) 2017; 32 9718_CR57 AH Gandomi (9718_CR23) 2012; 17 K Ahmed (9718_CR5) 2017 9718_CR51 R Logesh (9718_CR37) 2018; 83 9718_CR52 9718_CR53 J Heng (9718_CR28) 2016; 8 N McGrath (9718_CR40) 2016; 184 A Hertz (9718_CR29) 2000; 126 X Cai (9718_CR12) 2016; 8 H Zhang (9718_CR76) 2016; 173 C Qu (9718_CR56) 2017; 2017 XB Meng (9718_CR43) 2015; 42 Y Marinakis (9718_CR38) 2008; 17 YL Chen (9718_CR13) 2015; 126 TM Mohamed (9718_CR49) 2018; 42 9718_CR21 9718_CR66 A Mohsenzadeh (9718_CR50) 2018; 39 XB Meng (9718_CR44) 2016; 28 9718_CR68 9718_CR69 9718_CR26 9718_CR27 XZ Gao (9718_CR24) 2015; 2015 H Hu (9718_CR30) 2017; 1 DS Kumar (9718_CR32) 2018; 118 9718_CR63 9718_CR64 S Mirjalili (9718_CR47) 2014; 69 9718_CR9 D Karaboga (9718_CR31) 2008; 8 DE Goldberg (9718_CR25) 1988; 3 KK Mishra (9718_CR48) 2010; 1 G Sun (9718_CR62) 2018; 6 XS Yang (9718_CR71) 2010; 2 9718_CR1 D Wu (9718_CR70) 2016; 4 9718_CR2 9718_CR3 9718_CR34 9718_CR4 9718_CR6 K Ahmed (9718_CR8) 2018 9718_CR7 9718_CR72 9718_CR73 9718_CR74 Y Li (9718_CR33) 2017; 30 9718_CR75 S Liang (9718_CR35) 2017; 11 R Poli (9718_CR55) 2007; 1 U Sultana (9718_CR61) 2016; 111 M Črepinšek (9718_CR16) 2013; 45 M Dorigo (9718_CR22) 2005; 344 W Shi (9718_CR59) 2018; 18 S Sivasakthi (9718_CR60) 2016; 2 S Torabi (9718_CR65) 2018; 74 M Shayokh (9718_CR58) 2017; 97 GG Wang (9718_CR67) 2016; 8 S Deb (9718_CR20) 2018; 11 XB Meng (9718_CR45) 2018; 1 9718_CR41 9718_CR42 |
| References_xml | – reference: LiangSFengTSunGSidelobe-level suppression for linear and circular antenna arrays via the cuckoo search–chicken swarm optimisation algorithmIET Microw Antennas Propag201711220921810.1049/iet-map.2016.0083 – reference: MengXBGaoXZLiuYZhangHA novel bat algorithm with habitat selection and Doppler effect in echoes for optimizationExpert Syst Appl20154217–186350636410.1016/j.eswa.2015.04.026 – reference: KumarDSVeniSEnhanced energy steady clustering using convergence node based path optimization with hybrid Chicken Swarm algorithm in MANETInt J Pure Appl Math2018118767788 – reference: SivasakthiSMuralikrishnanNChicken Swarm Optimization for economic dispatch with disjoint prohibited zones considering network lossesJ Appl Sci Eng Methodol201622255259 – reference: Dhiman G, Kaur A (2017) Spotted hyena optimizer for solving engineering design problems. In: 2017 International conference on machine learning and data science (MLDS). IEEE, pp 114–119 – reference: Sutoyo E, Saedudin RR, Yanto ITR, Apriani A (2017) Application of adaptive neuro-fuzzy inference system and chicken swarm optimization for classifying river water quality. In: 2017 5th international conference on electrical, electronics and information engineering (ICEEIE). IEEE, pp 118–122 – reference: Wu D, Kong F, Gao W, Shen Y, Ji Z (2015) Improved Chicken Swarm Optimization. In: 2015 IEEE international conference on cyber technology in automation, control, and intelligent systems (CYBER). IEEE, pp 681–686 – reference: Yang XS (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation. Springer, Berlin, pp 240–249 – reference: Moldovan D, Chifu V, Pop C, Cioara T, Anghel I, Salomie I (2018) Chicken Swarm Optimization and deep learning for manufacturing processes. In: 2018 17th RoEduNet conference: networking in education and research (RoEduNet). IEEE, pp 1–6 – reference: PoliRKennedyJBlackwellTParticle swarm optimizationSwarm Intell200711335710.1007/s11721-007-0002-0 – reference: Basha SH, Tharwat A, Ahmed K, Hassanien AE (2018) A predictive model for seminal quality using neutrosophic rule-based classification system. In: International conference on advanced intelligent systems and informatics. Springer, Cham, pp 495–504 – reference: KarabogaDBasturkBOn the performance of artificial bee colony (ABC) algorithmAppl Soft Comput20088168769710.1016/j.asoc.2007.05.007 – reference: Zareiegovar G, Fesaghandis RR, Azad MJ (2012) Optimal DG location and sizing in distribution system to minimize losses, improve voltage stability, and voltage profile. In: Proceedings of 17th conference on electrical power distribution networks (EPDC), pp 1–6 – reference: SultanaUKhairuddinABMokhtarASZareenNSultanaBGrey wolf optimizer based placement and sizing of multiple distributed generation in the distribution systemEnergy201611152553610.1016/j.energy.2016.05.128 – reference: Hafez AI, Zawbaa HM, Emary E, Mahmoud HA, Hassanien AE (2015) An innovative approach for feature selection based on chicken swarm optimization. In: 2015 7th international conference of soft computing and pattern recognition (SoCPaR). IEEE, pp 19–24 – reference: YangXSFirefly algorithm, stochastic test functions and design optimisationInt J Bio-Inspir Comput201022788410.1504/IJBIC.2010.032124 – reference: Banerjee S, Chattopadhyay S (2015) Improved serially concatenated convolution turbo code (SCCTC) using chicken swarm optimization. In: Power, communication and information technology conference (PCITC), 2015 IEEE. IEEE, pp 268–273 – reference: HertzAKoblerDA framework for the description of evolutionary algorithmsEur J Oper Res2000126111217816040970.9012210.1016/S0377-2217(99)00435-X – reference: LiuDLiuCFuQLiTKhanMICuiSFaizMAProjection pursuit evaluation model of regional surface water environment based on improved Chicken Swarm Optimization algorithmWater Resour Manag201732118 – reference: QuCZhaoSAFuYHeWChicken swarm optimization based on elite opposition-based learningMath Probl Eng20172017203633344 – reference: Taie SA, Ghonaim W (2017) CSO-based algorithm with support vector machine for brain tumor’s disease diagnosis. In: 2017 IEEE international conference on pervasive computing and communications workshops (PerCom Workshops). IEEE, pp 183–187 – reference: Meng XB, Liu Y, Gao X, Zhang H (2014) A new bio-inspired algorithm: Chicken Swarm Optimization. In: International conference in swarm intelligence. Springer, Cham, pp 86–94 – reference: Han M, Liu S (2017) An improved binary chicken swarm optimization algorithm for solving 0–1 Knapsack problem. In: 2017 13th international conference on computational intelligence and security (CIS). IEEE, pp 207–210 – reference: ChenYLHePLZhangYHCombining penalty function with modified chicken swarm optimization for constrained optimizationAdv Intell Syst Res201512618991907 – reference: DebSTammiKKalitaKMahantaPImpact of electric vehicle charging station load on distribution networkEnergies201811117810.3390/en11010178 – reference: GoldbergDEHollandJHGenetic algorithms and machine learningMach Learn198832959910.1023/A:1022602019183 – reference: DasSSuganthanPNDifferential evolution: a survey of the state-of-the-artIEEE Trans Evol Comput201115143110.1109/TEVC.2010.2059031 – reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201469466110.1016/j.advengsoft.2013.12.007 – reference: MohsenzadehAPazoukiSArdalanSHaghifamMROptimal placing and sizing of parking lots including different levels of charging stations in electric distribution networksInt J Ambient Energy201839774375010.1080/01430750.2017.1345010 – reference: Liang S, Feng T, Sun G, Zhang J, Zhang H (2016) Transmission power optimization for reducing sidelobe via bat-chicken swarm optimization in distributed collaborative beamforming. In: 2016 2nd IEEE international conference on computer and communications (ICCC). IEEE, pp 2164–2168 – reference: ShiWGuoYYanSYuYLuoPLiJOptimizing directional reader antennas deployment in UHF RFID localization system by using a MPCSO algorithmIEEE Sens J201818125035504810.1109/JSEN.2018.2832216 – reference: ZhangHZhangXGaoXZSongSSelf-organizing multiobjective optimization based on decomposition with neighborhood ensembleNeurocomputing20161731868188410.1016/j.neucom.2015.08.092 – reference: McGrathNBurmanODwyerCPhillipsCJDoes the anticipatory behaviour of chickens communicate reward quality?Appl Anim Behav Sci2016184809010.1016/j.applanim.2016.08.010 – reference: IrsalindaNThobirinAWijayantiDEChicken swarm as a multi step algorithm for global optimizationInt J Eng Sci Invent201761814 – reference: LiYWuYQuXChicken Swarm-based method for ascent trajectory optimization of hypersonic vehiclesJ Aerosp Eng20173050401704310.1061/(ASCE)AS.1943-5525.0000757 – reference: MengXBLiHXGaoXZAn adaptive reinforcement learning-based bat algorithm for structural design problemsInt J Bio Inspir Comput2018111(in press) – reference: WangGGDebSGaoXZCoelhoLDSA new metaheuristic optimisation algorithm motivated by elephant herding behaviourInt J Bio-Inspir Comput20168639440910.1504/IJBIC.2016.081335 – reference: ČrepinšekMLiuSHMernikMExploration and exploitation in evolutionary algorithms: a surveyACM Comput Surv (CSUR)2013453351293.6825110.1145/2480741.2480752 – reference: Ahmed K, Ewees AA, Hassanien AE (2017) Prediction and management system for forest fires based on hybrid flower pollination optimization algorithm and adaptive neuro-fuzzy inference system. In: 2017 Eighth international conference on intelligent computing and information systems (ICICIS). IEEE, pp 299–304 – reference: Mu Y, Zhang L, Chen X, Gao X (2016) Optimal trajectory planning for robotic manipulators using chicken swarm optimization. In: 2016 8th international conference on intelligent human–machine systems and cybernetics (IHMSC), vol 2. IEEE, pp 369–373 – reference: Abbas Z, Javaid N, Khan AJ, Rehman MHA, Sahi J, Saboor A (2018) Demand side energy management using hybrid chicken swarm and bacterial foraging optimization techniques. In: 2018 IEEE 32nd international conference on advanced information networking and applications (AINA), IEEE, pp 445–456 – reference: Ahmed K, Hassanien AE, Bhattacharyya S (2017) A novel chaotic chicken swarm optimization algorithm for feature selection. In: 2017 Third international conference on research in computational intelligence and communication networks (ICRCICN). IEEE, pp 259–264 – reference: Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: World congress on nature and biologically inspired computing, 2009. NaBIC 2009. IEEE, pp 210–214 – reference: ChengMYPrayogoDSymbiotic organisms search: a new metaheuristic optimization algorithmComput Struc20141399811210.1016/j.compstruc.2014.03.007 – reference: HuHLiJHuangJEconomic operation optimization of micro-grid based on Chicken Swarm Optimization algorithmHigh Volt Appar20171020 – reference: Pei Y, Hao J (2017) Non-dominated sorting and crowding distance based multi-objective chaotic evolution. In: International conference in swarm intelligence. Springer, Cham, pp 15–22 – reference: Poli R, Langdon WB (1998) On the search properties of different crossover operators in genetic programming. In: Genetic programming 1998: proceedings of third annual conference, University of Wisconsin, Madison. Morgan Kaufmann, pp 293–301 – reference: LogeshRSubramaniyaswamyVVijayakumarVGaoXZIndragandhiVA hybrid quantum-induced swarm intelligence clustering for the urban trip recommendation in smart cityFuture Gener Comput Syst20188365367310.1016/j.future.2017.08.060 – reference: DorigoMBlumCAnt colony optimization theory: a surveyTheoret Comput Sci20053442–324327821788551154.9062610.1016/j.tcs.2005.05.020 – reference: ShayokhMShinSYBio inspired distributed WSN localization based on Chicken Swarm OptimizationWireless Pers Commun20179745691570610.1007/s11277-017-4803-1 – reference: CaiXGaoXZXueYImproved bat algorithm with optimal forage strategy and random disturbance strategyInt J Bio-Inspir Comput20168420521410.1504/IJBIC.2016.078666 – reference: GaoXZGovindasamyVXuHWangXZengerKHarmony search method: theory and applicationsComput Intell Neurosci201520153910.1155/2015/258491 – reference: MishraKKHaritSA fast algorithm for finding the non dominated set in multi objective optimizationInt J Comput Appl20101253539 – reference: MohamedTMEnhancing The performance of the greedy algorithm using Chicken Swarm Optimization: an application to exam scheduling problemEgypt Comput Sci J201842113776448 – reference: AhmedKHassanienAEEzzatEHassanienAEGaberTAn efficient approach for community detection in complex social networks based on elephant swarm optimization algorithmHandbook of research on machine learning innovations and trends2017HersheyIGI Global1062107510.4018/978-1-5225-2229-4.ch047 – reference: SunGLiuYLiangSChenZWangAJuQZhangYA sidelobe and energy optimization array node selection algorithm for collaborative beamforming in wireless sensor networksIEEE Access201862515253010.1109/ACCESS.2017.2783969 – reference: MarinoLThinking chickens: a review of cognition, emotion, and behavior in the domestic chickenAnim Cogn201720212714710.1007/s10071-016-1064-4 – reference: Yi Z, Liu J, Wang S, Zeng X, Lu J (2016) PAPR reduction technology based on CSO algorithm in CO-OFDM system. In: 2016 15th international conference on optical communications and networks (ICOCN). IEEE, pp 1–3 – reference: WuDXuSKongFConvergence analysis and improvement of the chicken swarm optimization algorithmIEEE Access201649400941210.1109/ACCESS.2016.2604738 – reference: AhmedKBabersRDarwishAHassanienAEPandaMAbrahamAHassanienAESwarm-based analysis for community detection in complex networksBig data analytics a social network approach2018LondonTaylor and Francis18 – reference: MengXBLiHXYangHDEvolutionary design of spatiotemporal leaning model for thermal distribution in Lithium-ion batteriesIEEE Trans Industr Inf20181199 – reference: Ahmed K, Ewees AA, El Aziz MA, Hassanien AE, Gaber T, Tsai PW, Pan JS (2016) A hybrid krill-ANFIS model for wind speed forecasting. In: International conference on advanced intelligent systems and informatics. Springer, Cham, pp 365–372 – reference: Ahmed K, Hassanien AE, Ezzat E, Tsai PW (2016) An adaptive approach for community detection based on chicken swarm optimization algorithm. In: International conference on genetic and evolutionary computing. Springer, Cham, pp 281–288 – reference: TorabiSSafi-EsfahaniFA dynamic task scheduling framework based on chicken swarm and improved raven roosting optimization methods in cloud computingJ Supercomput20187462581262610.1007/s11227-018-2291-z – reference: MarinakisYDouniasGNature inspired intelligence in medicine: ant colony optimization for pap-smear diagnosisInt J Artif Intell Tools2008170227930110.1142/S0218213008003893 – reference: Meng XB, Li HX (2017) Dempster–Shafer based probabilistic fuzzy logic system for wind speed prediction. In: 2017 international conference on fuzzy theory and its applications (iFUZZY). IEEE, pp 1–5 – reference: Deb S, Kalita K, Gao XZ, Tammi K, Mahanta P (2017) Optimal placement of charging stations using CSO-TLBO algorithm. In: 2017 Third international conference on research in computational intelligence and communication networks (ICRCICN). IEEE, pp 84–89 – reference: MengXBGaoXZLuLLiuYZhangHA new bio-inspired optimisation algorithm: bird swarm algorithmJ Exp Theor Artif Intell201628467368710.1080/0952813X.2015.1042530 – reference: Ren W, Deng C, Zhang C, Mao Y (2017) Identification of fast-steering mirror based on chicken swarm optimization algorithm. In: IOP conference series: earth and environmental science, vol 69, no 1. IOP Publishing, p 012086 – reference: GandomiAHAlaviAHKrill herd: a new bio-inspired optimization algorithmCommun Nonlinear Sci Numer Simul201217124831484529602791266.6509210.1016/j.cnsns.2012.05.010 – reference: Awal AR, Dou Z, Al Shayokh M, Zahoor MI (2017) Implementation of chicken swarm optimization (CSO) with partial transmit sequences for the reduction of PAPR in OFDM system. In: 2017 IEEE 9th international conference on communication software and networks (ICCSN). IEEE, pp 468–472 – reference: Deb S, Kalita K, Gao XZ, Tammi K, Mahanta P (2018a) A pareto dominance based multi-objective Chicken Swarm Optimization and teaching learning based optimization algorithm for charging station placement problem. Int Trans Electr Energy Syst (to be communicated) – reference: ChenSYangRYangRYangLYangXXuCLiuWA parameter estimation method for nonlinear systems based on improved boundary chicken swarm optimizationDiscrete Dyn Nat Soc2016201611 – reference: Ahmed K, Hassanien AE, Ezzat E, Bhattacharyya S (2018) Swarming behaviors of chicken for predicting posts on facebook branding pages. In: International conference on advanced machine learning technologies and applications. Springer, Cham, pp 52–61 – reference: HengJWangCZhaoXXiaoLResearch and application based on adaptive boosting strategy and modified CGFPA algorithm: a case study for wind speed forecastingSustainability20168323510.3390/su8030235 – reference: Wang Q, Zhu L (2017) Optimization of wireless sensor networks based on chicken swarm optimization algorithm. In: AIP conference proceedings, vol 1839, no 1. AIP Publishing, p 020197 – reference: Wang K, Li Z, Cheng H, Zhang K (2017) Mutation chicken swarm optimization based on nonlinear inertia weight. In: 2017 3rd IEEE international conference on computer and communications (ICCC). IEEE, pp 2206–2211 – ident: 9718_CR68 doi: 10.1109/CompComm.2017.8322928 – ident: 9718_CR19 – ident: 9718_CR11 – volume: 45 start-page: 35 issue: 3 year: 2013 ident: 9718_CR16 publication-title: ACM Comput Surv (CSUR) doi: 10.1145/2480741.2480752 – ident: 9718_CR57 doi: 10.1088/1755-1315/69/1/012086 – ident: 9718_CR73 – ident: 9718_CR52 doi: 10.1109/IHMSC.2016.107 – start-page: 18 volume-title: Big data analytics a social network approach year: 2018 ident: 9718_CR8 – ident: 9718_CR54 – ident: 9718_CR27 doi: 10.1109/CIS.2017.00052 – volume: 2015 start-page: 39 year: 2015 ident: 9718_CR24 publication-title: Comput Intell Neurosci doi: 10.1155/2015/258491 – volume: 1 start-page: 020 year: 2017 ident: 9718_CR30 publication-title: High Volt Appar – volume: 139 start-page: 98 year: 2014 ident: 9718_CR15 publication-title: Comput Struc doi: 10.1016/j.compstruc.2014.03.007 – ident: 9718_CR51 doi: 10.1109/ROEDUNET.2018.8514152 – volume: 28 start-page: 673 issue: 4 year: 2016 ident: 9718_CR44 publication-title: J Exp Theor Artif Intell doi: 10.1080/0952813X.2015.1042530 – volume: 2 start-page: 78 issue: 2 year: 2010 ident: 9718_CR71 publication-title: Int J Bio-Inspir Comput doi: 10.1504/IJBIC.2010.032124 – ident: 9718_CR4 – volume: 30 start-page: 04017043 issue: 5 year: 2017 ident: 9718_CR33 publication-title: J Aerosp Eng doi: 10.1061/(ASCE)AS.1943-5525.0000757 – volume: 42 start-page: 1 issue: 1 year: 2018 ident: 9718_CR49 publication-title: Egypt Comput Sci J – ident: 9718_CR63 doi: 10.1109/ICEEIE.2017.8328774 – ident: 9718_CR42 doi: 10.1007/978-3-319-11857-4_10 – volume: 184 start-page: 80 year: 2016 ident: 9718_CR40 publication-title: Appl Anim Behav Sci doi: 10.1016/j.applanim.2016.08.010 – ident: 9718_CR41 – ident: 9718_CR10 doi: 10.1109/PCITC.2015.7438173 – ident: 9718_CR66 doi: 10.1063/1.4982562 – volume: 8 start-page: 205 issue: 4 year: 2016 ident: 9718_CR12 publication-title: Int J Bio-Inspir Comput doi: 10.1504/IJBIC.2016.078666 – volume: 2 start-page: 255 issue: 2 year: 2016 ident: 9718_CR60 publication-title: J Appl Sci Eng Methodol – volume: 344 start-page: 243 issue: 2–3 year: 2005 ident: 9718_CR22 publication-title: Theoret Comput Sci doi: 10.1016/j.tcs.2005.05.020 – volume: 126 start-page: 1899 year: 2015 ident: 9718_CR13 publication-title: Adv Intell Syst Res – volume: 118 start-page: 767 year: 2018 ident: 9718_CR32 publication-title: Int J Pure Appl Math – volume: 1 start-page: 33 issue: 1 year: 2007 ident: 9718_CR55 publication-title: Swarm Intell doi: 10.1007/s11721-007-0002-0 – ident: 9718_CR26 doi: 10.1109/SOCPAR.2015.7492775 – volume: 1 start-page: 99 issue: 1 year: 2018 ident: 9718_CR45 publication-title: IEEE Trans Industr Inf – volume: 11 start-page: 178 issue: 1 year: 2018 ident: 9718_CR20 publication-title: Energies doi: 10.3390/en11010178 – volume: 11 start-page: 209 issue: 2 year: 2017 ident: 9718_CR35 publication-title: IET Microw Antennas Propag doi: 10.1049/iet-map.2016.0083 – volume: 2017 start-page: 20 year: 2017 ident: 9718_CR56 publication-title: Math Probl Eng – volume: 69 start-page: 46 year: 2014 ident: 9718_CR47 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 18 start-page: 5035 issue: 12 year: 2018 ident: 9718_CR59 publication-title: IEEE Sens J doi: 10.1109/JSEN.2018.2832216 – volume: 83 start-page: 653 year: 2018 ident: 9718_CR37 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2017.08.060 – ident: 9718_CR18 doi: 10.1109/ICRCICN.2017.8234486 – ident: 9718_CR69 doi: 10.1109/CYBER.2015.7288023 – volume: 111 start-page: 525 year: 2016 ident: 9718_CR61 publication-title: Energy doi: 10.1016/j.energy.2016.05.128 – volume: 8 start-page: 394 issue: 6 year: 2016 ident: 9718_CR67 publication-title: Int J Bio-Inspir Comput doi: 10.1504/IJBIC.2016.081335 – volume: 17 start-page: 4831 issue: 12 year: 2012 ident: 9718_CR23 publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2012.05.010 – start-page: 1062 volume-title: Handbook of research on machine learning innovations and trends year: 2017 ident: 9718_CR5 doi: 10.4018/978-1-5225-2229-4.ch047 – volume: 17 start-page: 279 issue: 02 year: 2008 ident: 9718_CR38 publication-title: Int J Artif Intell Tools doi: 10.1142/S0218213008003893 – volume: 15 start-page: 4 issue: 1 year: 2011 ident: 9718_CR17 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2010.2059031 – volume: 74 start-page: 2581 issue: 6 year: 2018 ident: 9718_CR65 publication-title: J Supercomput doi: 10.1007/s11227-018-2291-z – ident: 9718_CR75 – ident: 9718_CR9 doi: 10.1109/ICCSN.2017.8230156 – volume: 4 start-page: 9400 year: 2016 ident: 9718_CR70 publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2604738 – volume: 1 start-page: 1 issue: 1 year: 2018 ident: 9718_CR46 publication-title: Int J Bio Inspir Comput – volume: 6 start-page: 2515 year: 2018 ident: 9718_CR62 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2783969 – ident: 9718_CR21 doi: 10.1109/MLDS.2017.5 – volume: 8 start-page: 687 issue: 1 year: 2008 ident: 9718_CR31 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.05.007 – volume: 32 start-page: 1 year: 2017 ident: 9718_CR36 publication-title: Water Resour Manag – ident: 9718_CR2 – volume: 20 start-page: 127 issue: 2 year: 2017 ident: 9718_CR39 publication-title: Anim Cogn doi: 10.1007/s10071-016-1064-4 – ident: 9718_CR72 doi: 10.1007/978-3-642-32894-7_27 – volume: 39 start-page: 743 issue: 7 year: 2018 ident: 9718_CR50 publication-title: Int J Ambient Energy doi: 10.1080/01430750.2017.1345010 – volume: 126 start-page: 1 issue: 1 year: 2000 ident: 9718_CR29 publication-title: Eur J Oper Res doi: 10.1016/S0377-2217(99)00435-X – volume: 1 start-page: 35 issue: 25 year: 2010 ident: 9718_CR48 publication-title: Int J Comput Appl – ident: 9718_CR64 – ident: 9718_CR6 doi: 10.1109/ICRCICN.2017.8234517 – volume: 3 start-page: 95 issue: 2 year: 1988 ident: 9718_CR25 publication-title: Mach Learn doi: 10.1023/A:1022602019183 – volume: 2016 start-page: 11 year: 2016 ident: 9718_CR14 publication-title: Discrete Dyn Nat Soc – volume: 8 start-page: 235 issue: 3 year: 2016 ident: 9718_CR28 publication-title: Sustainability doi: 10.3390/su8030235 – volume: 42 start-page: 6350 issue: 17–18 year: 2015 ident: 9718_CR43 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.04.026 – ident: 9718_CR1 doi: 10.1109/AINA.2018.00073 – volume: 6 start-page: 8 issue: 1 year: 2017 ident: 9718_CR77 publication-title: Int J Eng Sci Invent – ident: 9718_CR34 doi: 10.1109/CompComm.2016.7925083 – volume: 173 start-page: 1868 year: 2016 ident: 9718_CR76 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.092 – ident: 9718_CR7 doi: 10.1007/978-3-319-74690-6_6 – volume: 97 start-page: 5691 issue: 4 year: 2017 ident: 9718_CR58 publication-title: Wireless Pers Commun doi: 10.1007/s11277-017-4803-1 – ident: 9718_CR74 – ident: 9718_CR53 doi: 10.1007/978-3-319-61833-3_2 – ident: 9718_CR3 |
| SSID | ssj0005243 |
| Score | 2.4832618 |
| Snippet | Solving a complex optimization problem in a limited timeframe is a tedious task. Conventional gradient-based optimization algorithms have their limitations in... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1737 |
| SubjectTerms | Algorithms Artificial Intelligence Biology Birds Computer Science Distributed generation Feature selection Food Foraging behavior Genetic algorithms Heuristic Heuristic methods Mathematical optimization Mechanical engineering Meta-analysis Optimization Optimization algorithms Poultry Route planning Social networks Unit commitment Variants Vehicle routing |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Global dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RoBKX8mgrtjzkAxJUbcQmthO7F4QQqJcuSFCJm-V4Y6hgs7C7UPXGf-Af8ks6kzgsj8KlpxycOJbnbX8zA7AmrZci1xidaKciwS3KXNvLSMQCudlj_CNs1Wwi63TU8bE-CAduwwCrbHRipai7fUdn5JucqqIotKdy6-Iyoq5RdLsaWmi8gSnybAjS96O98wDiUaPmklRHGFrEIWkmpM6JlEAJBBhC_RzxR4bpqXp-dk9amZ-92f9d-By8C44n2645ZR4minIB3tatKP8swGzT3oEFaX8PHXQp0SSxADVk_ZIRcOOsKNnhbzvosX1UN72Qx8ns-Qn-dXTa-8YsqxNi2AbafXF3c4sP9fkD_NzbPdr5HoX2C5ETmRpFOvVUDR_9lVRlVnnJs0RkMufad71IU627ccF9omV1u9hu5yLxPFc699x57fhHmCz7ZbEILENHKM5VYXEfhM26SnpeCOcKL7yQLm5B3Oy9caE2ObXIODfjqspEL4P0MhW9DG_Bl_tvLurKHK--vU4kNSS2OLOzIfsA10cFsMw2vpWQ75u1YLmhownyPDRV1_OYC8X_OTymcQu-NowyHn55WZ9en20JZhKK7yvM2zJMjgZXxQpMu-vRr-FgtWL2v_TO_yM priority: 102 providerName: ProQuest |
| Title | Recent Studies on Chicken Swarm Optimization algorithm: a review (2014–2018) |
| URI | https://link.springer.com/article/10.1007/s10462-019-09718-3 https://www.proquest.com/docview/2229513483 https://www.proquest.com/docview/3195886395 |
| Volume | 53 |
| WOSCitedRecordID | wos000519571700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals - Owned customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6Vx4FLgQJiKax8QGoRRNrEdmz3BgiEVLGseMPFcrwxRbDZanfbXvsf-g_5JYyzDm-Q6MVRZMdyxp6X_M0MwDI3jrNMoXeirIwYNchzDccjFjM8zQ79H2bKYhOi2ZSnp6oVgsL6Fdq9upIsJfWDYDeWehiBh_igRI3oCIyhupO-YMP-wfEDYMcQK5ekKkKHIg6hMi_P8UgdPRXKz25HS6WzPfl_y52Cj8HIJOvDUzENH_LiE0xWBRxI4OcZaKLRiEqHBDAh6RbEQzOu8oIc_DG9DtlDgdIJkZrEXF90e5eDH51vxJBhyAv5ipqd3fz9hw-5MgtH21uHmztRKLAQWSbkIFKp8_nu0SJJpTDScSoSJnhGlWs7lqZKteOcukTx8v6w0chY4mgmVeaodcrSORgtukU-D0SgqRNnMjcypcyItuSO5sza3DHHuI1rEFd01jZkH_dFMK71fd5kTzCNBNMlwTStwerdNz-HuTfeHP3Fb5_2jIkzWxPiC3B9PsWVXsdRibduRQ0Wqx3WgWP7uqxrHlMm6Yvd1CflwX9TvAZr1Ybfd7--rIX3Df8ME4n36EuU2yKMDnq_8iUYt78Hl_1eHUbEyVkdxja2mq19fPsuImx3G5u-jfewbfHzeskOt1AG-H8 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL0qBQQbCqWIQAEvQICo1czYHttICFVA1SolIFGk7lyPYwOimZQkUHXHP_AffFS_pNczHsKzuy5YzcIey49zX_Z9ANwVNghearROtFOUM4s01w2C8owjmgPaP9zWxSZkv692dvTrOfjexsJEt8qWJ9aMejBy8Y58lcWsKArlqXi6_4nGqlHxdbUtodHAoucPD9BkmzzZfI7ney_P119sP9ugqaoAdVyqKdVFiEneUQwXSloVBJM5l6JkOgwCLwqtB5lnIdeifjTrdkueB1YqXQbmgnYMxz0DZzlTMtJVT9KfXEoaL7280BRNmSwF6aRQPV5EJ4jooITygLJfBOHv4uCPd9la3K0v_G8bdRkuJcWarDWUcAXmfLUI55tSm4eLsNCWryCJm12FPqrMKHJJcqUko4pEx5SPviJvDux4SF4hOx2mOFVi997hKqfvh4-JJU3AD3mAeg0_-voNP-rhErw9lfVdg_lqVPnrQCQqelmpvMV951YOlAjMc-d84IELl3Uga8_auJR7PZYA2TOzrNERHwbxYWp8GNaBRz_-2W8yj5zY-36EkIlsCUd2NkVX4Pxigi-zhr3yqNvLDiy3uDGJX01MXdU9Y1yxvzbPMNWBlRaYs-Z_T-vGyaPdgQsb2y-3zNZmv3cTLubxLqP271uG-en4s78F59yX6YfJ-HZNaAR2Txuwx6UDWTQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dThQxFD5B_Ak3oqhhEbEXGjUyYWfaTlsTQ4i4kWDWTdSEeFM63VYI7CzsLhLufAffxsfxSTyd6bj-cseFV3PRmaadfj0_7XfOAXjAjeesUOidKCsTRg3uubbnCUsZotmj_8NMVWxCdLtyZ0f1ZuBrEwsTaJWNTKwEdX9owxn5Gg1ZUSTqU77mIy2it9lZPzpOQgWpcNPalNOoIbLtzk7RfRs_39rEtX6YZZ2X7168SmKFgcQyISeJyn1I-I4qOZfCSM-pyJjgBVW-71meK9VPHfWZ4tUFWrtdsMzTQqrCU-uVpdjvJbgs0McMdMIe__ATvaRm7GW5StCtSWPATgzbY3kgRASyEuqGhP6iFH9XDX_c0VaqrzP_P_-0G3A9Gtxko94hN2HGlQtwtS7BebYA801ZCxKl3C3ooimNqphEiiUZliQQVg5cSd6emtGAvEExO4jxq8QcfsRZTvYGz4ghdSAQeYz2Dvv2-Qs-5JPb8P5C5ncHZsth6RaBCDQA00I6g2vAjOhL7qlj1jrPPOM2bUHarLu2MSd7KA1yqKfZpANWNGJFV1jRtAVPf3xzVGckOfftRwFOOogr7NmaGHWB4wuJv_QGvpUFm1-0YLnBkI5ybKyrau8pZZL-tXmKrxasNiCdNv97WEvn93YfriFO9eut7vZdmMvCEUdF-1uG2cnoxN2DK_bTZH88Wqn2HIHdi8brdzkxYlg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Studies+on+Chicken+Swarm+Optimization+algorithm%3A+a+review+%282014%E2%80%932018%29&rft.jtitle=The+Artificial+intelligence+review&rft.au=Deb%2C+Sanchari&rft.au=Gao%2C+Xiao-Zhi&rft.au=Tammi%2C+Kari&rft.au=Kalita%2C+Karuna&rft.date=2020-03-01&rft.pub=Springer+Netherlands&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=53&rft.issue=3&rft.spage=1737&rft.epage=1765&rft_id=info:doi/10.1007%2Fs10462-019-09718-3&rft.externalDocID=10_1007_s10462_019_09718_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon |