Liposome-Based Drug Delivery Systems in Cancer Immunotherapy

Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further improve cancer immunotherapy and even stronger immune responses by improving cell type-specific delivery and enhancing drug efficacy. Liposomes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutics Jg. 12; H. 11; S. 1054
Hauptverfasser: Gu, Zili, Da Silva, Candido, Van der Maaden, Koen, Ossendorp, Ferry, Cruz, Luis
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI 04.11.2020
MDPI AG
Schlagworte:
ISSN:1999-4923, 1999-4923
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further improve cancer immunotherapy and even stronger immune responses by improving cell type-specific delivery and enhancing drug efficacy. Liposomes can offer solutions to common problems faced by several cancer immunotherapies, including the following: (1) Vaccination: Liposomes can improve the delivery of antigens and other stimulatory molecules to antigen-presenting cells or T cells; (2) Tumor normalization: Liposomes can deliver drugs selectively to the tumor microenvironment to overcome the immune-suppressive state; (3) Rewiring of tumor signaling: Liposomes can be used for the delivery of specific drugs to specific cell types to correct or modulate pathways to facilitate better anti-tumor immune responses; (4) Combinational therapy: Liposomes are ideal vehicles for the simultaneous delivery of drugs to be combined with other therapies, including chemotherapy, radiotherapy, and phototherapy. In this review, different liposomal systems specifically developed for immunomodulation in cancer are summarized and discussed.
AbstractList Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further improve cancer immunotherapy and even stronger immune responses by improving cell type-specific delivery and enhancing drug efficacy. Liposomes can offer solutions to common problems faced by several cancer immunotherapies, including the following: (1) Vaccination: Liposomes can improve the delivery of antigens and other stimulatory molecules to antigen-presenting cells or T cells; (2) Tumor normalization: Liposomes can deliver drugs selectively to the tumor microenvironment to overcome the immune-suppressive state; (3) Rewiring of tumor signaling: Liposomes can be used for the delivery of specific drugs to specific cell types to correct or modulate pathways to facilitate better anti-tumor immune responses; (4) Combinational therapy: Liposomes are ideal vehicles for the simultaneous delivery of drugs to be combined with other therapies, including chemotherapy, radiotherapy, and phototherapy. In this review, different liposomal systems specifically developed for immunomodulation in cancer are summarized and discussed.
Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further improve cancer immunotherapy and even stronger immune responses by improving cell type-specific delivery and enhancing drug efficacy. Liposomes can offer solutions to common problems faced by several cancer immunotherapies, including the following: (1) Vaccination: Liposomes can improve the delivery of antigens and other stimulatory molecules to antigen-presenting cells or T cells; (2) Tumor normalization: Liposomes can deliver drugs selectively to the tumor microenvironment to overcome the immune-suppressive state; (3) Rewiring of tumor signaling: Liposomes can be used for the delivery of specific drugs to specific cell types to correct or modulate pathways to facilitate better anti-tumor immune responses; (4) Combinational therapy: Liposomes are ideal vehicles for the simultaneous delivery of drugs to be combined with other therapies, including chemotherapy, radiotherapy, and phototherapy. In this review, different liposomal systems specifically developed for immunomodulation in cancer are summarized and discussed.Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further improve cancer immunotherapy and even stronger immune responses by improving cell type-specific delivery and enhancing drug efficacy. Liposomes can offer solutions to common problems faced by several cancer immunotherapies, including the following: (1) Vaccination: Liposomes can improve the delivery of antigens and other stimulatory molecules to antigen-presenting cells or T cells; (2) Tumor normalization: Liposomes can deliver drugs selectively to the tumor microenvironment to overcome the immune-suppressive state; (3) Rewiring of tumor signaling: Liposomes can be used for the delivery of specific drugs to specific cell types to correct or modulate pathways to facilitate better anti-tumor immune responses; (4) Combinational therapy: Liposomes are ideal vehicles for the simultaneous delivery of drugs to be combined with other therapies, including chemotherapy, radiotherapy, and phototherapy. In this review, different liposomal systems specifically developed for immunomodulation in cancer are summarized and discussed.
Author Van der Maaden, Koen
Gu, Zili
Da Silva, Candido
Ossendorp, Ferry
Cruz, Luis
AuthorAffiliation 3 TECOdevelopment GmbH, 53359 Rheinbach, Germany
1 Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; z.gu@lumc.nl (Z.G.); C.da_Silva@lumc.nl (C.G.D.S.)
2 Tumor Immunology Group, Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; K.van_der_Maaden@lumc.nl (K.v.d.M.); F.A.Ossendorp@lumc.nl (F.O.)
AuthorAffiliation_xml – name: 3 TECOdevelopment GmbH, 53359 Rheinbach, Germany
– name: 1 Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; z.gu@lumc.nl (Z.G.); C.da_Silva@lumc.nl (C.G.D.S.)
– name: 2 Tumor Immunology Group, Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; K.van_der_Maaden@lumc.nl (K.v.d.M.); F.A.Ossendorp@lumc.nl (F.O.)
Author_xml – sequence: 1
  givenname: Zili
  orcidid: 0000-0001-5718-7011
  surname: Gu
  fullname: Gu, Zili
– sequence: 2
  givenname: Candido
  orcidid: 0000-0003-1646-8356
  surname: Da Silva
  fullname: Da Silva, Candido
– sequence: 3
  givenname: Koen
  surname: Van der Maaden
  fullname: Van der Maaden, Koen
– sequence: 4
  givenname: Ferry
  surname: Ossendorp
  fullname: Ossendorp, Ferry
– sequence: 5
  givenname: Luis
  surname: Cruz
  fullname: Cruz, Luis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33158166$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9P3DAQxa2KCujCR2iVI5fQOP4TW62QYGnpSitxAM6W7Ux2jZI4tROk_faYLosAVfji0fjN78lvvqC93veA0FdcnBIii-_DWodOW5hGZyMuMcYFo5_QIZZS5lSWZO9VfYCOY7wv0iEECyL30UEqmMCcH6KfSzf46DvIL3SEOrsM0yq7hNY9QNhkN5s4Qhcz12dz3VsI2aLrpt6Pawh62Byhz41uIxw_3zN09_vX7fxPvry-WszPl7mlVTXmVlBODGdgZN1oroWxnImaVLWsam5BlpSR2jSlkMCKpCIcgBjSgMQWyoLM0GLLrb2-V0NwnQ4b5bVT_xo-rJQOKYoWFHBmQQiDudG0BCopYdZiQ02KqQGaWGdb1jCZDmoL_Rh0-wb69qV3a7XyD6rikpa4TICTZ0DwfyeIo-pctNC2ugc_RZU-IyqCJa6S9NtrrxeTXfxJ8GMrsMHHGKBR1o16dP7J2rUKF-pp3-q_-07T7N30zuDjuUeNO7UH
CitedBy_id crossref_primary_10_1007_s40883_025_00475_0
crossref_primary_10_3390_ijms232415815
crossref_primary_10_1002_wnan_1942
crossref_primary_10_1002_adfm_202508570
crossref_primary_10_1016_j_critrevonc_2023_104032
crossref_primary_10_1002_chem_202203311
crossref_primary_10_3390_pharmaceutics13122003
crossref_primary_10_1080_00914037_2022_2066667
crossref_primary_10_1186_s12645_025_00314_5
crossref_primary_10_2147_NSA_S500407
crossref_primary_10_1080_08982104_2025_2451235
crossref_primary_10_1016_j_addr_2021_113905
crossref_primary_10_3390_ijms221910755
crossref_primary_10_1007_s44272_025_00039_x
crossref_primary_10_1016_j_fbio_2023_103205
crossref_primary_10_1039_D1NR08550F
crossref_primary_10_3390_pharmaceutics14102165
crossref_primary_10_1016_j_bbamem_2025_184419
crossref_primary_10_2217_nnm_2022_0214
crossref_primary_10_3390_ijms26114985
crossref_primary_10_1039_D2CC02143A
crossref_primary_10_1097_CAD_0000000000001144
crossref_primary_10_1002_mco2_339
crossref_primary_10_1007_s42995_023_00209_7
crossref_primary_10_1016_j_jddst_2025_106847
crossref_primary_10_1016_j_actbio_2022_12_013
crossref_primary_10_1080_1061186X_2025_2467139
crossref_primary_10_1007_s11244_022_01697_0
crossref_primary_10_1016_j_jconrel_2023_04_011
crossref_primary_10_1016_j_jvir_2023_10_009
crossref_primary_10_3390_pharmaceutics16030400
crossref_primary_10_1080_02726351_2025_2517279
crossref_primary_10_3390_ph16111564
crossref_primary_10_34172_apb_2022_052
crossref_primary_10_3390_pharmaceutics17030296
crossref_primary_10_1016_j_ijbiomac_2025_145377
crossref_primary_10_3390_bioengineering12090968
crossref_primary_10_3390_gels11040245
crossref_primary_10_3390_pharmaceutics14030543
crossref_primary_10_1007_s11051_025_06435_7
crossref_primary_10_3390_jnt4030014
crossref_primary_10_1007_s11831_025_10365_x
crossref_primary_10_1039_D2BM01252A
crossref_primary_10_1016_j_polymer_2022_125001
crossref_primary_10_1080_14760584_2021_1984890
crossref_primary_10_1186_s12951_023_02083_y
crossref_primary_10_1007_s13346_021_01088_0
crossref_primary_10_7841_ksbbj_2025_40_1_1
crossref_primary_10_1186_s40779_023_00455_x
crossref_primary_10_3390_pharmaceutics14081589
crossref_primary_10_1038_s41578_023_00617_2
crossref_primary_10_1002_smll_202401631
crossref_primary_10_1208_s12249_023_02670_0
crossref_primary_10_1002_adtp_202400004
crossref_primary_10_1016_j_mattod_2021_07_025
crossref_primary_10_3390_nano12172948
crossref_primary_10_3762_bjnano_16_97
crossref_primary_10_1016_j_isci_2024_111704
crossref_primary_10_3389_fimmu_2025_1545000
crossref_primary_10_1038_s41401_022_00902_w
crossref_primary_10_2174_0113816128304018240415095912
crossref_primary_10_3390_ijms22137055
crossref_primary_10_1016_j_jconrel_2021_01_029
crossref_primary_10_1080_13102818_2024_2358992
crossref_primary_10_3389_fimmu_2025_1614640
crossref_primary_10_1016_j_nwnano_2023_100005
crossref_primary_10_3390_ijms24043493
crossref_primary_10_1016_j_carpta_2025_100805
crossref_primary_10_1016_j_nwnano_2025_100128
crossref_primary_10_3390_biom14091057
crossref_primary_10_3390_pharmaceutics15082022
crossref_primary_10_1186_s12645_023_00213_7
crossref_primary_10_1016_j_jconrel_2022_07_029
crossref_primary_10_3389_fbioe_2024_1349077
crossref_primary_10_1016_j_cej_2024_154850
crossref_primary_10_3390_pharmaceutics14040874
crossref_primary_10_1007_s12668_024_01730_4
crossref_primary_10_1016_j_omto_2022_01_005
crossref_primary_10_3389_fbioe_2022_890257
crossref_primary_10_1016_j_jsps_2022_12_008
crossref_primary_10_3390_pharmaceutics13081235
crossref_primary_10_1016_j_jddst_2025_107402
crossref_primary_10_3389_fbioe_2023_1128856
crossref_primary_10_1142_S2737416524500716
crossref_primary_10_1007_s13206_024_00147_1
crossref_primary_10_1155_2023_8608428
crossref_primary_10_1007_s13205_025_04362_x
crossref_primary_10_3390_pharmaceutics14010120
crossref_primary_10_1016_j_jconrel_2024_07_015
crossref_primary_10_1016_j_jddst_2025_107407
crossref_primary_10_1016_j_biomaterials_2024_122503
crossref_primary_10_1016_j_heliyon_2023_e18413
crossref_primary_10_1007_s44174_025_00428_9
crossref_primary_10_1039_D4RA06253A
crossref_primary_10_6023_A20120578
crossref_primary_10_1016_j_arabjc_2023_105086
crossref_primary_10_3390_jnt5020003
crossref_primary_10_1016_j_jddst_2023_104969
crossref_primary_10_1002_advs_202200756
crossref_primary_10_1186_s12645_023_00174_x
crossref_primary_10_1080_10717544_2021_2008056
Cites_doi 10.1038/nrc3239
10.1182/blood-2017-06-741033
10.1016/j.jconrel.2011.12.034
10.1038/nrclinonc.2016.25
10.1016/j.jconrel.2019.06.025
10.1021/mp3005947
10.1146/annurev.immunol.26.021607.090331
10.1080/2162402X.2020.1771925
10.1126/science.1099688
10.1016/j.colsurfb.2017.09.052
10.1074/jbc.271.14.8481
10.1172/JCI80011
10.1126/scitranslmed.3001374
10.3390/ijms21062244
10.1021/cr0682195
10.1126/science.1100369
10.1016/j.immuni.2004.08.010
10.1038/nrc.2016.108
10.1007/s11095-014-1419-y
10.3390/cancers12040810
10.2147/IJN.S125866
10.1016/j.cell.2018.09.035
10.1038/jid.2015.226
10.1002/ijc.27801
10.1038/embor.2009.276
10.1038/359693a0
10.1038/nm1196
10.1158/0008-5472.CAN-15-1330
10.2174/156720106778559029
10.1038/82231
10.1002/adma.201402996
10.1126/scitranslmed.3003689
10.1007/s00262-008-0531-4
10.1016/j.biomaterials.2010.01.086
10.1038/ni.1790
10.1016/j.jconrel.2019.12.052
10.3390/molecules21030342
10.1021/nn5002112
10.1016/S0006-3495(00)76395-8
10.1158/0008-5472.CAN-09-3690
10.1158/1078-0432.CCR-06-2363
10.1126/science.1138963
10.1158/1078-0432.CCR-08-1825
10.1016/S0169-409X(02)00226-0
10.1007/s00018-008-8228-6
10.3324/haematol.12521
10.1038/nri2506
10.1021/acsnano.8b00966
10.1016/j.semcancer.2017.10.001
10.1073/pnas.0810114105
10.1038/s41401-019-0281-1
10.1007/s00262-013-1396-8
10.1016/j.autrev.2005.03.006
10.1016/j.pharmthera.2009.06.012
10.1021/acs.biomac.8b01510
10.1007/s00262-007-0286-3
10.1038/ni.2703
10.1158/0008-5472.CAN-12-0320
10.1158/1078-0432.CCR-13-0545
10.1016/j.biomaterials.2012.12.031
10.1021/acsnano.8b00999
10.1097/CJI.0000000000000022
10.1016/j.biomaterials.2010.11.073
10.4049/jimmunol.1202781
10.1016/S0264-410X(00)00163-8
10.1158/0008-5472.CAN-12-3343
10.1634/theoncologist.12-7-864
10.1016/j.biomaterials.2020.119755
10.1016/j.addr.2017.07.007
10.1016/j.jconrel.2016.11.015
10.1016/j.it.2010.04.002
10.1038/nm863
10.1016/j.molimm.2007.04.009
10.1038/mt.2008.122
10.7150/thno.16184
10.4049/jimmunol.178.10.6259
10.4049/jimmunol.168.2.926
10.1016/1074-7613(95)90125-6
10.1586/14760584.2014.863715
10.1007/s00262-010-0846-9
10.1016/j.jconrel.2008.05.005
10.1038/nbt.4047
10.1007/s00280-017-3427-1
10.1093/annonc/mdv383
10.1053/j.seminoncol.2015.05.003
10.1016/j.jconrel.2018.03.035
10.14694/EdBook_AM.2015.35.76
10.1084/jem.20051776
10.1016/j.addr.2010.09.003
10.1016/j.jconrel.2017.11.035
10.2217/nnm.13.66
10.1073/pnas.89.1.358
10.7150/thno.17237
10.1016/j.jconrel.2016.02.018
10.1128/MCB.25.21.9543-9553.2005
10.1073/pnas.0712237105
10.1080/09687860600790537
10.1158/0008-5472.CAN-13-1342
10.1038/nmat3355
10.1056/NEJMoa1200690
10.1038/nrd3810
10.3390/pharmaceutics9020012
10.1016/j.biomaterials.2011.03.067
10.1021/nn500216y
10.1158/2326-6066.CIR-17-0055
10.1016/j.addr.2010.04.009
10.1021/acs.molpharmaceut.7b00606
10.1016/j.msec.2016.11.073
10.1038/nbt.3330
10.1021/acsnano.8b05189
10.1016/S0092-8674(01)00449-4
10.1016/j.cellimm.2009.01.006
10.1016/j.jconrel.2015.05.284
10.1208/s12248-014-9686-4
10.1021/acs.molpharmaceut.7b00649
10.1021/nl102184c
10.1016/j.nano.2018.12.016
10.1016/j.addr.2015.01.002
10.1016/j.cell.2011.02.013
10.1002/jcp.26361
10.1158/0008-5472.CAN-13-3581
10.1016/j.ymthe.2017.02.008
10.2147/IJN.S225807
10.1038/ncomms13193
10.1016/j.addr.2015.10.022
10.1586/erv.11.17
10.1126/science.1095833
10.1158/2326-6066.CIR-17-0502
10.1002/wnan.1358
10.1016/j.ijpharm.2013.11.005
10.1158/2326-6066.CIR-16-0283
10.1016/j.imbio.2017.06.002
10.1016/j.vaccine.2012.01.070
10.1586/14760584.2015.986104
10.1166/jbn.2011.1264
10.1021/nn404083m
10.1021/acsnano.7b00078
10.1038/nature04444
10.1038/nature18300
10.1016/0264-410X(89)90274-0
10.1021/bc7004736
10.1158/0008-5472.CAN-11-0096
10.1016/S0168-3659(99)00097-8
10.1084/jem.182.2.459
10.1172/JCI40269
10.1007/978-3-319-39147-2_1
10.1016/j.ijpharm.2005.06.010
10.1186/s40425-015-0094-9
10.1200/JCO.2006.10.2822
10.4161/cam.20419
10.1016/j.jconrel.2016.04.005
10.1056/NEJMoa1200694
10.1016/j.biomaterials.2013.04.007
10.1021/acs.nanolett.9b01571
10.1155/2016/5274084
10.1016/j.immuni.2010.10.007
10.1016/j.jconrel.2016.06.023
10.1016/j.nano.2017.08.010
10.1038/s41467-019-09760-3
10.1007/s11095-018-2490-6
10.1210/en.2009-1082
10.1016/j.jconrel.2018.08.011
10.1038/nrc3930
10.1016/j.semcancer.2015.03.004
10.1126/science.1093616
10.7150/thno.19826
10.1038/nmat3792
10.1002/adma.201806202
10.7150/thno.22056
10.2147/ITT.S32617
10.1021/jacs.6b11846
10.1615/CritRevTherDrugCarrierSyst.2018020591
10.1186/s12916-015-0455-8
10.1038/s41467-017-02191-y
10.1016/j.bbamcr.2008.01.024
10.7150/thno.35343
10.1016/j.immuni.2016.05.001
10.1021/acsami.9b09560
10.1016/j.nano.2010.12.010
10.1016/S0169-409X(02)00073-X
10.1007/BF00205743
10.1016/j.biomaterials.2016.01.006
10.1016/j.addr.2012.09.037
10.1016/j.jconrel.2017.01.004
10.1038/sj.gt.3300683
10.1021/acsami.9b11371
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/pharmaceutics12111054
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1999-4923
ExternalDocumentID oai_doaj_org_article_e65ce88b16ba42e49435cc1b4b121fe4
PMC7694212
33158166
10_3390_pharmaceutics12111054
Genre Journal Article
Review
GrantInformation_xml – fundername: China Scholarship Council
  grantid: CSC201906100211
– fundername: H2020-MSCA-Intra European Fellowship-2018
  grantid: 832455-Need2immune
GroupedDBID ---
53G
5VS
8G5
AADQD
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACUHS
AEAQA
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BPHCQ
CCPQU
CITATION
DIK
DWQXO
EBD
ESX
F5P
FD6
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HH5
HYE
IHR
KQ8
M2O
M48
MK0
MODMG
M~E
OK1
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
TUS
NPM
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c477t-c8463b65eb9dfa6a8bc658d37d97d6ce92453dbf289e50eb936ee3b3fe91ce203
IEDL.DBID DOA
ISICitedReferencesCount 118
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000593704800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-4923
IngestDate Fri Oct 03 12:42:43 EDT 2025
Tue Nov 04 02:00:14 EST 2025
Thu Sep 04 19:43:17 EDT 2025
Thu Apr 03 06:57:31 EDT 2025
Sat Nov 29 07:16:27 EST 2025
Tue Nov 18 21:49:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords immunomodulation
drug delivery
liposome
cancer immunotherapy
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-c8463b65eb9dfa6a8bc658d37d97d6ce92453dbf289e50eb936ee3b3fe91ce203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5718-7011
0000-0003-1646-8356
OpenAccessLink https://doaj.org/article/e65ce88b16ba42e49435cc1b4b121fe4
PMID 33158166
PQID 2458731917
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e65ce88b16ba42e49435cc1b4b121fe4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7694212
proquest_miscellaneous_2458731917
pubmed_primary_33158166
crossref_citationtrail_10_3390_pharmaceutics12111054
crossref_primary_10_3390_pharmaceutics12111054
PublicationCentury 2000
PublicationDate 20201104
PublicationDateYYYYMMDD 2020-11-04
PublicationDate_xml – month: 11
  year: 2020
  text: 20201104
  day: 4
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Pharmaceutics
PublicationTitleAlternate Pharmaceutics
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Yan (ref_88) 2008; 130
Gu (ref_27) 2017; 160
Cekic (ref_69) 2007; 316
Kiss (ref_6) 2007; 56
Li (ref_101) 1998; 5
Ramakrishnan (ref_173) 2008; 57
Allen (ref_32) 2013; 65
Gu (ref_143) 2018; 286
ref_12
Bialkowski (ref_108) 2018; 12
ref_97
Keir (ref_131) 2006; 203
Nars (ref_172) 2013; 132
Furuta (ref_14) 2011; 3
Zhang (ref_54) 2018; 9
Christensen (ref_87) 2011; 10
Iclozan (ref_117) 2013; 62
Huang (ref_151) 2019; 9
Liu (ref_174) 2019; 20
Shi (ref_22) 2010; 10
Davies (ref_82) 2006; 3
Zolnik (ref_86) 2010; 151
Lai (ref_65) 2018; 8
Dwivedi (ref_49) 2011; 7
Palucka (ref_7) 2010; 33
Kleinovink (ref_180) 2017; 5
Mellman (ref_4) 2001; 106
Zhai (ref_152) 2017; 14
Chang (ref_124) 1998; 12
Siriwon (ref_156) 2018; 6
Rueda (ref_171) 2016; 83
Vinay (ref_113) 2015; 35
Kobayashi (ref_116) 2007; 13
Fang (ref_35) 2011; 63
Pardoll (ref_123) 2015; 42
Nakamura (ref_63) 2008; 16
Akhurst (ref_163) 2012; 11
Diebold (ref_91) 2004; 303
Otsuka (ref_37) 2003; 55
Allard (ref_158) 2013; 19
Curiel (ref_138) 2003; 9
Moon (ref_148) 2015; 3
Ojha (ref_46) 2017; 119
Gu (ref_23) 2018; 35
ref_29
Xu (ref_162) 2014; 8
Immordino (ref_57) 2006; 1
Hafez (ref_140) 2000; 79
Midoux (ref_103) 2014; 14
Yan (ref_75) 2007; 44
Cheung (ref_111) 2018; 36
Salomon (ref_98) 2020; 9
Varypataki (ref_76) 2016; 226
Vosika (ref_71) 1984; 18
Rezaee (ref_107) 2016; 236
Ngiow (ref_145) 2011; 71
Meng (ref_159) 2013; 7
Berchel (ref_104) 2014; 460
Feng (ref_40) 2010; 31
Poley (ref_84) 2019; 307
Prakken (ref_110) 2000; 6
Yang (ref_175) 2016; 6
Goc (ref_5) 2014; 74
Smith (ref_135) 2012; 366
Varypataki (ref_79) 2017; 5
Heuts (ref_78) 2018; 35
Kwong (ref_66) 2011; 32
Baraldi (ref_155) 2008; 108
Du (ref_137) 2017; 14
Bertrand (ref_128) 2015; 13
Fife (ref_133) 2009; 10
Krummel (ref_126) 1995; 182
ref_147
Khalil (ref_1) 2016; 13
Heuts (ref_77) 2018; 269
Nakanishi (ref_85) 1999; 61
Guo (ref_187) 2014; 8
Lu (ref_153) 2018; 12
Lofthouse (ref_58) 2002; 54
Burugu (ref_17) 2018; 52
Weber (ref_129) 2007; 12
Vangasseri (ref_74) 2006; 23
ref_89
Moles (ref_41) 2015; 210
Chen (ref_189) 2016; 7
He (ref_64) 2007; 178
Tivol (ref_125) 1995; 3
Lang (ref_136) 2019; 31
Steinman (ref_3) 2004; 305
Boks (ref_73) 2015; 135
Huang (ref_144) 2004; 21
Shull (ref_164) 1992; 359
Wang (ref_186) 2019; 11
Hei (ref_142) 2020; 15
Zamani (ref_59) 2018; 233
Vincent (ref_169) 2010; 70
Yuan (ref_122) 2008; 105
Shi (ref_95) 2017; 25
Naidoo (ref_120) 2015; 26
Blattman (ref_24) 2004; 305
Stremersch (ref_96) 2016; 232
Yang (ref_160) 2010; 31
Linton (ref_28) 2016; 8
Kwong (ref_55) 2013; 73
Ismaili (ref_68) 2002; 168
Postow (ref_119) 2015; 35
ref_179
Keir (ref_8) 2008; 26
Ritsma (ref_181) 2020; 320
Li (ref_190) 2018; 8
Yuba (ref_94) 2013; 34
Rowshanravan (ref_127) 2018; 131
Liang (ref_83) 2005; 301
Shi (ref_26) 2017; 17
Shirota (ref_60) 2014; 13
Ludewig (ref_81) 2000; 19
Danhier (ref_48) 2016; 244
Rueda (ref_51) 2017; 222
Allen (ref_33) 2004; 303
Hu (ref_25) 2016; 98
Varypataki (ref_80) 2015; 17
Park (ref_166) 2012; 11
(ref_18) 2015; 75
Malard (ref_105) 2018; 278
Kim (ref_185) 2019; 19
Merino (ref_139) 2019; 17
Yuba (ref_93) 2013; 34
Ramakrishnan (ref_170) 2010; 120
Sevko (ref_168) 2013; 190
Gajewski (ref_13) 2013; 14
Yue (ref_178) 2019; 10
Gao (ref_90) 2017; 12
Watson (ref_43) 2012; 30
Liang (ref_53) 2012; 72
Lee (ref_102) 1996; 271
Blanco (ref_99) 2015; 33
Yegutkin (ref_157) 2008; 1783
Nikpoor (ref_130) 2017; 13
Margadant (ref_161) 2010; 11
Casella (ref_67) 2008; 65
Dubrot (ref_52) 2010; 59
Cekic (ref_154) 2014; 74
Weiner (ref_109) 2015; 15
Gao (ref_30) 2019; 40
Chen (ref_20) 2015; 125
Salehi (ref_31) 2017; 71
Richards (ref_70) 1989; 7
Sanmamed (ref_19) 2018; 175
Chauhan (ref_47) 2013; 12
Taube (ref_114) 2012; 4
Guo (ref_39) 2017; 7
Li (ref_10) 2009; 15
Tarhini (ref_21) 2007; 25
Iyer (ref_38) 2011; 32
Muller (ref_149) 2005; 11
Hodi (ref_9) 2008; 105
Gabrilovich (ref_16) 2009; 9
Sahdev (ref_56) 2014; 31
Bayyurt (ref_61) 2017; 247
Barral (ref_92) 2009; 124
Peters (ref_115) 2017; 80
Anderson (ref_146) 2016; 44
Ozcelikkale (ref_36) 2013; 10
Tripathi (ref_11) 2012; 6
Schmidt (ref_42) 2016; 8
Barber (ref_132) 2006; 439
Pardoll (ref_121) 2012; 12
Zhu (ref_182) 2017; 8
Wang (ref_188) 2014; 26
Peer (ref_44) 2012; 161
Brahmer (ref_118) 2012; 366
Huang (ref_176) 2017; 139
Ou (ref_141) 2019; 11
Aoki (ref_165) 2005; 4
Zappasodi (ref_112) 2008; 93
ref_183
Sakaguchi (ref_62) 2008; 19
Shin (ref_15) 2009; 256
Maeda (ref_45) 2015; 91
Hanahan (ref_2) 2011; 144
Maruyama (ref_34) 2011; 63
Fries (ref_72) 1992; 89
Perche (ref_106) 2011; 7
Chen (ref_150) 2014; 37
Cruz (ref_50) 2014; 9
Zheng (ref_167) 2017; 11
Kranz (ref_100) 2016; 534
Parry (ref_134) 2005; 25
Shi (ref_184) 2020; 233
Zhu (ref_177) 2018; 12
References_xml – volume: 12
  start-page: 252
  year: 2012
  ident: ref_121
  article-title: The blockade of immune checkpoints in cancer immunotherapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3239
– volume: 131
  start-page: 58
  year: 2018
  ident: ref_127
  article-title: CTLA-4: A moving target in immunotherapy
  publication-title: Blood
  doi: 10.1182/blood-2017-06-741033
– volume: 161
  start-page: 600
  year: 2012
  ident: ref_44
  article-title: Altering the immune response with lipid-based nanoparticles
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2011.12.034
– volume: 13
  start-page: 273
  year: 2016
  ident: ref_1
  article-title: The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2016.25
– volume: 307
  start-page: 331
  year: 2019
  ident: ref_84
  article-title: Tailoring the lipid composition of nanoparticles modulates their cellular uptake and affects the viability of triple negative breast cancer cells
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2019.06.025
– volume: 10
  start-page: 2111
  year: 2013
  ident: ref_36
  article-title: Multifaceted transport characteristics of nanomedicine: Needs for characterization in dynamic environment
  publication-title: Mol. Pharm.
  doi: 10.1021/mp3005947
– volume: 8
  start-page: 1
  year: 2016
  ident: ref_42
  article-title: Liposome-based adjuvants for subunit vaccines: Formulation strategies for subunit antigens and immunostimulators
  publication-title: Pharmaceutics
– volume: 26
  start-page: 677
  year: 2008
  ident: ref_8
  article-title: PD-1 and Its Ligands in Tolerance and Immunity
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.26.021607.090331
– volume: 9
  start-page: 1
  year: 2020
  ident: ref_98
  article-title: A liposomal RNA vaccine inducing neoantigen-specific CD4+ T cells augments the antitumor activity of local radiotherapy in mice
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2020.1771925
– volume: 305
  start-page: 197
  year: 2004
  ident: ref_3
  article-title: Immunotherapy: Bewitched, bothered, and bewildered no more
  publication-title: Science
  doi: 10.1126/science.1099688
– volume: 160
  start-page: 395
  year: 2017
  ident: ref_27
  article-title: NGR-modified pH-sensitive liposomes for controlled release and tumor target delivery of docetaxel
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2017.09.052
– volume: 271
  start-page: 8481
  year: 1996
  ident: ref_102
  article-title: DNA for Tumor Cell-specific Gene Transfer
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.14.8481
– volume: 125
  start-page: 3384
  year: 2015
  ident: ref_20
  article-title: Anti–PD-1 / PD-L1 therapy of human cancer: Past, present, and future Find the latest version: Anti–PD-1/PD-L1 therapy of human cancer: Past, present, and future
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI80011
– volume: 3
  start-page: 78ra31
  year: 2011
  ident: ref_14
  article-title: IL-25 causes apoptosis of IL-25R-expressing breast cancer cells without toxicity to nonmalignant cells
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3001374
– ident: ref_97
  doi: 10.3390/ijms21062244
– volume: 108
  start-page: 238
  year: 2008
  ident: ref_155
  article-title: Adenosine receptor antagonists: Translating medicinal chemistry and pharmacology into clinical utility
  publication-title: Chem. Rev.
  doi: 10.1021/cr0682195
– volume: 305
  start-page: 200
  year: 2004
  ident: ref_24
  article-title: Cancer immunotherapy: A treatment for the masses
  publication-title: Science
  doi: 10.1126/science.1100369
– volume: 21
  start-page: 503
  year: 2004
  ident: ref_144
  article-title: Role of LAG-3 in regulatory T cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2004.08.010
– volume: 17
  start-page: 20
  year: 2017
  ident: ref_26
  article-title: Cancer nanomedicine: Progress, challenges and opportunities
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2016.108
– volume: 31
  start-page: 2563
  year: 2014
  ident: ref_56
  article-title: Biomaterials for nanoparticle vaccine delivery systems
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-014-1419-y
– ident: ref_89
  doi: 10.3390/cancers12040810
– volume: 12
  start-page: 1251
  year: 2017
  ident: ref_90
  article-title: Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S125866
– volume: 175
  start-page: 313
  year: 2018
  ident: ref_19
  article-title: A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization
  publication-title: Cell
  doi: 10.1016/j.cell.2018.09.035
– volume: 135
  start-page: 2697
  year: 2015
  ident: ref_73
  article-title: In situ Delivery of Tumor Antigen- and Adjuvant-Loaded Liposomes Boosts Antigen-Specific T-Cell Responses by Human Dermal Dendritic Cells
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/jid.2015.226
– volume: 132
  start-page: 2471
  year: 2013
  ident: ref_172
  article-title: Immunomodulatory effects of low dose chemotherapy and perspectives of its combination with immunotherapy
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.27801
– volume: 11
  start-page: 97
  year: 2010
  ident: ref_161
  article-title: Integrin-TGF-Β crosstalk in fibrosis, cancer and wound healing
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2009.276
– volume: 359
  start-page: 693
  year: 1992
  ident: ref_164
  article-title: Targeted disruption of the mouse TGF-beita1 gene results in multifocal idammatory disease
  publication-title: Nature
  doi: 10.1038/359693a0
– volume: 11
  start-page: 312
  year: 2005
  ident: ref_149
  article-title: Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy
  publication-title: Nat. Med.
  doi: 10.1038/nm1196
– volume: 75
  start-page: 5008
  year: 2015
  ident: ref_18
  article-title: Antibody-dependent phagocytosis of tumor cells by Macrophages: A Potent effector mechanism of monoclonal antibody therapy of cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-1330
– volume: 3
  start-page: 379
  year: 2006
  ident: ref_82
  article-title: Particulate Systems as Adjuvants and Carriers for Peptide and Protein Antigens
  publication-title: Curr. Drug Deliv.
  doi: 10.2174/156720106778559029
– volume: 6
  start-page: 1406
  year: 2000
  ident: ref_110
  article-title: Artificial antigen-presenting cells as a tool to exploit the immune “synapse”
  publication-title: Nat. Med.
  doi: 10.1038/82231
– volume: 26
  start-page: 8154
  year: 2014
  ident: ref_188
  article-title: Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402996
– volume: 4
  start-page: 127ra37
  year: 2012
  ident: ref_114
  article-title: Colocalization of inflammatory response with B7-H1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3003689
– volume: 57
  start-page: 1523
  year: 2008
  ident: ref_173
  article-title: Combined modality immunotherapy and chemotherapy: A new perspective
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-008-0531-4
– volume: 31
  start-page: 4139
  year: 2010
  ident: ref_40
  article-title: Development of a bifunctional immunoliposome system for combined drug delivery and imaging in vivo
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.01.086
– volume: 10
  start-page: 1185
  year: 2009
  ident: ref_133
  article-title: Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1790
– volume: 320
  start-page: 19
  year: 2020
  ident: ref_181
  article-title: Photodynamic cancer therapy enhances accumulation of nanoparticles in tumor-associated myeloid cells
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2019.12.052
– ident: ref_183
  doi: 10.3390/molecules21030342
– volume: 8
  start-page: 5670
  year: 2014
  ident: ref_187
  article-title: Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/nn5002112
– volume: 79
  start-page: 1438
  year: 2000
  ident: ref_140
  article-title: Tunable pH-sensitive liposomes composed of mixtures of cationic and anionic lipids
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(00)76395-8
– volume: 70
  start-page: 3052
  year: 2010
  ident: ref_169
  article-title: 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-3690
– volume: 13
  start-page: 902
  year: 2007
  ident: ref_116
  article-title: FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-06-2363
– volume: 316
  start-page: 1628
  year: 2007
  ident: ref_69
  article-title: The Vaccine Adjuvant Monophosphoryl Lipid A as a TRIF-biased Agonist of TLR4
  publication-title: Science
  doi: 10.1126/science.1138963
– volume: 15
  start-page: 1623
  year: 2009
  ident: ref_10
  article-title: Anti-programmed death-1 synergizes with granulocyte macrophage colony-stimulating factor-secreting tumor cell immunotherapy providing therapeutic benefit to mice with established tumors
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-08-1825
– volume: 55
  start-page: 403
  year: 2003
  ident: ref_37
  article-title: PEGylated nanoparticles for biological and pharmaceutical applications
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/S0169-409X(02)00226-0
– volume: 65
  start-page: 3231
  year: 2008
  ident: ref_67
  article-title: Putting endotoxin to work for us: Monophosphoryl lipid a as a safe and effective vaccine adjuvant
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-008-8228-6
– volume: 93
  start-page: 1523
  year: 2008
  ident: ref_112
  article-title: The effect of artificial antigen-presenting cells with preclustered anti-CD28/-CD3/-LFA-1 monoclonal antibodies on the induction of ex vivo expansion of functional human antitumor T cells
  publication-title: Haematologica
  doi: 10.3324/haematol.12521
– volume: 9
  start-page: 162
  year: 2009
  ident: ref_16
  article-title: Myeloid-derived suppressor cells as regulators of the immune system
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2506
– volume: 12
  start-page: 9815
  year: 2018
  ident: ref_108
  article-title: Dendritic Cell Targeting mRNA Lipopolyplexes Combine Strong Antitumor T-Cell Immunity with Improved Inflammatory Safety
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00966
– volume: 52
  start-page: 39
  year: 2018
  ident: ref_17
  article-title: Emerging targets in cancer immunotherapy
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2017.10.001
– volume: 105
  start-page: 20410
  year: 2008
  ident: ref_122
  article-title: CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0810114105
– volume: 40
  start-page: 1129
  year: 2019
  ident: ref_30
  article-title: Overview of recent advances in liposomal nanoparticle-based cancer immunotherapy
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/s41401-019-0281-1
– volume: 62
  start-page: 909
  year: 2013
  ident: ref_117
  article-title: Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-013-1396-8
– volume: 4
  start-page: 450
  year: 2005
  ident: ref_165
  article-title: Transforming growth factor β (TGF-β) and autoimmunity
  publication-title: Autoimmun. Rev.
  doi: 10.1016/j.autrev.2005.03.006
– volume: 124
  start-page: 219
  year: 2009
  ident: ref_92
  article-title: Functions of the cytoplasmic RNA sensors RIG-I and MDA-5: Key regulators of innate immunity
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2009.06.012
– volume: 20
  start-page: 882
  year: 2019
  ident: ref_174
  article-title: Tumor Microenvironmental pH and Enzyme Dual Responsive Polymer-Liposomes for Synergistic Treatment of Cancer Immuno-Chemotherapy
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.8b01510
– volume: 56
  start-page: 1459
  year: 2007
  ident: ref_6
  article-title: Density of DC-LAMP + mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-007-0286-3
– volume: 14
  start-page: 1014
  year: 2013
  ident: ref_13
  article-title: Innate and adaptive immune cells in the tumor microenvironment
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2703
– volume: 72
  start-page: 2791
  year: 2012
  ident: ref_53
  article-title: Inhibiting systemic autophagy during interleukin 2 immunotherapy promotes long-term tumor regression
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-0320
– volume: 19
  start-page: 5626
  year: 2013
  ident: ref_158
  article-title: Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-13-0545
– volume: 34
  start-page: 3042
  year: 2013
  ident: ref_94
  article-title: A liposome-based antigen delivery system using pH-sensitive fusogenic polymers for cancer immunotherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.12.031
– volume: 12
  start-page: 3780
  year: 2018
  ident: ref_177
  article-title: Nanoenzyme-Augmented Cancer Sonodynamic Therapy by Catalytic Tumor Oxygenation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00999
– volume: 37
  start-page: 123
  year: 2014
  ident: ref_150
  article-title: Targeted siRNA Silencing of Indoleamine 2, 3-Dioxygenase in Antigen-presenting Cells Using Mannose-conjugated Liposomes: A Novel Strategy for Treatment of Melanoma
  publication-title: J. Immunother.
  doi: 10.1097/CJI.0000000000000022
– volume: 32
  start-page: 2605
  year: 2011
  ident: ref_38
  article-title: Biomaterials The effect of internalizing human single chain antibody fragment on liposome targeting to epithelioid and sarcomatoid mesothelioma
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.11.073
– volume: 190
  start-page: 2464
  year: 2013
  ident: ref_168
  article-title: Antitumor Effect of Paclitaxel Is Mediated by Inhibition of Myeloid-Derived Suppressor Cells and Chronic Inflammation in the Spontaneous Melanoma Model
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1202781
– volume: 19
  start-page: 23
  year: 2000
  ident: ref_81
  article-title: In vivo antigen loading and activation of dendritic cells via a liposomal peptide vaccine mediates protective antiviral and anti-tumour immunity
  publication-title: Vaccine
  doi: 10.1016/S0264-410X(00)00163-8
– volume: 73
  start-page: 1547
  year: 2013
  ident: ref_55
  article-title: Localized Immunotherapy via Liposome-Anchored Anti- CD137 þ IL-2 Prevents Lethal Toxicity and Elicits Local and Systemic Antitumor Immunity
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-3343
– volume: 12
  start-page: 864
  year: 2007
  ident: ref_129
  article-title: Review: Anti CTLA-4 Antibody Ipilimumab: Case Studies of Clinical Response and Immune-Related Adverse Events
  publication-title: Oncologist
  doi: 10.1634/theoncologist.12-7-864
– volume: 233
  start-page: 119755
  year: 2020
  ident: ref_184
  article-title: Catalase-based liposomal for reversing immunosuppressive tumor microenvironment and enhanced cancer chemo-photodynamic therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.119755
– volume: 119
  start-page: 44
  year: 2017
  ident: ref_46
  article-title: Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2017.07.007
– volume: 244
  start-page: 108
  year: 2016
  ident: ref_48
  article-title: To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2016.11.015
– volume: 31
  start-page: 220
  year: 2010
  ident: ref_160
  article-title: TGF-β and immune cells: An important regulatory axis in the tumor microenvironment and progression
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2010.04.002
– volume: 9
  start-page: 548
  year: 2003
  ident: ref_138
  article-title: Blockade of B7-H1 improves myeloid dendritic cell–mediated antitumor immunity
  publication-title: Nat. Med.
  doi: 10.1038/nm863
– volume: 44
  start-page: 3672
  year: 2007
  ident: ref_75
  article-title: Mechanism of adjuvant activity of cationic liposome: Phosphorylation of a MAP kinase, ERK and induction of chemokines
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2007.04.009
– volume: 16
  start-page: 1507
  year: 2008
  ident: ref_63
  article-title: Efficient MHC class I presentation by controlled intracellular trafficking of antigens in octaarginine-modified liposomes
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2008.122
– volume: 6
  start-page: 2141
  year: 2016
  ident: ref_175
  article-title: A New Concept of Enhancing Immuno-Chemothera- peutic Effects Against B16F10 Tumor via Systemic Administration by Taking Advantages of the Limitation of EPR Effect
  publication-title: Theranostics
  doi: 10.7150/thno.16184
– volume: 178
  start-page: 6259
  year: 2007
  ident: ref_64
  article-title: Antigenic Targeting of the Human Mannose Receptor Induces Tumor Immunity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.178.10.6259
– volume: 168
  start-page: 926
  year: 2002
  ident: ref_68
  article-title: Monophosphoryl Lipid A Activates Both Human Dendritic Cells and T Cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.168.2.926
– volume: 3
  start-page: 541
  year: 1995
  ident: ref_125
  article-title: Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4
  publication-title: Immunity
  doi: 10.1016/1074-7613(95)90125-6
– volume: 13
  start-page: 299
  year: 2014
  ident: ref_60
  article-title: Recent progress concerning CpG DNA and its use as a vaccine adjuvant
  publication-title: Expert Rev. Vaccines
  doi: 10.1586/14760584.2014.863715
– volume: 59
  start-page: 1223
  year: 2010
  ident: ref_52
  article-title: Treatment with anti-CD137 mAbs causes intense accumulations of liver T cells without selective antitumor immunotherapeutic effects in this organ
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-010-0846-9
– volume: 130
  start-page: 22
  year: 2008
  ident: ref_88
  article-title: Reactive oxygen species play a central role in the activity of cationic liposome based cancer vaccine
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2008.05.005
– volume: 36
  start-page: 160
  year: 2018
  ident: ref_111
  article-title: Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4047
– volume: 80
  start-page: 881
  year: 2017
  ident: ref_115
  article-title: The potential of multi-compound nanoparticles to bypass drug resistance in cancer
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/s00280-017-3427-1
– volume: 26
  start-page: 2375
  year: 2015
  ident: ref_120
  article-title: Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdv383
– volume: 42
  start-page: 523
  year: 2015
  ident: ref_123
  article-title: Cancer and the Immune System: Basic Concepts and Targets for Intervention
  publication-title: Semin. Oncol.
  doi: 10.1053/j.seminoncol.2015.05.003
– volume: 278
  start-page: 110
  year: 2018
  ident: ref_105
  article-title: Preclinical evaluation of mRNA trimannosylated lipopolyplexes as therapeutic cancer vaccines targeting dendritic cells
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2018.03.035
– volume: 35
  start-page: 76
  year: 2015
  ident: ref_119
  article-title: Managing Immune Checkpoint-Blocking Antibody Side Effects
  publication-title: Am. Soc. Clin. Oncol. Educ. B
  doi: 10.14694/EdBook_AM.2015.35.76
– volume: 203
  start-page: 883
  year: 2006
  ident: ref_131
  article-title: Tissue expression of PD-L1 mediates peripheral T cell tolerance
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20051776
– volume: 63
  start-page: 161
  year: 2011
  ident: ref_34
  article-title: Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2010.09.003
– volume: 269
  start-page: 347
  year: 2018
  ident: ref_77
  article-title: Hollow microneedle-mediated micro-injections of a liposomal HPV E743–63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.11.035
– volume: 9
  start-page: 435
  year: 2014
  ident: ref_50
  article-title: Liposomes containing NY-ESO-1/tetanus toxoid and adjuvant peptides targeted to human dendritic cells via the Fc receptor for cancer vaccines
  publication-title: Nanomedicine
  doi: 10.2217/nnm.13.66
– volume: 89
  start-page: 358
  year: 1992
  ident: ref_72
  article-title: Liposomal malaria vaccine in humans: A safe and potent adjuvant strategy
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.89.1.358
– volume: 7
  start-page: 775
  year: 2017
  ident: ref_39
  article-title: Liposomal Nanoparticles Carrying anti-IL6R Antibody to the Tumour Microenvironment Inhibit Metastasis in Two Molecular Subtypes of Breast Cancer Mouse Models
  publication-title: Theranostics
  doi: 10.7150/thno.17237
– volume: 226
  start-page: 98
  year: 2016
  ident: ref_76
  article-title: Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: A comparative study of cationic liposomes and PLGA nanoparticles
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2016.02.018
– volume: 25
  start-page: 9543
  year: 2005
  ident: ref_134
  article-title: CTLA-4 and PD-1 Receptors Inhibit T-Cell Activation by Distinct Mechanisms
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.21.9543-9553.2005
– volume: 105
  start-page: 3005
  year: 2008
  ident: ref_9
  article-title: Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0712237105
– volume: 23
  start-page: 385
  year: 2006
  ident: ref_74
  article-title: Immunostimulation of dendritic cells by cationic liposomes
  publication-title: Mol. Membr. Biol.
  doi: 10.1080/09687860600790537
– volume: 74
  start-page: 705
  year: 2014
  ident: ref_5
  article-title: Dendritic cells in tumor-associated tertiary lymphoid structures signal a th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ t cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-1342
– volume: 11
  start-page: 895
  year: 2012
  ident: ref_166
  article-title: Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3355
– volume: 366
  start-page: 2443
  year: 2012
  ident: ref_135
  article-title: Safety, Activity, and Immune Correlates of anti-PD-1 Antibody in Cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1200690
– volume: 11
  start-page: 790
  year: 2012
  ident: ref_163
  article-title: Targeting the TGFβ signalling pathway in disease
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3810
– ident: ref_29
  doi: 10.3390/pharmaceutics9020012
– volume: 32
  start-page: 5134
  year: 2011
  ident: ref_66
  article-title: Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.03.067
– volume: 8
  start-page: 3636
  year: 2014
  ident: ref_162
  article-title: Nanoparticle-delivered transforming growth factor-β siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment
  publication-title: ACS Nano.
  doi: 10.1021/nn500216y
– volume: 5
  start-page: 832
  year: 2017
  ident: ref_180
  article-title: Photodynamic-immune checkpoint therapy eradicates local and distant tumors by CD8+ T cells
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-17-0055
– volume: 63
  start-page: 136
  year: 2011
  ident: ref_35
  article-title: The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2010.04.009
– volume: 14
  start-page: 3888
  year: 2017
  ident: ref_152
  article-title: Lymphoma Immunochemotherapy: Targeted Delivery of Doxorubicin via a Dual Functional Nanocarrier
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.7b00606
– volume: 71
  start-page: 1327
  year: 2017
  ident: ref_31
  article-title: Liposome-based drug co-delivery systems in cancer cells
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.11.073
– volume: 33
  start-page: 941
  year: 2015
  ident: ref_99
  article-title: Principles of nanoparticle design for overcoming biological barriers to drug delivery
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3330
– volume: 12
  start-page: 11041
  year: 2018
  ident: ref_153
  article-title: Breast Cancer Chemo-immunotherapy through Liposomal Delivery of an Immunogenic Cell Death Stimulus Plus Interference in the IDO-1 Pathway
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b05189
– volume: 106
  start-page: 255
  year: 2001
  ident: ref_4
  article-title: Dendritic cells: Specialized and regulated antigen processing machines
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00449-4
– volume: 256
  start-page: 72
  year: 2009
  ident: ref_15
  article-title: Vascular endothelial growth factor-induced chemotaxis and IL-10 from T cells
  publication-title: Cell. Immunol.
  doi: 10.1016/j.cellimm.2009.01.006
– volume: 210
  start-page: 217
  year: 2015
  ident: ref_41
  article-title: Immunoliposome-mediated drug delivery to Plasmodium-infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial strategy
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2015.05.284
– volume: 17
  start-page: 216
  year: 2015
  ident: ref_80
  article-title: Cationic Liposomes Loaded with a Synthetic Long Peptide and Poly(I:C): A Defined Adjuvanted Vaccine for Induction of Antigen-Specific T Cell Cytotoxicity
  publication-title: AAPS J.
  doi: 10.1208/s12248-014-9686-4
– volume: 14
  start-page: 3978
  year: 2017
  ident: ref_137
  article-title: Nuclear and Fluorescent Labeled PD-1-Liposome-DOX-64Cu/IRDye800CW Allows Improved Breast Tumor Targeted Imaging and Therapy
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.7b00649
– volume: 10
  start-page: 3223
  year: 2010
  ident: ref_22
  article-title: Nanotechnology in drug delivery and tissue engineering: From discovery to applications
  publication-title: Nano Lett.
  doi: 10.1021/nl102184c
– volume: 17
  start-page: 13
  year: 2019
  ident: ref_139
  article-title: A new immune-nanoplatform for promoting adaptive antitumor immune response
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2018.12.016
– volume: 91
  start-page: 3
  year: 2015
  ident: ref_45
  article-title: Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2015.01.002
– volume: 144
  start-page: 646
  year: 2011
  ident: ref_2
  article-title: Hallmarks of cancer: The next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 233
  start-page: 5189
  year: 2018
  ident: ref_59
  article-title: Nanoliposomes as the adjuvant delivery systems in cancer immunotherapy
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.26361
– volume: 74
  start-page: 7239
  year: 2014
  ident: ref_154
  article-title: Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-3581
– volume: 25
  start-page: 1567
  year: 2017
  ident: ref_95
  article-title: Dual Functional LipoMET Mediates Envelope-type Nanoparticles to Combinational Oncogene Silencing and Tumor Growth Inhibition
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2017.02.008
– volume: 15
  start-page: 1677
  year: 2020
  ident: ref_142
  article-title: Multifunctional immunoliposomes combining catalase and PD-L1 antibodies overcome tumor hypoxia and enhance immunotherapeutic effects against melanoma
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S225807
– volume: 7
  start-page: 1
  year: 2016
  ident: ref_189
  article-title: Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13193
– volume: 98
  start-page: 19
  year: 2016
  ident: ref_25
  article-title: Recent advances of cocktail chemotherapy by combination drug delivery systems
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2015.10.022
– volume: 10
  start-page: 513
  year: 2011
  ident: ref_87
  article-title: Cationic liposomes as vaccine adjuvants
  publication-title: Expert Rev. Vaccines
  doi: 10.1586/erv.11.17
– volume: 303
  start-page: 1818
  year: 2004
  ident: ref_33
  article-title: Drug Delivery Systems: Entering the Mainstream
  publication-title: Science
  doi: 10.1126/science.1095833
– volume: 6
  start-page: 812
  year: 2018
  ident: ref_156
  article-title: CAR-T cells surface-engineered with drug-encapsulated nanoparticles can ameliorate intratumoral T-cell hypofunction
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-17-0502
– volume: 8
  start-page: 208
  year: 2016
  ident: ref_28
  article-title: Targeting cancer cells in the tumor microenvironment: Opportunities and challenges in combinatorial nanomedicine
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
  doi: 10.1002/wnan.1358
– volume: 460
  start-page: 264
  year: 2014
  ident: ref_104
  article-title: Lipopolyplexes comprising imidazole/imidazolium lipophosphoramidate, histidinylated polyethyleneimine and siRNA as efficient formulation for siRNA transfection
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2013.11.005
– volume: 5
  start-page: 222
  year: 2017
  ident: ref_79
  article-title: Efficient eradication of established tumors in mice with cationic liposome-based synthetic long-peptide vaccines
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-16-0283
– volume: 222
  start-page: 989
  year: 2017
  ident: ref_51
  article-title: Effect of TLR ligands co-encapsulated with multiepitopic antigen in nanoliposomes targeted to human DCs via Fc receptor for cancer vaccines
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2017.06.002
– volume: 30
  start-page: 2256
  year: 2012
  ident: ref_43
  article-title: Design considerations for liposomal vaccines: Influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2012.01.070
– volume: 14
  start-page: 221
  year: 2014
  ident: ref_103
  article-title: Lipid-based mRNA vaccine delivery systems
  publication-title: Expert Rev. Vaccines
  doi: 10.1586/14760584.2015.986104
– volume: 7
  start-page: 193
  year: 2011
  ident: ref_49
  article-title: Impact of nanoparticles on the immune system
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2011.1264
– volume: 7
  start-page: 10048
  year: 2013
  ident: ref_159
  article-title: Two-wave nanotherapy to target the stroma and optimize gemcitabine delivery to a human pancreatic cancer model in mice
  publication-title: ACS Nano
  doi: 10.1021/nn404083m
– volume: 11
  start-page: 3089
  year: 2017
  ident: ref_167
  article-title: Enhancing Adoptive Cell Therapy of Cancer through targeted delivery of small-molecule immunomodulators to internalizing or noninternalizing receptors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00078
– volume: 439
  start-page: 682
  year: 2006
  ident: ref_132
  article-title: Restoring function in exhausted CD8 T cells during chronic viral infection
  publication-title: Nature
  doi: 10.1038/nature04444
– volume: 534
  start-page: 396
  year: 2016
  ident: ref_100
  article-title: Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy
  publication-title: Nature
  doi: 10.1038/nature18300
– volume: 9
  start-page: 1
  year: 2018
  ident: ref_54
  article-title: Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity
  publication-title: Nat. Commun.
– volume: 7
  start-page: 506
  year: 1989
  ident: ref_70
  article-title: mmunogenicity of liposomal malaria sporozoite antigen in monkeys: Adjuvant effects of aluminium hydroxide and non-pyrogenic liposomal lipid A
  publication-title: Vaccine
  doi: 10.1016/0264-410X(89)90274-0
– volume: 19
  start-page: 1040
  year: 2008
  ident: ref_62
  article-title: Preparation of pH-sensitive poly(glycidol) derivatives with varying hydrophobicities: Their ability to sensitize stable liposomes to pH
  publication-title: Bioconjug. Chem.
  doi: 10.1021/bc7004736
– volume: 71
  start-page: 3540
  year: 2011
  ident: ref_145
  article-title: Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-0096
– volume: 61
  start-page: 233
  year: 1999
  ident: ref_85
  article-title: Positively charged liposome functions as an efficient immunoadjuvant in inducing cell-mediated immune response to soluble proteins
  publication-title: J. Control. Release
  doi: 10.1016/S0168-3659(99)00097-8
– volume: 182
  start-page: 459
  year: 1995
  ident: ref_126
  article-title: CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.182.2.459
– volume: 120
  start-page: 1111
  year: 2010
  ident: ref_170
  article-title: Chemotherapy enhances tumor cell susceptibility to CTL- mediated killing during cancer immunotherapy in mice
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI40269
– ident: ref_12
  doi: 10.1007/978-3-319-39147-2_1
– volume: 301
  start-page: 247
  year: 2005
  ident: ref_83
  article-title: Encapsulation of lipopeptides within liposomes: Effect of number of lipid chains, chain length and method of liposome preparation
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2005.06.010
– volume: 3
  start-page: 1
  year: 2015
  ident: ref_148
  article-title: Targeting the indoleamine 2,3-dioxygenase pathway in cancer
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-015-0094-9
– volume: 25
  start-page: 3802
  year: 2007
  ident: ref_21
  article-title: Durable complete responses with high-dose bolus interleukin-2 in patients with metastatic melanoma who have experienced progression after biochemotherapy
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2006.10.2822
– volume: 6
  start-page: 231
  year: 2012
  ident: ref_11
  article-title: Understanding the role of stromal fibroblasts in cancer progression
  publication-title: Cell Adhes. Migr.
  doi: 10.4161/cam.20419
– volume: 232
  start-page: 51
  year: 2016
  ident: ref_96
  article-title: Comparing exosome-like vesicles with liposomes for the functional cellular delivery of small RNAs
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2016.04.005
– volume: 366
  start-page: 2455
  year: 2012
  ident: ref_118
  article-title: Safety and Activity of Anti–PD-L1 Antibody in Patients with Advanced Cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1200694
– volume: 34
  start-page: 5711
  year: 2013
  ident: ref_93
  article-title: The application of pH-sensitive polymer-lipids to antigen delivery forcancer immunotherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.04.007
– volume: 19
  start-page: 5185
  year: 2019
  ident: ref_185
  article-title: Immunomodulatory Lipocomplex Functionalized with Photosensitizer-Embedded Cancer Cell Membrane Inhibits Tumor Growth and Metastasis
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01571
– ident: ref_179
  doi: 10.1155/2016/5274084
– volume: 33
  start-page: 464
  year: 2010
  ident: ref_7
  article-title: Designing vaccines based on biology of human dendritic cell subsets
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.10.007
– volume: 236
  start-page: 1
  year: 2016
  ident: ref_107
  article-title: Progress in the development of lipopolyplexes as efficient non-viral gene delivery systems
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2016.06.023
– volume: 13
  start-page: 2671
  year: 2017
  ident: ref_130
  article-title: Improved tumor accumulation and therapeutic efficacy of CTLA-4-blocking antibody using liposome-encapsulated antibody: In vitro and in vivo studies
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2017.08.010
– volume: 10
  start-page: 1
  year: 2019
  ident: ref_178
  article-title: Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09760-3
– volume: 35
  start-page: 207
  year: 2018
  ident: ref_78
  article-title: Cationic Liposomes: A Flexible Vaccine Delivery System for Physicochemically Diverse Antigenic Peptides
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-018-2490-6
– volume: 151
  start-page: 458
  year: 2010
  ident: ref_86
  article-title: Nanoparticles and the immune system
  publication-title: Endocrinology
  doi: 10.1210/en.2009-1082
– volume: 286
  start-page: 369
  year: 2018
  ident: ref_143
  article-title: Nanotechnology-mediated immunochemotherapy combined with docetaxel and PD-L1 antibody increase therapeutic effects and decrease systemic toxicity
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2018.08.011
– volume: 15
  start-page: 361
  year: 2015
  ident: ref_109
  article-title: Building better monoclonal antibody-based therapeutics
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3930
– volume: 35
  start-page: S185
  year: 2015
  ident: ref_113
  article-title: Immune evasion in cancer: Mechanistic basis and therapeutic strategies
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2015.03.004
– volume: 1
  start-page: 297
  year: 2006
  ident: ref_57
  article-title: Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential
  publication-title: Int. J. Nanomedicine
– volume: 303
  start-page: 1529
  year: 2004
  ident: ref_91
  article-title: Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA
  publication-title: Science
  doi: 10.1126/science.1093616
– volume: 8
  start-page: 860
  year: 2018
  ident: ref_190
  article-title: An endogenous vaccine based on fluorophores and multivalent immunoadjuvants regulates tumor micro-environment for synergistic photothermal and immunotherapy
  publication-title: Theranostics
  doi: 10.7150/thno.19826
– volume: 12
  start-page: 958
  year: 2013
  ident: ref_47
  article-title: Strategies for advancing cancer nanomedicine
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3792
– volume: 31
  start-page: 1
  year: 2019
  ident: ref_136
  article-title: Cocktail Strategy Based on Spatio-Temporally Controlled Nano Device Improves Therapy of Breast Cancer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806202
– volume: 8
  start-page: 1723
  year: 2018
  ident: ref_65
  article-title: The enhanced antitumor-specific immune response with mannose- and CpG-ODN-coated liposomes delivering TRP2 peptide
  publication-title: Theranostics
  doi: 10.7150/thno.22056
– ident: ref_147
  doi: 10.2147/ITT.S32617
– volume: 139
  start-page: 1275
  year: 2017
  ident: ref_176
  article-title: Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11846
– volume: 35
  start-page: 369
  year: 2018
  ident: ref_23
  article-title: Novel “Stereoscopic Response” Strategy Can Be Used in Combination Therapy
  publication-title: Crit. Rev. Ther. Drug Carr. Syst.
  doi: 10.1615/CritRevTherDrugCarrierSyst.2018020591
– volume: 12
  start-page: 405
  year: 1998
  ident: ref_124
  article-title: CTLA-4 can function as a potent negative regulator of T cell activation
  publication-title: Immunity
– volume: 13
  start-page: 1
  year: 2015
  ident: ref_128
  article-title: Immune related adverse events associated with anti-CTLA-4 antibodies: Systematic review and meta-analysis
  publication-title: BMC Med.
  doi: 10.1186/s12916-015-0455-8
– volume: 8
  start-page: 1
  year: 2017
  ident: ref_182
  article-title: Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02191-y
– volume: 1783
  start-page: 673
  year: 2008
  ident: ref_157
  article-title: Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2008.01.024
– volume: 9
  start-page: 5542
  year: 2019
  ident: ref_151
  article-title: Enhanced cancer therapy through synergetic photodynamic/immune checkpoint blockade mediated by a liposomal conjugate comprised of porphyrin and IDO inhibitor
  publication-title: Theranostics
  doi: 10.7150/thno.35343
– volume: 44
  start-page: 989
  year: 2016
  ident: ref_146
  article-title: Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.05.001
– volume: 11
  start-page: 41829
  year: 2019
  ident: ref_186
  article-title: Chlorin-Based Photoactivable Galectin-3-Inhibitor Nanoliposome for Enhanced Photodynamic Therapy and NK Cell-Related Immunity in Melanoma
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b09560
– volume: 7
  start-page: 445
  year: 2011
  ident: ref_106
  article-title: Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2010.12.010
– volume: 54
  start-page: 863
  year: 2002
  ident: ref_58
  article-title: Immunological aspects of controlled antigen delivery
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/S0169-409X(02)00073-X
– volume: 18
  start-page: 107
  year: 1984
  ident: ref_71
  article-title: Phase-I study of intravenous modified lipid A
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/BF00205743
– volume: 83
  start-page: 308
  year: 2016
  ident: ref_171
  article-title: Combinatorial prospects of nano-targeted chemoimmunotherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.01.006
– volume: 65
  start-page: 36
  year: 2013
  ident: ref_32
  article-title: Liposomal drug delivery systems: From concept to clinical applications
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.09.037
– volume: 247
  start-page: 134
  year: 2017
  ident: ref_61
  article-title: Encapsulation of two different TLR ligands into liposomes confer protective immunity and prevent tumor development
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.01.004
– volume: 5
  start-page: 930
  year: 1998
  ident: ref_101
  article-title: Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery
  publication-title: Gene Ther.
  doi: 10.1038/sj.gt.3300683
– volume: 11
  start-page: 36333
  year: 2019
  ident: ref_141
  article-title: Regulatory T Cells Tailored with pH-Responsive Liposomes Shape an Immuno-Antitumor Milieu against Tumors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b11371
SSID ssj0000331839
Score 2.549075
SecondaryResourceType review_article
Snippet Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1054
SubjectTerms cancer immunotherapy
drug delivery
immunomodulation
liposome
Review
Title Liposome-Based Drug Delivery Systems in Cancer Immunotherapy
URI https://www.ncbi.nlm.nih.gov/pubmed/33158166
https://www.proquest.com/docview/2458731917
https://pubmed.ncbi.nlm.nih.gov/PMC7694212
https://doaj.org/article/e65ce88b16ba42e49435cc1b4b121fe4
Volume 12
WOSCitedRecordID wos000593704800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-4923
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331839
  issn: 1999-4923
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4923
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331839
  issn: 1999-4923
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-4923
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331839
  issn: 1999-4923
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 1999-4923
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331839
  issn: 1999-4923
  databaseCode: M2O
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-4923
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331839
  issn: 1999-4923
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5B4cAF8SY8VkZCPTU0iR0_JC5sH6ISXSJUpOUUxc6kXalkV5tdpP33jJN0H6hSL1xy8COxxuPMfLbnG4CP3NMBxrEN06qSoXDSbzQpDDlhZ6exIitv22QTajTS47HJtlJ9-TthHT1wJ7hDlKlDrW0sbSESFIbsu3OxFTZO4gpbJtBImS0w1f6DuddV04XscML1h7OrzRZx43nNyLEQO8ao5ey_zdH8977klgE6fQKPe8-RfelG_BTuYf0M9rPug6sDdrGJpGoO2D7LNqTUq-fw-dtkNm2mvzEckt0q2fF8ecmO8dpfy1ixnrecTWp25NVgzs583EgfnbV6AT9PTy6OvoZ95oTQCaUWoSOvgluZojVlVchCW0eeRslVaVQpHRLoSnlpK0JbmEbUiktEbnmFJnaYRPwl7NXTGl8Dsy5CNKhtIUtBNbpIiihGJVN6dVWoAMSNCHPX04r77BbXOcELL_n8VskH8GndbdbxatzVYejnZ93Y02K3BaQsea8s-V3KEsCHm9nNaRn5s5GixumyyUkgWnEPXgN41c32-lOkS6k_Xg1A7ejBzlh2a-rJVUvVraTxR-5v_sfg38KjxIN9v6ct3sHeYr7E9_DQ_VlMmvkA7quxHsCD4cko-zFoVwM9z5PvVJadnWe__gKFOhTX
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liposome-Based+Drug+Delivery+Systems+in+Cancer+Immunotherapy&rft.jtitle=Pharmaceutics&rft.au=Gu%2C+Zili&rft.au=Da+Silva%2C+Candido+G.&rft.au=Van+der+Maaden%2C+Koen&rft.au=Ossendorp%2C+Ferry&rft.date=2020-11-04&rft.pub=MDPI&rft.eissn=1999-4923&rft.volume=12&rft.issue=11&rft_id=info:doi/10.3390%2Fpharmaceutics12111054&rft_id=info%3Apmid%2F33158166&rft.externalDocID=PMC7694212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4923&client=summon