Recent Studies on Chicken Swarm Optimization algorithm: a review (2014–2018)

Solving a complex optimization problem in a limited timeframe is a tedious task. Conventional gradient-based optimization algorithms have their limitations in solving complex problems such as unit commitment, microgrid planning, vehicle routing, feature selection, and community detection in social n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Artificial intelligence review Ročník 53; číslo 3; s. 1737 - 1765
Hlavní autoři: Deb, Sanchari, Gao, Xiao-Zhi, Tammi, Kari, Kalita, Karuna, Mahanta, Pinakeswar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.03.2020
Springer
Springer Nature B.V
Témata:
ISSN:0269-2821, 1573-7462
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Solving a complex optimization problem in a limited timeframe is a tedious task. Conventional gradient-based optimization algorithms have their limitations in solving complex problems such as unit commitment, microgrid planning, vehicle routing, feature selection, and community detection in social networks. In recent years population-based bio-inspired algorithms have demonstrated competitive performance on a wide range of optimization problems. Chicken Swarm Optimization Algorithm (CSO) is one of such bio-inspired meta-heuristic algorithms mimicking the behaviour of chicken swarm. It is reported in many literature that CSO outperforms a number of well-known meta-heuristics in a wide range of benchmark problems. This paper presents a review of various issues related to CSO like general biology, fundamentals, variants of CSO, performance of CSO, and applications of CSO.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0269-2821
1573-7462
DOI:10.1007/s10462-019-09718-3