Nse5/6 is a negative regulator of the ATPase activity of the Smc5/6 complex

Abstract The multi-component Smc5/6 complex plays a critical role in the resolution of recombination intermediates formed during mitosis and meiosis, and in the cellular response to replication stress. Using recombinant proteins, we have reconstituted a series of defined Saccharomyces cerevisiae Smc...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research Vol. 49; no. 8; pp. 4534 - 4549
Main Authors: Hallett, Stephen T, Schellenberger, Pascale, Zhou, Lihong, Beuron, Fabienne, Morris, Ed, Murray, Johanne M, Oliver, Antony W
Format: Journal Article
Language:English
Published: England Oxford University Press 07.05.2021
Subjects:
ISSN:0305-1048, 1362-4962, 1362-4962
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Abstract The multi-component Smc5/6 complex plays a critical role in the resolution of recombination intermediates formed during mitosis and meiosis, and in the cellular response to replication stress. Using recombinant proteins, we have reconstituted a series of defined Saccharomyces cerevisiae Smc5/6 complexes, visualised them by negative stain electron microscopy, and tested their ability to function as an ATPase. We find that only the six protein ‘holo-complex’ is capable of turning over ATP and that its activity is significantly increased by the addition of double-stranded DNA to reaction mixes. Furthermore, stimulation is wholly dependent on functional ATP-binding pockets in both Smc5 and Smc6. Importantly, we demonstrate that budding yeast Nse5/6 acts as a negative regulator of Smc5/6 ATPase activity, binding to the head-end of the complex to suppress turnover, irrespective of the DNA-bound status of the complex.
AbstractList The multi-component Smc5/6 complex plays a critical role in the resolution of recombination intermediates formed during mitosis and meiosis, and in the cellular response to replication stress. Using recombinant proteins, we have reconstituted a series of defined Saccharomyces cerevisiae Smc5/6 complexes, visualised them by negative stain electron microscopy, and tested their ability to function as an ATPase. We find that only the six protein ‘holo-complex’ is capable of turning over ATP and that its activity is significantly increased by the addition of double-stranded DNA to reaction mixes. Furthermore, stimulation is wholly dependent on functional ATP-binding pockets in both Smc5 and Smc6. Importantly, we demonstrate that budding yeast Nse5/6 acts as a negative regulator of Smc5/6 ATPase activity, binding to the head-end of the complex to suppress turnover, irrespective of the DNA-bound status of the complex.
Abstract The multi-component Smc5/6 complex plays a critical role in the resolution of recombination intermediates formed during mitosis and meiosis, and in the cellular response to replication stress. Using recombinant proteins, we have reconstituted a series of defined Saccharomyces cerevisiae Smc5/6 complexes, visualised them by negative stain electron microscopy, and tested their ability to function as an ATPase. We find that only the six protein ‘holo-complex’ is capable of turning over ATP and that its activity is significantly increased by the addition of double-stranded DNA to reaction mixes. Furthermore, stimulation is wholly dependent on functional ATP-binding pockets in both Smc5 and Smc6. Importantly, we demonstrate that budding yeast Nse5/6 acts as a negative regulator of Smc5/6 ATPase activity, binding to the head-end of the complex to suppress turnover, irrespective of the DNA-bound status of the complex.
The multi-component Smc5/6 complex plays a critical role in the resolution of recombination intermediates formed during mitosis and meiosis, and in the cellular response to replication stress. Using recombinant proteins, we have reconstituted a series of defined Saccharomyces cerevisiae Smc5/6 complexes, visualised them by negative stain electron microscopy, and tested their ability to function as an ATPase. We find that only the six protein 'holo-complex' is capable of turning over ATP and that its activity is significantly increased by the addition of double-stranded DNA to reaction mixes. Furthermore, stimulation is wholly dependent on functional ATP-binding pockets in both Smc5 and Smc6. Importantly, we demonstrate that budding yeast Nse5/6 acts as a negative regulator of Smc5/6 ATPase activity, binding to the head-end of the complex to suppress turnover, irrespective of the DNA-bound status of the complex.The multi-component Smc5/6 complex plays a critical role in the resolution of recombination intermediates formed during mitosis and meiosis, and in the cellular response to replication stress. Using recombinant proteins, we have reconstituted a series of defined Saccharomyces cerevisiae Smc5/6 complexes, visualised them by negative stain electron microscopy, and tested their ability to function as an ATPase. We find that only the six protein 'holo-complex' is capable of turning over ATP and that its activity is significantly increased by the addition of double-stranded DNA to reaction mixes. Furthermore, stimulation is wholly dependent on functional ATP-binding pockets in both Smc5 and Smc6. Importantly, we demonstrate that budding yeast Nse5/6 acts as a negative regulator of Smc5/6 ATPase activity, binding to the head-end of the complex to suppress turnover, irrespective of the DNA-bound status of the complex.
Author Hallett, Stephen T
Schellenberger, Pascale
Zhou, Lihong
Morris, Ed
Oliver, Antony W
Beuron, Fabienne
Murray, Johanne M
Author_xml – sequence: 1
  givenname: Stephen T
  orcidid: 0000-0003-3189-3828
  surname: Hallett
  fullname: Hallett, Stephen T
– sequence: 2
  givenname: Pascale
  orcidid: 0000-0002-3719-3120
  surname: Schellenberger
  fullname: Schellenberger, Pascale
– sequence: 3
  givenname: Lihong
  orcidid: 0000-0002-8452-4332
  surname: Zhou
  fullname: Zhou, Lihong
– sequence: 4
  givenname: Fabienne
  orcidid: 0000-0003-1513-6181
  surname: Beuron
  fullname: Beuron, Fabienne
– sequence: 5
  givenname: Ed
  orcidid: 0000-0003-3544-0041
  surname: Morris
  fullname: Morris, Ed
– sequence: 6
  givenname: Johanne M
  orcidid: 0000-0001-9225-6289
  surname: Murray
  fullname: Murray, Johanne M
  email: j.m.murray@sussex.ac.uk
– sequence: 7
  givenname: Antony W
  orcidid: 0000-0002-2912-8273
  surname: Oliver
  fullname: Oliver, Antony W
  email: antony.oliver@sussex.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33849072$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1L3EAUxYei1PXjqe8lTyJI3PnO5EUQqR8orVD7PNzM3qzTJpl1JpH635tld8VK8Wlg7u-cA-fskq0udEjIF0ZPGC3FtIM4nf-Bigv5iUyY0DyXpeZbZEIFVTmj0uyQ3ZR-U8okU_Iz2RHCyJIWfEJuvidUU535lEHW4Rx6_4RZxPnQQB9iFuqsf8Ds7P4OEmbgxrPvnzffP1u3FLvQLhr8u0-2a2gSHqzfPfLr4tv9-VV---Py-vzsNneyMH0uqwIEAzRcmRK0BgcK5azQojQoUSMHqRXWoqwM1UazYoa64JVStKoVaLFHTle-i6Fqceaw6yM0dhF9C_HZBvD230vnH-w8PFlDx15EORocrQ1ieBww9bb1yWHTQIdhSJYrxgvJGWMj-vVt1mvIpsERYCvAxZBSxNo6348thmW0byyjdrmSHVey65VGzfE7zcb2__Thig7D4kPwBVYDoP0
CitedBy_id crossref_primary_10_1038_s41594_023_00956_2
crossref_primary_10_1038_s41580_023_00609_8
crossref_primary_10_1007_s00018_024_05275_3
crossref_primary_10_7554_eLife_79676
crossref_primary_10_1038_s41467_022_34928_9
crossref_primary_10_1038_s41586_023_05963_3
crossref_primary_10_1038_s41594_024_01319_1
crossref_primary_10_1038_s41467_022_34349_8
crossref_primary_10_1073_pnas_2310924120
crossref_primary_10_1016_j_sbi_2023_102598
crossref_primary_10_1038_s41594_023_01015_6
crossref_primary_10_1093_nar_gkae831
crossref_primary_10_1093_nar_gkae103
crossref_primary_10_1093_nar_gkae499
crossref_primary_10_1073_pnas_2202799119
crossref_primary_10_1111_tpj_16282
crossref_primary_10_15252_embj_2021107807
crossref_primary_10_1093_nar_gkac692
Cites_doi 10.1038/ncomms14011
10.1038/emboj.2008.220
10.1016/j.molcel.2020.11.012
10.1128/MCB.00767-07
10.1016/j.molcel.2020.11.011
10.1038/emboj.2009.413
10.7554/eLife.42166
10.1016/j.molcel.2019.03.037
10.1016/S1097-2765(02)00515-4
10.1016/j.jmb.2020.04.024
10.1093/nar/gkq038
10.1016/S1097-2765(03)00476-3
10.1016/j.celrep.2016.08.026
10.1128/MCB.26.5.1617-1630.2006
10.1016/j.molcel.2006.05.014
10.1126/science.1253671
10.1016/S0092-8674(00)80524-3
10.1074/jbc.M111.336263
10.1016/j.molcel.2019.09.020
10.1016/j.jsb.2012.09.006
10.1016/j.molcel.2019.05.035
10.1016/j.molcel.2020.07.013
10.1096/fj.201800899R
10.26508/lsa.201800143
10.1128/MCB.00271-18
10.1016/j.molcel.2020.04.026
10.1073/pnas.1604935113
10.1074/jbc.M809139200
10.1016/j.celrep.2015.07.048
10.1038/emboj.2010.315
10.1042/BST20200389
10.1093/emboj/19.7.1691
10.1083/jcb.200111002
10.1128/JVI.00356-18
10.7554/eLife.59560
10.1016/j.molcel.2018.05.022
10.3390/genes10010007
10.1002/jcc.20084
10.1016/j.molcel.2009.06.032
10.1038/s41594-019-0196-z
10.1007/s00294-018-0922-9
10.3390/genes9010036
10.1038/nrm.2016.30
10.1074/jbc.M608004200
10.1016/j.molcel.2017.01.026
10.1172/JCI73264
10.1107/S1744309109027900
10.1128/JVI.00825-18
10.1172/JCI82890
10.1126/science.abb0981
10.1038/nature17170
10.1074/jbc.M111.235200
10.1074/jbc.M111.311860
10.1074/jbc.M301004200
10.7554/eLife.68579.sa2
10.3390/antib3020182
10.1534/genetics.105.044966
10.1021/cb800025k
10.3390/pathogens9100786
10.1091/mbc.10.9.2905
10.1007/978-1-4939-2272-7_12
10.1038/nature12867
10.1016/j.molcel.2010.06.019
10.1016/j.cub.2018.08.034
10.3390/genes9120581
10.1146/annurev-genet-120417-031353
10.1038/s41594-020-0457-x
10.1093/nar/gkv1021
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021
The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021
– notice: The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkab234
DatabaseName Oxford Academic Journals (Open Access)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 4549
ExternalDocumentID PMC8096239
33849072
10_1093_nar_gkab234
10.1093/nar/gkab234
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/P018955/1
– fundername: Medical Research Council
  grantid: G1001668
– fundername: ;
  grantid: MR/P018955/1
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
6.Y
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABXVV
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACMRT
ACNCT
ACPQN
ACPRK
ACUTJ
ACZBC
ADBBV
ADHZD
AEGXH
AEKPW
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFSHK
AFULF
AFYAG
AGKRT
AGMDO
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
AOIJS
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
BTTYL
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
ESTFP
F20
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KC5
KQ8
KSI
M49
MBTAY
MVM
M~E
NTWIH
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROX
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
AAYXX
ABEJV
ABGNP
AMNDL
CITATION
OVT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c478t-4b7a31ae82589a66aca5e4d76398e4e6e2a465ef39b8068617de672b550bf5a63
IEDL.DBID TOX
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000654670600028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-1048
1362-4962
IngestDate Tue Sep 30 16:53:44 EDT 2025
Sun Nov 09 12:07:08 EST 2025
Mon Jul 21 06:00:06 EDT 2025
Sat Nov 29 03:25:07 EST 2025
Tue Nov 18 22:27:04 EST 2025
Wed Aug 28 03:17:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-4b7a31ae82589a66aca5e4d76398e4e6e2a465ef39b8068617de672b550bf5a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3719-3120
0000-0003-3189-3828
0000-0002-8452-4332
0000-0002-2912-8273
0000-0001-9225-6289
0000-0003-1513-6181
0000-0003-3544-0041
OpenAccessLink https://dx.doi.org/10.1093/nar/gkab234
PMID 33849072
PQID 2512742111
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8096239
proquest_miscellaneous_2512742111
pubmed_primary_33849072
crossref_citationtrail_10_1093_nar_gkab234
crossref_primary_10_1093_nar_gkab234
oup_primary_10_1093_nar_gkab234
PublicationCentury 2000
PublicationDate 2021-05-07
PublicationDateYYYYMMDD 2021-05-07
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-07
  day: 07
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Hassler (2021070811582426900_B5) 2018; 28
Oravcova (2021070811582426900_B23) 2019; 39
Higashi (2021070811582426900_B57) 2020; 79
Gutierrez-Escribano (2021070811582426900_B52) 2020; 80
Oravcova (2021070811582426900_B22) 2019; 65
Telmer (2021070811582426900_B47) 2003; 278
Litwin (2021070811582426900_B24) 2018; 9
Los (2021070811582426900_B37) 2008; 3
Duan (2021070811582426900_B43) 2009; 35
Fousteri (2021070811582426900_B48) 2000; 19
Gibson (2021070811582426900_B16) 2020; 9
Adamus (2021070811582426900_B31) 2020; 432
Bentley (2021070811582426900_B15) 2018; 92
Murphy (2021070811582426900_B13) 2016; 16
Lee (2021070811582426900_B59) 2020; 27
Li (2021070811582426900_B67) 2012; 287
Bustard (2021070811582426900_B26) 2012; 287
Alt (2021070811582426900_B1) 2017; 8
Pebernard (2021070811582426900_B63) 2008; 27
Raschle (2021070811582426900_B21) 2015; 348
Burmann (2021070811582426900_B61) 2017; 65
Serrano (2021070811582426900_B53) 2020; 80
Palecek (2021070811582426900_B10) 2019; 10
Kanno (2021070811582426900_B49) 2015; 12
Payne (2021070811582426900_B17) 2014; 124
Williams (2021070811582426900_B68) 2010; 29
Wan (2021070811582426900_B30) 2019; 75
Uhlmann (2021070811582426900_B6) 2016; 17
Hassler (2021070811582426900_B46) 2019; 74
Schrödinger, LLC (2021070811582426900_B42)
Kimura (2021070811582426900_B50) 1997; 90
Kurze (2021070811582426900_B4) 2011; 30
Aragon (2021070811582426900_B8) 2018; 52
Decorsiere (2021070811582426900_B12) 2016; 531
Taylor (2021070811582426900_B7) 2008; 28
Sheedy (2021070811582426900_B29) 2005; 171
Hazbun (2021070811582426900_B19) 2003; 12
Zabrady (2021070811582426900_B69) 2016; 44
Shi (2021070811582426900_B60) 2020; 368
Minamino (2021070811582426900_B64) 2018; 1
Palecek (2021070811582426900_B33) 2006; 281
Zivanov (2021070811582426900_B40) 2018; 7
Pebernard (2021070811582426900_B20) 2006; 26
Sole-Soler (2021070811582426900_B11) 2020; 48
Xu (2021070811582426900_B14) 2018; 92
Duan (2021070811582426900_B32) 2009; 284
Scheres (2021070811582426900_B39) 2012; 180
Duan (2021070811582426900_B44) 2009; 65
Haering (2021070811582426900_B3) 2002; 9
Petela (2021070811582426900_B65) 2018; 70
Kong (2021070811582426900_B58) 2020; 79
Djender (2021070811582426900_B36) 2014; 3
Collier (2021070811582426900_B56) 2020; 9
Murayama (2021070811582426900_B51) 2014; 505
Griese (2021070811582426900_B2) 2010; 38
Verkade (2021070811582426900_B28) 1999; 10
Anderson (2021070811582426900_B54) 2002; 156
Weissmann (2021070811582426900_B34) 2016; 113
Burmann (2021070811582426900_B55) 2019; 26
van der Crabben (2021070811582426900_B18) 2016; 126
Elbatsh (2021070811582426900_B45) 2019; 76
Ohouo (2021070811582426900_B27) 2010; 39
Barnett (2021070811582426900_B38) 2019; 33
Diaz (2021070811582426900_B9) 2018; 9
Leung (2021070811582426900_B66) 2011; 286
Pettersen (2021070811582426900_B41) 2004; 25
Etheridge (2021070811582426900_B25) 2021
Fairhead (2021070811582426900_B35) 2015; 1266
Lindroos (2021070811582426900_B62) 2006; 22
References_xml – volume: 8
  start-page: 14011
  year: 2017
  ident: 2021070811582426900_B1
  article-title: Specialized interfaces of Smc5/6 control hinge stability and DNA association
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14011
– volume: 27
  start-page: 3011
  year: 2008
  ident: 2021070811582426900_B63
  article-title: Localization of Smc5/6 to centromeres and telomeres requires heterochromatin and SUMO, respectively
  publication-title: EMBO J.
  doi: 10.1038/emboj.2008.220
– volume: 80
  start-page: 1039
  year: 2020
  ident: 2021070811582426900_B52
  article-title: Purified Smc5/6 complex exhibits DNA substrate recognition and compaction
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.11.012
– volume: 28
  start-page: 1197
  year: 2008
  ident: 2021070811582426900_B7
  article-title: Identification of the proteins, including MAGEG1, that make up the human SMC5-6 protein complex
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00767-07
– volume: 80
  start-page: 1025
  year: 2020
  ident: 2021070811582426900_B53
  article-title: The Smc5/6 core complex is a structure-specific DNA binding and compacting machine
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.11.011
– volume: 29
  start-page: 1136
  year: 2010
  ident: 2021070811582426900_B68
  article-title: gammaH2A binds Brc1 to maintain genome integrity during S-phase
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.413
– volume: 7
  start-page: e42166
  year: 2018
  ident: 2021070811582426900_B40
  article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3
  publication-title: Elife
  doi: 10.7554/eLife.42166
– volume: 74
  start-page: 1175
  year: 2019
  ident: 2021070811582426900_B46
  article-title: Structural basis of an asymmetric condensin ATPase cycle
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.03.037
– volume: 9
  start-page: 773
  year: 2002
  ident: 2021070811582426900_B3
  article-title: Molecular architecture of SMC proteins and the yeast cohesin complex
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00515-4
– volume: 432
  start-page: 3820
  year: 2020
  ident: 2021070811582426900_B31
  article-title: Molecular insights into the architecture of the human SMC5/6 complex
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2020.04.024
– volume: 38
  start-page: 3454
  year: 2010
  ident: 2021070811582426900_B2
  article-title: Structure and DNA binding activity of the mouse condensin hinge domain highlight common and diverse features of SMC proteins
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq038
– volume: 12
  start-page: 1353
  year: 2003
  ident: 2021070811582426900_B19
  article-title: Assigning function to yeast proteins by integration of technologies
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00476-3
– volume: 16
  start-page: 2846
  year: 2016
  ident: 2021070811582426900_B13
  article-title: Hepatitis B virus X protein promotes degradation of SMC5/6 to enhance HBV replication
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.08.026
– volume: 26
  start-page: 1617
  year: 2006
  ident: 2021070811582426900_B20
  article-title: The Nse5-Nse6 dimer mediates DNA repair roles of the Smc5-Smc6 complex
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.26.5.1617-1630.2006
– volume: 22
  start-page: 755
  year: 2006
  ident: 2021070811582426900_B62
  article-title: Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.05.014
– volume: 348
  start-page: 1253671
  year: 2015
  ident: 2021070811582426900_B21
  article-title: DNA repair. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links
  publication-title: Science
  doi: 10.1126/science.1253671
– volume: 90
  start-page: 625
  year: 1997
  ident: 2021070811582426900_B50
  article-title: ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80524-3
– volume: 287
  start-page: 11374
  year: 2012
  ident: 2021070811582426900_B26
  article-title: During replication stress, non-SMC element 5 (NSE5) is required for Smc5/6 protein complex functionality at stalled forks
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.336263
– volume: 76
  start-page: 724
  year: 2019
  ident: 2021070811582426900_B45
  article-title: Distinct roles for condensin's two ATPase sites in chromosome condensation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.09.020
– volume: 180
  start-page: 519
  year: 2012
  ident: 2021070811582426900_B39
  article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2012.09.006
– volume: 75
  start-page: 238
  year: 2019
  ident: 2021070811582426900_B30
  article-title: Molecular basis for control of diverse genome stability factors by the multi-BRCT scaffold Rtt107
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.05.035
– volume: 79
  start-page: 917
  year: 2020
  ident: 2021070811582426900_B57
  article-title: A structure-based mechanism for DNA entry into the cohesin ring
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.07.013
– volume: 33
  start-page: 763
  year: 2019
  ident: 2021070811582426900_B38
  article-title: Understanding the coupling between DNA damage detection and UvrA’s ATPase using bulk and single molecule kinetics
  publication-title: FASEB J.
  doi: 10.1096/fj.201800899R
– volume: 1
  start-page: e201800143
  year: 2018
  ident: 2021070811582426900_B64
  article-title: Topological in vitro loading of the budding yeast cohesin ring onto DNA
  publication-title: Life Sci. Alliance
  doi: 10.26508/lsa.201800143
– volume: 39
  start-page: e00271-18
  year: 2019
  ident: 2021070811582426900_B23
  article-title: Brc1 promotes the focal accumulation and SUMO ligase activity of Smc5-Smc6 during replication stress
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00271-18
– volume: 79
  start-page: 99
  year: 2020
  ident: 2021070811582426900_B58
  article-title: Human condensin I and II drive extensive ATP-dependent compaction of nucleosome-bound DNA
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.04.026
– volume: 113
  start-page: E2564
  year: 2016
  ident: 2021070811582426900_B34
  article-title: biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1604935113
– volume: 284
  start-page: 8507
  year: 2009
  ident: 2021070811582426900_B32
  article-title: Architecture of the Smc5/6 complex of Saccharomyces cerevisiae reveals a unique interaction between the Nse5-6 subcomplex and the hinge regions of Smc5 and Smc6
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M809139200
– volume: 12
  start-page: 1471
  year: 2015
  ident: 2021070811582426900_B49
  article-title: The Smc5/6 complex is an ATP-dependent intermolecular DNA linker
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.07.048
– volume: 30
  start-page: 364
  year: 2011
  ident: 2021070811582426900_B4
  article-title: A positively charged channel within the Smc1/Smc3 hinge required for sister chromatid cohesion
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.315
– volume: 48
  start-page: 2159
  year: 2020
  ident: 2021070811582426900_B11
  article-title: Smc5/6, an atypical SMC complex with two RING-type subunits
  publication-title: Biochem Soc T
  doi: 10.1042/BST20200389
– volume: 19
  start-page: 1691
  year: 2000
  ident: 2021070811582426900_B48
  article-title: A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.7.1691
– volume: 156
  start-page: 419
  year: 2002
  ident: 2021070811582426900_B54
  article-title: Condensin and cohesin display different arm conformations with characteristic hinge angles
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200111002
– volume: 92
  start-page: e00356-18
  year: 2018
  ident: 2021070811582426900_B15
  article-title: The SMC5/6 complex interacts with the Papillomavirus E2 protein and influences maintenance of viral episomal DNA
  publication-title: J. Virol.
  doi: 10.1128/JVI.00356-18
– volume: 9
  start-page: e59560
  year: 2020
  ident: 2021070811582426900_B56
  article-title: Transport of DNA within cohesin involves clamping on top of engaged heads by Scc2 and entrapment within the ring by Scc3
  publication-title: Elife
  doi: 10.7554/eLife.59560
– volume: 70
  start-page: 1134
  year: 2018
  ident: 2021070811582426900_B65
  article-title: Scc2 is a potent activator of cohesin's ATPase that promotes loading by binding Scc1 without Pds5
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.05.022
– volume: 10
  start-page: 7
  year: 2019
  ident: 2021070811582426900_B10
  article-title: SMC5/6: multifunctional player in replication
  publication-title: Genes-Basel
  doi: 10.3390/genes10010007
– volume: 25
  start-page: 1605
  year: 2004
  ident: 2021070811582426900_B41
  article-title: UCSF Chimera—a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 35
  start-page: 657
  year: 2009
  ident: 2021070811582426900_B43
  article-title: Structural and functional insights into the roles of the Mms21 subunit of the Smc5/6 complex
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.06.032
– volume: 26
  start-page: 227
  year: 2019
  ident: 2021070811582426900_B55
  article-title: A folded conformation of MukBEF and cohesin
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-019-0196-z
– volume: 65
  start-page: 669
  year: 2019
  ident: 2021070811582426900_B22
  article-title: Recruitment, loading, and activation of the Smc5-Smc6 SUMO ligase
  publication-title: Curr. Genet.
  doi: 10.1007/s00294-018-0922-9
– volume: 9
  start-page: 36
  year: 2018
  ident: 2021070811582426900_B9
  article-title: Scaffolding for repair: understanding molecular functions of the SMC5/6 complex
  publication-title: Genes
  doi: 10.3390/genes9010036
– volume: 17
  start-page: 399
  year: 2016
  ident: 2021070811582426900_B6
  article-title: SMC complexes: from DNA to chromosomes
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2016.30
– volume: 281
  start-page: 36952
  year: 2006
  ident: 2021070811582426900_B33
  article-title: The Smc5-Smc6 DNA repair complex. bridging of the Smc5-Smc6 heads by the KLEISIN, Nse4, and non-Kleisin subunits
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M608004200
– volume: 65
  start-page: 861
  year: 2017
  ident: 2021070811582426900_B61
  article-title: Tuned SMC arms drive chromosomal loading of prokaryotic condensin
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.01.026
– volume: 124
  start-page: 4028
  year: 2014
  ident: 2021070811582426900_B17
  article-title: Hypomorphism in human NSMCE2 linked to primordial dwarfism and insulin resistance
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI73264
– volume: 65
  start-page: 849
  year: 2009
  ident: 2021070811582426900_B44
  article-title: Purification, crystallization and preliminary X-ray crystallographic studies of the complex between Smc5 and the SUMO E3 ligase Mms21
  publication-title: Acta Crystallogr. F Struct. Biol. Cryst. Commun.
  doi: 10.1107/S1744309109027900
– volume: 92
  start-page: e00825-18
  year: 2018
  ident: 2021070811582426900_B14
  article-title: PJA1 coordinates with the SMC5/6 complex to restrict DNA viruses and episomal genes in an interferon-independent manner
  publication-title: J. Virol.
  doi: 10.1128/JVI.00825-18
– volume: 126
  start-page: 2881
  year: 2016
  ident: 2021070811582426900_B18
  article-title: Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI82890
– volume: 368
  start-page: 1454
  year: 2020
  ident: 2021070811582426900_B60
  article-title: Cryo-EM structure of the human cohesin-NIPBL-DNA complex
  publication-title: Science
  doi: 10.1126/science.abb0981
– volume: 531
  start-page: 386
  year: 2016
  ident: 2021070811582426900_B12
  article-title: Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor
  publication-title: Nature
  doi: 10.1038/nature17170
– volume: 286
  start-page: 26250
  year: 2011
  ident: 2021070811582426900_B66
  article-title: Rtt107 is required for recruitment of the SMC5/6 complex to DNA double strand breaks
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.235200
– ident: 2021070811582426900_B42
  article-title: The PyMOL Molecular Graphics System, Version 2.0
– volume: 287
  start-page: 9137
  year: 2012
  ident: 2021070811582426900_B67
  article-title: Structure of C-terminal tandem BRCT repeats of Rtt107 protein reveals critical role in interaction with phosphorylated histone H2A during DNA damage repair
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.311860
– volume: 278
  start-page: 34555
  year: 2003
  ident: 2021070811582426900_B47
  article-title: Insights into the conformational equilibria of maltose-binding protein by analysis of high affinity mutants
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M301004200
– year: 2021
  ident: 2021070811582426900_B25
  article-title: Live-cell single-molecule tracking highlights requirements for stable Smc5/6 chromatin association in vivo
  doi: 10.7554/eLife.68579.sa2
– volume: 3
  start-page: 182
  year: 2014
  ident: 2021070811582426900_B36
  article-title: The biotechnological applications of recombinant single-domain antibodies are optimized by the C-terminal fusion to the EPEA sequence (C Tag)
  publication-title: Antibodies
  doi: 10.3390/antib3020182
– volume: 171
  start-page: 457
  year: 2005
  ident: 2021070811582426900_B29
  article-title: Brc1-mediated DNA repair and damage tolerance
  publication-title: Genetics
  doi: 10.1534/genetics.105.044966
– volume: 3
  start-page: 373
  year: 2008
  ident: 2021070811582426900_B37
  article-title: HaloTag: a novel protein labeling technology for cell imaging and protein analysis
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb800025k
– volume: 9
  start-page: 786
  year: 2020
  ident: 2021070811582426900_B16
  article-title: The SMC5/6 complex represses the replicative program of high-risk human Papillomavirus type 31
  publication-title: Pathogens
  doi: 10.3390/pathogens9100786
– volume: 10
  start-page: 2905
  year: 1999
  ident: 2021070811582426900_B28
  article-title: Rad18 is required for DNA repair and checkpoint responses in fission yeast
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.10.9.2905
– volume: 1266
  start-page: 171
  year: 2015
  ident: 2021070811582426900_B35
  article-title: Site-specific biotinylation of purified proteins using BirA
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-2272-7_12
– volume: 505
  start-page: 367
  year: 2014
  ident: 2021070811582426900_B51
  article-title: Biochemical reconstitution of topological DNA binding by the cohesin ring
  publication-title: Nature
  doi: 10.1038/nature12867
– volume: 39
  start-page: 300
  year: 2010
  ident: 2021070811582426900_B27
  article-title: DNA damage signaling recruits the Rtt107-Slx4 scaffolds via Dpb11 to mediate replication stress response
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.06.019
– volume: 28
  start-page: R1266
  year: 2018
  ident: 2021070811582426900_B5
  article-title: Towards a unified model of SMC complex function
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.08.034
– volume: 9
  start-page: 581
  year: 2018
  ident: 2021070811582426900_B24
  article-title: The emerging role of cohesin in the DNA damage response
  publication-title: Genes
  doi: 10.3390/genes9120581
– volume: 52
  start-page: 89
  year: 2018
  ident: 2021070811582426900_B8
  article-title: The Smc5/6 complex: new and old functions of the enigmatic long-distance relative
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-120417-031353
– volume: 27
  start-page: 743
  year: 2020
  ident: 2021070811582426900_B59
  article-title: Cryo-EM structures of holo condensin reveal a subunit flip-flop mechanism
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-0457-x
– volume: 44
  start-page: 1064
  year: 2016
  ident: 2021070811582426900_B69
  article-title: Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1021
SSID ssj0014154
Score 2.4770007
Snippet Abstract The multi-component Smc5/6 complex plays a critical role in the resolution of recombination intermediates formed during mitosis and meiosis, and in...
The multi-component Smc5/6 complex plays a critical role in the resolution of recombination intermediates formed during mitosis and meiosis, and in the...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4534
SubjectTerms Adenosine Triphosphatases - chemistry
Adenosine Triphosphatases - genetics
Adenosine Triphosphatases - metabolism
Cell Cycle Proteins - chemistry
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Cycle Proteins - ultrastructure
Chromosomal Proteins, Non-Histone - chemistry
Chromosomal Proteins, Non-Histone - genetics
Chromosomal Proteins, Non-Histone - metabolism
Chromosomal Proteins, Non-Histone - ultrastructure
DNA - metabolism
Escherichia coli - metabolism
Genome Integrity, Repair and
Microscopy, Electron, Transmission
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Saccharomyces cerevisiae Proteins - ultrastructure
Title Nse5/6 is a negative regulator of the ATPase activity of the Smc5/6 complex
URI https://www.ncbi.nlm.nih.gov/pubmed/33849072
https://www.proquest.com/docview/2512742111
https://pubmed.ncbi.nlm.nih.gov/PMC8096239
Volume 49
WOSCitedRecordID wos000654670600028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014154
  issn: 0305-1048
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014154
  issn: 0305-1048
  databaseCode: TOX
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED62Mthe1i3ZuvRHpkHZw8AklmRLegxlZTDICssgb-Ysy13Y4hQ7Ld1_v5PshKaUda_2yYg74bvT3X0fwKkqYktuQUcYWxFRRKwiU5QYlZabwiiHJrGBbEJNp3o-Nxddg2zzQAnfiFGF9ejyF-ZceNjPONGeqGD2bb4tFpAPalGiAqim1N0Y3r21O45nZ5jtTkx5vzXyjq853__fXb6Cl100ySat-V_DE1f1oD-pKJNe_mEfWejvDBfnPXh-tuF268PXaeOSUcoWDUNWucuA_s3qlpd-VbNVySgwZJPZBTk55mcfPMXE5vH3pfWLQze6u30DP84_z86-RB2tQmSl0utI5gpFjI5yQ20wTdFi4mRBPxqjnXSp4yjTxJXC5NoPkMSqcKniOeUyeZlgKt7CXrWq3DtgHMdCkUUFF0rmqFAWWIjSoxAmFEeWA_i00XlmO8xxT33xO2tr3yIjtWWd2gZwuhW-aqE2HhZ7T8b7t8SHjWEz0quvgGDlVtdN5oM5JSnnjQdw0Bp6-yHK1aUZKz4AtXMEtgIeiHv3TbX4GQC5NeWBXJjDR3d2BC-474nxDZPqGPbW9bU7gWf2Zr1o6iE8VXM9DLcCw3DC_wLjufZd
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nse5%2F6+is+a+negative+regulator+of+the+ATPase+activity+of+the+Smc5%2F6+complex&rft.jtitle=Nucleic+acids+research&rft.au=Hallett%2C+Stephen+T&rft.au=Schellenberger%2C+Pascale&rft.au=Zhou%2C+Lihong&rft.au=Beuron%2C+Fabienne&rft.date=2021-05-07&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=49&rft.issue=8&rft.spage=4534&rft.epage=4549&rft_id=info:doi/10.1093%2Fnar%2Fgkab234&rft.externalDocID=10.1093%2Fnar%2Fgkab234
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon