Radiomics Improves Cancer Screening and Early Detection

Imaging is a key technology in the early detection of cancers, including X-ray mammography, low-dose CT for lung cancer, or optical imaging for skin, esophageal, or colorectal cancers. Historically, imaging information in early detection schema was assessed qualitatively. However, the last decade ha...

Full description

Saved in:
Bibliographic Details
Published in:Cancer epidemiology, biomarkers & prevention Vol. 29; no. 12; p. 2556
Main Authors: Gillies, Robert J, Schabath, Matthew B
Format: Journal Article
Language:English
Published: United States 01.12.2020
Subjects:
ISSN:1538-7755, 1538-7755
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Imaging is a key technology in the early detection of cancers, including X-ray mammography, low-dose CT for lung cancer, or optical imaging for skin, esophageal, or colorectal cancers. Historically, imaging information in early detection schema was assessed qualitatively. However, the last decade has seen increased development of computerized tools that convert images into quantitative mineable data (radiomics), and their subsequent analyses with artificial intelligence (AI). These tools are improving diagnostic accuracy of early lesions to define risk and classify malignant/aggressive from benign/indolent disease. The first section of this review will briefly describe the various imaging modalities and their use as primary or secondary screens in an early detection pipeline. The second section will describe specific use cases to illustrate the breadth of imaging modalities as well as the benefits of quantitative image analytics. These will include optical (skin cancer), X-ray CT (pancreatic and lung cancer), X-ray mammography (breast cancer), multiparametric MRI (breast and prostate cancer), PET (pancreatic cancer), and ultrasound elastography (liver cancer). Finally, we will discuss the inexorable improvements in radiomics to build more robust classifier models and the significant limitations to this development, including access to well-annotated databases, and biological descriptors of the imaged feature data.
AbstractList Imaging is a key technology in the early detection of cancers, including X-ray mammography, low-dose CT for lung cancer, or optical imaging for skin, esophageal, or colorectal cancers. Historically, imaging information in early detection schema was assessed qualitatively. However, the last decade has seen increased development of computerized tools that convert images into quantitative mineable data (radiomics), and their subsequent analyses with artificial intelligence (AI). These tools are improving diagnostic accuracy of early lesions to define risk and classify malignant/aggressive from benign/indolent disease. The first section of this review will briefly describe the various imaging modalities and their use as primary or secondary screens in an early detection pipeline. The second section will describe specific use cases to illustrate the breadth of imaging modalities as well as the benefits of quantitative image analytics. These will include optical (skin cancer), X-ray CT (pancreatic and lung cancer), X-ray mammography (breast cancer), multiparametric MRI (breast and prostate cancer), PET (pancreatic cancer), and ultrasound elastography (liver cancer). Finally, we will discuss the inexorable improvements in radiomics to build more robust classifier models and the significant limitations to this development, including access to well-annotated databases, and biological descriptors of the imaged feature data.
Imaging is a key technology in the early detection of cancers, including X-ray mammography, low-dose CT for lung cancer, or optical imaging for skin, esophageal, or colorectal cancers. Historically, imaging information in early detection schema was assessed qualitatively. However, the last decade has seen increased development of computerized tools that convert images into quantitative mineable data (radiomics), and their subsequent analyses with artificial intelligence (AI). These tools are improving diagnostic accuracy of early lesions to define risk and classify malignant/aggressive from benign/indolent disease. The first section of this review will briefly describe the various imaging modalities and their use as primary or secondary screens in an early detection pipeline. The second section will describe specific use cases to illustrate the breadth of imaging modalities as well as the benefits of quantitative image analytics. These will include optical (skin cancer), X-ray CT (pancreatic and lung cancer), X-ray mammography (breast cancer), multiparametric MRI (breast and prostate cancer), PET (pancreatic cancer), and ultrasound elastography (liver cancer). Finally, we will discuss the inexorable improvements in radiomics to build more robust classifier models and the significant limitations to this development, including access to well-annotated databases, and biological descriptors of the imaged feature data.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."Imaging is a key technology in the early detection of cancers, including X-ray mammography, low-dose CT for lung cancer, or optical imaging for skin, esophageal, or colorectal cancers. Historically, imaging information in early detection schema was assessed qualitatively. However, the last decade has seen increased development of computerized tools that convert images into quantitative mineable data (radiomics), and their subsequent analyses with artificial intelligence (AI). These tools are improving diagnostic accuracy of early lesions to define risk and classify malignant/aggressive from benign/indolent disease. The first section of this review will briefly describe the various imaging modalities and their use as primary or secondary screens in an early detection pipeline. The second section will describe specific use cases to illustrate the breadth of imaging modalities as well as the benefits of quantitative image analytics. These will include optical (skin cancer), X-ray CT (pancreatic and lung cancer), X-ray mammography (breast cancer), multiparametric MRI (breast and prostate cancer), PET (pancreatic cancer), and ultrasound elastography (liver cancer). Finally, we will discuss the inexorable improvements in radiomics to build more robust classifier models and the significant limitations to this development, including access to well-annotated databases, and biological descriptors of the imaged feature data.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Author Schabath, Matthew B
Gillies, Robert J
Author_xml – sequence: 1
  givenname: Robert J
  orcidid: 0000-0002-8888-7747
  surname: Gillies
  fullname: Gillies, Robert J
  email: Robert.Gillies@moffitt.org
  organization: Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
– sequence: 2
  givenname: Matthew B
  orcidid: 0000-0003-3241-3216
  surname: Schabath
  fullname: Schabath, Matthew B
  organization: Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32917666$$D View this record in MEDLINE/PubMed
BookMark eNpNj0tLw0AUhQep2If-BCVLN1Pn_VhKrVooKD7W4WZyK5FkUjNJof_eihVcnbP4-DhnSkaxjUjIJWdzzrW74Uxr6r3R8-XzigpGGbP6hEy4lo5aq_XoXx-TaUqf7IB4rc_IWArPrTFmQuwLlFXbVCFlq2bbtTtM2QJiwC57DR1irOJHBrHMltDV--wOewx91cZzcrqBOuHFMWfk_X75tnik66eH1eJ2TYOyrqeaC3QKvd04kA6clDxYCMaXCjRKEEwKo7AojCh5iWCZsqwogtUOvAxMzMj1r_ew7WvA1OdNlQLWNURsh5QLpYTgQvkf9OqIDkWDZb7tqga6ff53VnwD9XJX9Q
CitedBy_id crossref_primary_10_1016_j_jss_2021_07_005
crossref_primary_10_3390_diagnostics14141477
crossref_primary_10_1155_2023_6057196
crossref_primary_10_1177_20552076241300229
crossref_primary_10_1007_s00066_021_01886_y
crossref_primary_10_1186_s12967_023_04175_7
crossref_primary_10_1053_j_gastro_2022_03_024
crossref_primary_10_1007_s00405_023_07909_x
crossref_primary_10_3389_fonc_2020_594580
crossref_primary_10_1053_j_ro_2024_11_004
crossref_primary_10_1016_j_acra_2021_09_025
crossref_primary_10_1016_j_neo_2025_101129
crossref_primary_10_1097_MOU_0000000000000884
crossref_primary_10_3389_fonc_2021_694102
crossref_primary_10_3892_ol_2025_15229
crossref_primary_10_1038_s41388_023_02826_z
crossref_primary_10_1111_eci_14075
crossref_primary_10_5114_bta_2024_141807
crossref_primary_10_1117_1_JBO_29_8_086001
crossref_primary_10_3390_cancers16132321
crossref_primary_10_1002_sdtp_18954
crossref_primary_10_1177_02841851241242042
crossref_primary_10_4103_jmp_jmp_12_25
crossref_primary_10_3390_jmp6030020
crossref_primary_10_1016_j_cmpbup_2025_100210
crossref_primary_10_1007_s12312_024_01374_1
crossref_primary_10_1007_s10278_024_01122_w
crossref_primary_10_3390_info15090533
crossref_primary_10_1016_j_ejrad_2025_112225
crossref_primary_10_1007_s11307_022_01781_7
crossref_primary_10_1016_j_nut_2023_112336
crossref_primary_10_1148_radiol_232554
crossref_primary_10_1186_s12967_025_06655_4
crossref_primary_10_3390_biom12121839
crossref_primary_10_1158_2159_8290_CD_24_0604
crossref_primary_10_3390_diagnostics13050941
crossref_primary_10_3390_cancers13194740
crossref_primary_10_3233_HAB_200436
crossref_primary_10_3390_biomedicines12102278
crossref_primary_10_3390_diagnostics12123111
crossref_primary_10_1038_s41598_023_37723_8
crossref_primary_10_1007_s00261_023_03965_3
crossref_primary_10_1080_15592294_2022_2108082
crossref_primary_10_3390_bioengineering12010080
crossref_primary_10_1016_j_bpg_2025_101997
crossref_primary_10_7759_cureus_54656
crossref_primary_10_1007_s10278_022_00753_1
crossref_primary_10_1186_s12967_024_05379_1
crossref_primary_10_3390_diagnostics14020174
crossref_primary_10_1088_1361_6560_aca388
crossref_primary_10_12688_f1000research_129084_1
crossref_primary_10_1007_s10278_023_00836_7
crossref_primary_10_1007_s44174_024_00212_1
crossref_primary_10_1016_j_ejmp_2022_04_008
crossref_primary_10_3389_fonc_2023_1142976
crossref_primary_10_3389_fonc_2023_1197447
crossref_primary_10_3390_bioengineering10070828
crossref_primary_10_1002_acm2_13869
crossref_primary_10_3390_ijms22189971
crossref_primary_10_1002_mp_17710
crossref_primary_10_1053_j_ro_2025_04_002
crossref_primary_10_3390_gidisord6040060
crossref_primary_10_1177_17562872221109020
crossref_primary_10_1155_2021_7462012
crossref_primary_10_3389_fonc_2024_1421425
crossref_primary_10_7759_cureus_82085
crossref_primary_10_3390_cancers17050882
crossref_primary_10_1007_s00330_021_08526_0
crossref_primary_10_1002_VIW_20230032
crossref_primary_10_1089_aipo_2024_0032
crossref_primary_10_14309_ctg_0000000000000548
crossref_primary_10_3390_cancers13235921
crossref_primary_10_3390_cancers14194826
crossref_primary_10_1016_j_acra_2021_08_013
crossref_primary_10_1007_s10278_023_00905_x
crossref_primary_10_1016_j_acra_2023_03_034
crossref_primary_10_1111_nep_14376
crossref_primary_10_1007_s12194_024_00842_6
crossref_primary_10_3389_fonc_2022_1035307
crossref_primary_10_3390_cancers13050945
crossref_primary_10_1186_s12880_024_01413_2
crossref_primary_10_1038_s41591_025_03785_6
crossref_primary_10_1142_S0218001425400014
crossref_primary_10_1016_j_rcl_2024_03_008
crossref_primary_10_3390_cancers15184437
crossref_primary_10_1007_s12032_025_02775_5
crossref_primary_10_3390_diagnostics13213380
crossref_primary_10_1016_j_diii_2022_11_007
crossref_primary_10_3390_diagnostics11040594
crossref_primary_10_1007_s11547_024_01904_w
crossref_primary_10_1148_ryai_230437
crossref_primary_10_1016_j_acra_2023_08_040
crossref_primary_10_1016_j_csbj_2023_11_016
crossref_primary_10_3390_cells12010114
crossref_primary_10_3390_cancers15123142
crossref_primary_10_1016_j_jtho_2021_10_001
crossref_primary_10_1016_j_ijbiomac_2025_140451
ContentType Journal Article
Copyright 2020 American Association for Cancer Research.
Copyright_xml – notice: 2020 American Association for Cancer Research.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1158/1055-9965.EPI-20-0075
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7755
ExternalDocumentID 32917666
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U01 CA143062
– fundername: NCI NIH HHS
  grantid: U01 CA186145
– fundername: NCI NIH HHS
  grantid: U01 CA200464
GroupedDBID ---
.55
18M
29B
2FS
2WC
34G
39C
3O-
53G
5GY
5VS
6J9
AAFWJ
ABOCM
ACPRK
ADBBV
ADCOW
AENEX
AFHIN
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
BR6
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
H13
H~9
IH2
KQ8
L7B
NPM
OK1
P2P
PQQKQ
QTD
RCR
RHI
SJN
UDS
VH1
W8F
WHG
WOQ
X7M
ZXP
7X8
ID FETCH-LOGICAL-c478t-512e84e97f8a38a8331c7ac69d4a5e3a203264ebb62d1dea70470bbc758a93c02
IEDL.DBID 7X8
ISICitedReferencesCount 109
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000601401800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1538-7755
IngestDate Fri Jul 11 07:55:31 EDT 2025
Fri Aug 01 03:41:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License 2020 American Association for Cancer Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-512e84e97f8a38a8331c7ac69d4a5e3a203264ebb62d1dea70470bbc758a93c02
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3241-3216
0000-0002-8888-7747
OpenAccessLink https://aacrjournals.org/cebp/article-pdf/29/12/2556/1948353/2556.pdf
PMID 32917666
PQID 2442212490
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2442212490
pubmed_primary_32917666
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer epidemiology, biomarkers & prevention
PublicationTitleAlternate Cancer Epidemiol Biomarkers Prev
PublicationYear 2020
SSID ssj0007955
Score 2.631977
SecondaryResourceType review_article
Snippet Imaging is a key technology in the early detection of cancers, including X-ray mammography, low-dose CT for lung cancer, or optical imaging for skin,...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2556
SubjectTerms Early Detection of Cancer - methods
Female
Humans
Male
Neoplasms - radiotherapy
Radiometry - methods
Title Radiomics Improves Cancer Screening and Early Detection
URI https://www.ncbi.nlm.nih.gov/pubmed/32917666
https://www.proquest.com/docview/2442212490
Volume 29
WOSCitedRecordID wos000601401800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qRbz4ftQXK3iN3d28TyK1RQ8txQf0VrJ5QC_b2q3-fjPZLT0JgpfcFsLsJN9k5pv5ELojjBLuNbAbrMLU0wKDnBUmRPtcpNZzWotNiOFQjsdq1CTcqoZWuboT40VtZwZy5J0AQ3kOSsnpw_wTg2oUVFcbCY1N1CIhlAFKlxivp4ULFVVP46EWgrGmgydjsgO6kDjE-uy-N3oJroIBO3-PMiPa9Pf_u88DtNfEmclj7RiHaMOVR2hn0FTSj5F41XYKHclVUucVXJV0wQMWyZsBLk6AtESXNokTkJMnt4ycrfIEffR7791n3IgoYEOFXOIA6E5Sp4SXmkgtCcmM0IYrSzVzRIOCOqeuKHhuM-u0SKlIi8KEd4RWxKT5KdoqZ6U7R4mVnkDXQsF9Rh0LPshNVhQpUcwSInQb3a5MMglOCpUHXbrZVzVZG6WNzmq7Tub1NI0JyRUMqeQXf_j6Eu3m8N6NdJIr1PLhiLprtG2-l9NqcRP_fliHo8EPmhq2Yg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiomics+Improves+Cancer+Screening+and+Early+Detection&rft.jtitle=Cancer+epidemiology%2C+biomarkers+%26+prevention&rft.au=Gillies%2C+Robert+J&rft.au=Schabath%2C+Matthew+B&rft.date=2020-12-01&rft.eissn=1538-7755&rft.volume=29&rft.issue=12&rft.spage=2556&rft_id=info:doi/10.1158%2F1055-9965.EPI-20-0075&rft_id=info%3Apmid%2F32917666&rft_id=info%3Apmid%2F32917666&rft.externalDocID=32917666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-7755&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-7755&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-7755&client=summon