Radiomics Improves Cancer Screening and Early Detection
Imaging is a key technology in the early detection of cancers, including X-ray mammography, low-dose CT for lung cancer, or optical imaging for skin, esophageal, or colorectal cancers. Historically, imaging information in early detection schema was assessed qualitatively. However, the last decade ha...
Saved in:
| Published in: | Cancer epidemiology, biomarkers & prevention Vol. 29; no. 12; p. 2556 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.12.2020
|
| Subjects: | |
| ISSN: | 1538-7755, 1538-7755 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Imaging is a key technology in the early detection of cancers, including X-ray mammography, low-dose CT for lung cancer, or optical imaging for skin, esophageal, or colorectal cancers. Historically, imaging information in early detection schema was assessed qualitatively. However, the last decade has seen increased development of computerized tools that convert images into quantitative mineable data (radiomics), and their subsequent analyses with artificial intelligence (AI). These tools are improving diagnostic accuracy of early lesions to define risk and classify malignant/aggressive from benign/indolent disease. The first section of this review will briefly describe the various imaging modalities and their use as primary or secondary screens in an early detection pipeline. The second section will describe specific use cases to illustrate the breadth of imaging modalities as well as the benefits of quantitative image analytics. These will include optical (skin cancer), X-ray CT (pancreatic and lung cancer), X-ray mammography (breast cancer), multiparametric MRI (breast and prostate cancer), PET (pancreatic cancer), and ultrasound elastography (liver cancer). Finally, we will discuss the inexorable improvements in radiomics to build more robust classifier models and the significant limitations to this development, including access to well-annotated databases, and biological descriptors of the imaged feature data. |
|---|---|
| AbstractList | Imaging is a key technology in the early detection of cancers, including X-ray mammography, low-dose CT for lung cancer, or optical imaging for skin, esophageal, or colorectal cancers. Historically, imaging information in early detection schema was assessed qualitatively. However, the last decade has seen increased development of computerized tools that convert images into quantitative mineable data (radiomics), and their subsequent analyses with artificial intelligence (AI). These tools are improving diagnostic accuracy of early lesions to define risk and classify malignant/aggressive from benign/indolent disease. The first section of this review will briefly describe the various imaging modalities and their use as primary or secondary screens in an early detection pipeline. The second section will describe specific use cases to illustrate the breadth of imaging modalities as well as the benefits of quantitative image analytics. These will include optical (skin cancer), X-ray CT (pancreatic and lung cancer), X-ray mammography (breast cancer), multiparametric MRI (breast and prostate cancer), PET (pancreatic cancer), and ultrasound elastography (liver cancer). Finally, we will discuss the inexorable improvements in radiomics to build more robust classifier models and the significant limitations to this development, including access to well-annotated databases, and biological descriptors of the imaged feature data. Imaging is a key technology in the early detection of cancers, including X-ray mammography, low-dose CT for lung cancer, or optical imaging for skin, esophageal, or colorectal cancers. Historically, imaging information in early detection schema was assessed qualitatively. However, the last decade has seen increased development of computerized tools that convert images into quantitative mineable data (radiomics), and their subsequent analyses with artificial intelligence (AI). These tools are improving diagnostic accuracy of early lesions to define risk and classify malignant/aggressive from benign/indolent disease. The first section of this review will briefly describe the various imaging modalities and their use as primary or secondary screens in an early detection pipeline. The second section will describe specific use cases to illustrate the breadth of imaging modalities as well as the benefits of quantitative image analytics. These will include optical (skin cancer), X-ray CT (pancreatic and lung cancer), X-ray mammography (breast cancer), multiparametric MRI (breast and prostate cancer), PET (pancreatic cancer), and ultrasound elastography (liver cancer). Finally, we will discuss the inexorable improvements in radiomics to build more robust classifier models and the significant limitations to this development, including access to well-annotated databases, and biological descriptors of the imaged feature data.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."Imaging is a key technology in the early detection of cancers, including X-ray mammography, low-dose CT for lung cancer, or optical imaging for skin, esophageal, or colorectal cancers. Historically, imaging information in early detection schema was assessed qualitatively. However, the last decade has seen increased development of computerized tools that convert images into quantitative mineable data (radiomics), and their subsequent analyses with artificial intelligence (AI). These tools are improving diagnostic accuracy of early lesions to define risk and classify malignant/aggressive from benign/indolent disease. The first section of this review will briefly describe the various imaging modalities and their use as primary or secondary screens in an early detection pipeline. The second section will describe specific use cases to illustrate the breadth of imaging modalities as well as the benefits of quantitative image analytics. These will include optical (skin cancer), X-ray CT (pancreatic and lung cancer), X-ray mammography (breast cancer), multiparametric MRI (breast and prostate cancer), PET (pancreatic cancer), and ultrasound elastography (liver cancer). Finally, we will discuss the inexorable improvements in radiomics to build more robust classifier models and the significant limitations to this development, including access to well-annotated databases, and biological descriptors of the imaged feature data.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible." |
| Author | Schabath, Matthew B Gillies, Robert J |
| Author_xml | – sequence: 1 givenname: Robert J orcidid: 0000-0002-8888-7747 surname: Gillies fullname: Gillies, Robert J email: Robert.Gillies@moffitt.org organization: Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida – sequence: 2 givenname: Matthew B orcidid: 0000-0003-3241-3216 surname: Schabath fullname: Schabath, Matthew B organization: Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32917666$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj0tLw0AUhQep2If-BCVLN1Pn_VhKrVooKD7W4WZyK5FkUjNJof_eihVcnbP4-DhnSkaxjUjIJWdzzrW74Uxr6r3R8-XzigpGGbP6hEy4lo5aq_XoXx-TaUqf7IB4rc_IWArPrTFmQuwLlFXbVCFlq2bbtTtM2QJiwC57DR1irOJHBrHMltDV--wOewx91cZzcrqBOuHFMWfk_X75tnik66eH1eJ2TYOyrqeaC3QKvd04kA6clDxYCMaXCjRKEEwKo7AojCh5iWCZsqwogtUOvAxMzMj1r_ew7WvA1OdNlQLWNURsh5QLpYTgQvkf9OqIDkWDZb7tqga6ff53VnwD9XJX9Q |
| CitedBy_id | crossref_primary_10_1016_j_jss_2021_07_005 crossref_primary_10_3390_diagnostics14141477 crossref_primary_10_1155_2023_6057196 crossref_primary_10_1177_20552076241300229 crossref_primary_10_1007_s00066_021_01886_y crossref_primary_10_1186_s12967_023_04175_7 crossref_primary_10_1053_j_gastro_2022_03_024 crossref_primary_10_1007_s00405_023_07909_x crossref_primary_10_3389_fonc_2020_594580 crossref_primary_10_1053_j_ro_2024_11_004 crossref_primary_10_1016_j_acra_2021_09_025 crossref_primary_10_1016_j_neo_2025_101129 crossref_primary_10_1097_MOU_0000000000000884 crossref_primary_10_3389_fonc_2021_694102 crossref_primary_10_3892_ol_2025_15229 crossref_primary_10_1038_s41388_023_02826_z crossref_primary_10_1111_eci_14075 crossref_primary_10_5114_bta_2024_141807 crossref_primary_10_1117_1_JBO_29_8_086001 crossref_primary_10_3390_cancers16132321 crossref_primary_10_1002_sdtp_18954 crossref_primary_10_1177_02841851241242042 crossref_primary_10_4103_jmp_jmp_12_25 crossref_primary_10_3390_jmp6030020 crossref_primary_10_1016_j_cmpbup_2025_100210 crossref_primary_10_1007_s12312_024_01374_1 crossref_primary_10_1007_s10278_024_01122_w crossref_primary_10_3390_info15090533 crossref_primary_10_1016_j_ejrad_2025_112225 crossref_primary_10_1007_s11307_022_01781_7 crossref_primary_10_1016_j_nut_2023_112336 crossref_primary_10_1148_radiol_232554 crossref_primary_10_1186_s12967_025_06655_4 crossref_primary_10_3390_biom12121839 crossref_primary_10_1158_2159_8290_CD_24_0604 crossref_primary_10_3390_diagnostics13050941 crossref_primary_10_3390_cancers13194740 crossref_primary_10_3233_HAB_200436 crossref_primary_10_3390_biomedicines12102278 crossref_primary_10_3390_diagnostics12123111 crossref_primary_10_1038_s41598_023_37723_8 crossref_primary_10_1007_s00261_023_03965_3 crossref_primary_10_1080_15592294_2022_2108082 crossref_primary_10_3390_bioengineering12010080 crossref_primary_10_1016_j_bpg_2025_101997 crossref_primary_10_7759_cureus_54656 crossref_primary_10_1007_s10278_022_00753_1 crossref_primary_10_1186_s12967_024_05379_1 crossref_primary_10_3390_diagnostics14020174 crossref_primary_10_1088_1361_6560_aca388 crossref_primary_10_12688_f1000research_129084_1 crossref_primary_10_1007_s10278_023_00836_7 crossref_primary_10_1007_s44174_024_00212_1 crossref_primary_10_1016_j_ejmp_2022_04_008 crossref_primary_10_3389_fonc_2023_1142976 crossref_primary_10_3389_fonc_2023_1197447 crossref_primary_10_3390_bioengineering10070828 crossref_primary_10_1002_acm2_13869 crossref_primary_10_3390_ijms22189971 crossref_primary_10_1002_mp_17710 crossref_primary_10_1053_j_ro_2025_04_002 crossref_primary_10_3390_gidisord6040060 crossref_primary_10_1177_17562872221109020 crossref_primary_10_1155_2021_7462012 crossref_primary_10_3389_fonc_2024_1421425 crossref_primary_10_7759_cureus_82085 crossref_primary_10_3390_cancers17050882 crossref_primary_10_1007_s00330_021_08526_0 crossref_primary_10_1002_VIW_20230032 crossref_primary_10_1089_aipo_2024_0032 crossref_primary_10_14309_ctg_0000000000000548 crossref_primary_10_3390_cancers13235921 crossref_primary_10_3390_cancers14194826 crossref_primary_10_1016_j_acra_2021_08_013 crossref_primary_10_1007_s10278_023_00905_x crossref_primary_10_1016_j_acra_2023_03_034 crossref_primary_10_1111_nep_14376 crossref_primary_10_1007_s12194_024_00842_6 crossref_primary_10_3389_fonc_2022_1035307 crossref_primary_10_3390_cancers13050945 crossref_primary_10_1186_s12880_024_01413_2 crossref_primary_10_1038_s41591_025_03785_6 crossref_primary_10_1142_S0218001425400014 crossref_primary_10_1016_j_rcl_2024_03_008 crossref_primary_10_3390_cancers15184437 crossref_primary_10_1007_s12032_025_02775_5 crossref_primary_10_3390_diagnostics13213380 crossref_primary_10_1016_j_diii_2022_11_007 crossref_primary_10_3390_diagnostics11040594 crossref_primary_10_1007_s11547_024_01904_w crossref_primary_10_1148_ryai_230437 crossref_primary_10_1016_j_acra_2023_08_040 crossref_primary_10_1016_j_csbj_2023_11_016 crossref_primary_10_3390_cells12010114 crossref_primary_10_3390_cancers15123142 crossref_primary_10_1016_j_jtho_2021_10_001 crossref_primary_10_1016_j_ijbiomac_2025_140451 |
| ContentType | Journal Article |
| Copyright | 2020 American Association for Cancer Research. |
| Copyright_xml | – notice: 2020 American Association for Cancer Research. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1158/1055-9965.EPI-20-0075 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1538-7755 |
| ExternalDocumentID | 32917666 |
| Genre | Journal Article Review Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: U01 CA143062 – fundername: NCI NIH HHS grantid: U01 CA186145 – fundername: NCI NIH HHS grantid: U01 CA200464 |
| GroupedDBID | --- .55 18M 29B 2FS 2WC 34G 39C 3O- 53G 5GY 5VS 6J9 AAFWJ ABOCM ACPRK ADBBV ADCOW AENEX AFHIN AFRAH AI. ALMA_UNASSIGNED_HOLDINGS BR6 BTFSW C1A CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P FRP H13 H~9 IH2 KQ8 L7B NPM OK1 P2P PQQKQ QTD RCR RHI SJN UDS VH1 W8F WHG WOQ X7M ZXP 7X8 |
| ID | FETCH-LOGICAL-c478t-512e84e97f8a38a8331c7ac69d4a5e3a203264ebb62d1dea70470bbc758a93c02 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 109 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000601401800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1538-7755 |
| IngestDate | Fri Jul 11 07:55:31 EDT 2025 Fri Aug 01 03:41:29 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | 2020 American Association for Cancer Research. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-512e84e97f8a38a8331c7ac69d4a5e3a203264ebb62d1dea70470bbc758a93c02 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-3241-3216 0000-0002-8888-7747 |
| OpenAccessLink | https://aacrjournals.org/cebp/article-pdf/29/12/2556/1948353/2556.pdf |
| PMID | 32917666 |
| PQID | 2442212490 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2442212490 pubmed_primary_32917666 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cancer epidemiology, biomarkers & prevention |
| PublicationTitleAlternate | Cancer Epidemiol Biomarkers Prev |
| PublicationYear | 2020 |
| SSID | ssj0007955 |
| Score | 2.631977 |
| SecondaryResourceType | review_article |
| Snippet | Imaging is a key technology in the early detection of cancers, including X-ray mammography, low-dose CT for lung cancer, or optical imaging for skin,... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2556 |
| SubjectTerms | Early Detection of Cancer - methods Female Humans Male Neoplasms - radiotherapy Radiometry - methods |
| Title | Radiomics Improves Cancer Screening and Early Detection |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32917666 https://www.proquest.com/docview/2442212490 |
| Volume | 29 |
| WOSCitedRecordID | wos000601401800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qRbz4ftQXK3iN3d28TyK1RQ8txQf0VrJ5QC_b2q3-fjPZLT0JgpfcFsLsJN9k5pv5ELojjBLuNbAbrMLU0wKDnBUmRPtcpNZzWotNiOFQjsdq1CTcqoZWuboT40VtZwZy5J0AQ3kOSsnpw_wTg2oUVFcbCY1N1CIhlAFKlxivp4ULFVVP46EWgrGmgydjsgO6kDjE-uy-N3oJroIBO3-PMiPa9Pf_u88DtNfEmclj7RiHaMOVR2hn0FTSj5F41XYKHclVUucVXJV0wQMWyZsBLk6AtESXNokTkJMnt4ycrfIEffR7791n3IgoYEOFXOIA6E5Sp4SXmkgtCcmM0IYrSzVzRIOCOqeuKHhuM-u0SKlIi8KEd4RWxKT5KdoqZ6U7R4mVnkDXQsF9Rh0LPshNVhQpUcwSInQb3a5MMglOCpUHXbrZVzVZG6WNzmq7Tub1NI0JyRUMqeQXf_j6Eu3m8N6NdJIr1PLhiLprtG2-l9NqcRP_fliHo8EPmhq2Yg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiomics+Improves+Cancer+Screening+and+Early+Detection&rft.jtitle=Cancer+epidemiology%2C+biomarkers+%26+prevention&rft.au=Gillies%2C+Robert+J&rft.au=Schabath%2C+Matthew+B&rft.date=2020-12-01&rft.eissn=1538-7755&rft.volume=29&rft.issue=12&rft.spage=2556&rft_id=info:doi/10.1158%2F1055-9965.EPI-20-0075&rft_id=info%3Apmid%2F32917666&rft_id=info%3Apmid%2F32917666&rft.externalDocID=32917666 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-7755&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-7755&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-7755&client=summon |