Recent Studies on Chicken Swarm Optimization algorithm: a review (2014–2018)
Solving a complex optimization problem in a limited timeframe is a tedious task. Conventional gradient-based optimization algorithms have their limitations in solving complex problems such as unit commitment, microgrid planning, vehicle routing, feature selection, and community detection in social n...
Saved in:
| Published in: | The Artificial intelligence review Vol. 53; no. 3; pp. 1737 - 1765 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Netherlands
01.03.2020
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 0269-2821, 1573-7462 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Solving a complex optimization problem in a limited timeframe is a tedious task. Conventional gradient-based optimization algorithms have their limitations in solving complex problems such as unit commitment, microgrid planning, vehicle routing, feature selection, and community detection in social networks. In recent years population-based bio-inspired algorithms have demonstrated competitive performance on a wide range of optimization problems. Chicken Swarm Optimization Algorithm (CSO) is one of such bio-inspired meta-heuristic algorithms mimicking the behaviour of chicken swarm. It is reported in many literature that CSO outperforms a number of well-known meta-heuristics in a wide range of benchmark problems. This paper presents a review of various issues related to CSO like general biology, fundamentals, variants of CSO, performance of CSO, and applications of CSO. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0269-2821 1573-7462 |
| DOI: | 10.1007/s10462-019-09718-3 |