Liposome-Based Drug Delivery Systems in Cancer Immunotherapy
Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further improve cancer immunotherapy and even stronger immune responses by improving cell type-specific delivery and enhancing drug efficacy. Liposomes...
Gespeichert in:
| Veröffentlicht in: | Pharmaceutics Jg. 12; H. 11; S. 1054 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI
04.11.2020
MDPI AG |
| Schlagworte: | |
| ISSN: | 1999-4923, 1999-4923 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further improve cancer immunotherapy and even stronger immune responses by improving cell type-specific delivery and enhancing drug efficacy. Liposomes can offer solutions to common problems faced by several cancer immunotherapies, including the following: (1) Vaccination: Liposomes can improve the delivery of antigens and other stimulatory molecules to antigen-presenting cells or T cells; (2) Tumor normalization: Liposomes can deliver drugs selectively to the tumor microenvironment to overcome the immune-suppressive state; (3) Rewiring of tumor signaling: Liposomes can be used for the delivery of specific drugs to specific cell types to correct or modulate pathways to facilitate better anti-tumor immune responses; (4) Combinational therapy: Liposomes are ideal vehicles for the simultaneous delivery of drugs to be combined with other therapies, including chemotherapy, radiotherapy, and phototherapy. In this review, different liposomal systems specifically developed for immunomodulation in cancer are summarized and discussed. |
|---|---|
| AbstractList | Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further improve cancer immunotherapy and even stronger immune responses by improving cell type-specific delivery and enhancing drug efficacy. Liposomes can offer solutions to common problems faced by several cancer immunotherapies, including the following: (1) Vaccination: Liposomes can improve the delivery of antigens and other stimulatory molecules to antigen-presenting cells or T cells; (2) Tumor normalization: Liposomes can deliver drugs selectively to the tumor microenvironment to overcome the immune-suppressive state; (3) Rewiring of tumor signaling: Liposomes can be used for the delivery of specific drugs to specific cell types to correct or modulate pathways to facilitate better anti-tumor immune responses; (4) Combinational therapy: Liposomes are ideal vehicles for the simultaneous delivery of drugs to be combined with other therapies, including chemotherapy, radiotherapy, and phototherapy. In this review, different liposomal systems specifically developed for immunomodulation in cancer are summarized and discussed. Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further improve cancer immunotherapy and even stronger immune responses by improving cell type-specific delivery and enhancing drug efficacy. Liposomes can offer solutions to common problems faced by several cancer immunotherapies, including the following: (1) Vaccination: Liposomes can improve the delivery of antigens and other stimulatory molecules to antigen-presenting cells or T cells; (2) Tumor normalization: Liposomes can deliver drugs selectively to the tumor microenvironment to overcome the immune-suppressive state; (3) Rewiring of tumor signaling: Liposomes can be used for the delivery of specific drugs to specific cell types to correct or modulate pathways to facilitate better anti-tumor immune responses; (4) Combinational therapy: Liposomes are ideal vehicles for the simultaneous delivery of drugs to be combined with other therapies, including chemotherapy, radiotherapy, and phototherapy. In this review, different liposomal systems specifically developed for immunomodulation in cancer are summarized and discussed.Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further improve cancer immunotherapy and even stronger immune responses by improving cell type-specific delivery and enhancing drug efficacy. Liposomes can offer solutions to common problems faced by several cancer immunotherapies, including the following: (1) Vaccination: Liposomes can improve the delivery of antigens and other stimulatory molecules to antigen-presenting cells or T cells; (2) Tumor normalization: Liposomes can deliver drugs selectively to the tumor microenvironment to overcome the immune-suppressive state; (3) Rewiring of tumor signaling: Liposomes can be used for the delivery of specific drugs to specific cell types to correct or modulate pathways to facilitate better anti-tumor immune responses; (4) Combinational therapy: Liposomes are ideal vehicles for the simultaneous delivery of drugs to be combined with other therapies, including chemotherapy, radiotherapy, and phototherapy. In this review, different liposomal systems specifically developed for immunomodulation in cancer are summarized and discussed. |
| Author | Van der Maaden, Koen Gu, Zili Da Silva, Candido Ossendorp, Ferry Cruz, Luis |
| AuthorAffiliation | 3 TECOdevelopment GmbH, 53359 Rheinbach, Germany 1 Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; z.gu@lumc.nl (Z.G.); C.da_Silva@lumc.nl (C.G.D.S.) 2 Tumor Immunology Group, Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; K.van_der_Maaden@lumc.nl (K.v.d.M.); F.A.Ossendorp@lumc.nl (F.O.) |
| AuthorAffiliation_xml | – name: 3 TECOdevelopment GmbH, 53359 Rheinbach, Germany – name: 1 Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; z.gu@lumc.nl (Z.G.); C.da_Silva@lumc.nl (C.G.D.S.) – name: 2 Tumor Immunology Group, Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; K.van_der_Maaden@lumc.nl (K.v.d.M.); F.A.Ossendorp@lumc.nl (F.O.) |
| Author_xml | – sequence: 1 givenname: Zili orcidid: 0000-0001-5718-7011 surname: Gu fullname: Gu, Zili – sequence: 2 givenname: Candido orcidid: 0000-0003-1646-8356 surname: Da Silva fullname: Da Silva, Candido – sequence: 3 givenname: Koen surname: Van der Maaden fullname: Van der Maaden, Koen – sequence: 4 givenname: Ferry surname: Ossendorp fullname: Ossendorp, Ferry – sequence: 5 givenname: Luis surname: Cruz fullname: Cruz, Luis |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33158166$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9P3DAQxa2KCujCR2iVI5fQOP4TW62QYGnpSitxAM6W7Ux2jZI4tROk_faYLosAVfji0fjN78lvvqC93veA0FdcnBIii-_DWodOW5hGZyMuMcYFo5_QIZZS5lSWZO9VfYCOY7wv0iEECyL30UEqmMCcH6KfSzf46DvIL3SEOrsM0yq7hNY9QNhkN5s4Qhcz12dz3VsI2aLrpt6Pawh62Byhz41uIxw_3zN09_vX7fxPvry-WszPl7mlVTXmVlBODGdgZN1oroWxnImaVLWsam5BlpSR2jSlkMCKpCIcgBjSgMQWyoLM0GLLrb2-V0NwnQ4b5bVT_xo-rJQOKYoWFHBmQQiDudG0BCopYdZiQ02KqQGaWGdb1jCZDmoL_Rh0-wb69qV3a7XyD6rikpa4TICTZ0DwfyeIo-pctNC2ugc_RZU-IyqCJa6S9NtrrxeTXfxJ8GMrsMHHGKBR1o16dP7J2rUKF-pp3-q_-07T7N30zuDjuUeNO7UH |
| CitedBy_id | crossref_primary_10_1007_s40883_025_00475_0 crossref_primary_10_3390_ijms232415815 crossref_primary_10_1002_wnan_1942 crossref_primary_10_1002_adfm_202508570 crossref_primary_10_1016_j_critrevonc_2023_104032 crossref_primary_10_1002_chem_202203311 crossref_primary_10_3390_pharmaceutics13122003 crossref_primary_10_1080_00914037_2022_2066667 crossref_primary_10_1186_s12645_025_00314_5 crossref_primary_10_2147_NSA_S500407 crossref_primary_10_1080_08982104_2025_2451235 crossref_primary_10_1016_j_addr_2021_113905 crossref_primary_10_3390_ijms221910755 crossref_primary_10_1007_s44272_025_00039_x crossref_primary_10_1016_j_fbio_2023_103205 crossref_primary_10_1039_D1NR08550F crossref_primary_10_3390_pharmaceutics14102165 crossref_primary_10_1016_j_bbamem_2025_184419 crossref_primary_10_2217_nnm_2022_0214 crossref_primary_10_3390_ijms26114985 crossref_primary_10_1039_D2CC02143A crossref_primary_10_1097_CAD_0000000000001144 crossref_primary_10_1002_mco2_339 crossref_primary_10_1007_s42995_023_00209_7 crossref_primary_10_1016_j_jddst_2025_106847 crossref_primary_10_1016_j_actbio_2022_12_013 crossref_primary_10_1080_1061186X_2025_2467139 crossref_primary_10_1007_s11244_022_01697_0 crossref_primary_10_1016_j_jconrel_2023_04_011 crossref_primary_10_1016_j_jvir_2023_10_009 crossref_primary_10_3390_pharmaceutics16030400 crossref_primary_10_1080_02726351_2025_2517279 crossref_primary_10_3390_ph16111564 crossref_primary_10_34172_apb_2022_052 crossref_primary_10_3390_pharmaceutics17030296 crossref_primary_10_1016_j_ijbiomac_2025_145377 crossref_primary_10_3390_bioengineering12090968 crossref_primary_10_3390_gels11040245 crossref_primary_10_3390_pharmaceutics14030543 crossref_primary_10_1007_s11051_025_06435_7 crossref_primary_10_3390_jnt4030014 crossref_primary_10_1007_s11831_025_10365_x crossref_primary_10_1039_D2BM01252A crossref_primary_10_1016_j_polymer_2022_125001 crossref_primary_10_1080_14760584_2021_1984890 crossref_primary_10_1186_s12951_023_02083_y crossref_primary_10_1007_s13346_021_01088_0 crossref_primary_10_7841_ksbbj_2025_40_1_1 crossref_primary_10_1186_s40779_023_00455_x crossref_primary_10_3390_pharmaceutics14081589 crossref_primary_10_1038_s41578_023_00617_2 crossref_primary_10_1002_smll_202401631 crossref_primary_10_1208_s12249_023_02670_0 crossref_primary_10_1002_adtp_202400004 crossref_primary_10_1016_j_mattod_2021_07_025 crossref_primary_10_3390_nano12172948 crossref_primary_10_3762_bjnano_16_97 crossref_primary_10_1016_j_isci_2024_111704 crossref_primary_10_3389_fimmu_2025_1545000 crossref_primary_10_1038_s41401_022_00902_w crossref_primary_10_2174_0113816128304018240415095912 crossref_primary_10_3390_ijms22137055 crossref_primary_10_1016_j_jconrel_2021_01_029 crossref_primary_10_1080_13102818_2024_2358992 crossref_primary_10_3389_fimmu_2025_1614640 crossref_primary_10_1016_j_nwnano_2023_100005 crossref_primary_10_3390_ijms24043493 crossref_primary_10_1016_j_carpta_2025_100805 crossref_primary_10_1016_j_nwnano_2025_100128 crossref_primary_10_3390_biom14091057 crossref_primary_10_3390_pharmaceutics15082022 crossref_primary_10_1186_s12645_023_00213_7 crossref_primary_10_1016_j_jconrel_2022_07_029 crossref_primary_10_3389_fbioe_2024_1349077 crossref_primary_10_1016_j_cej_2024_154850 crossref_primary_10_3390_pharmaceutics14040874 crossref_primary_10_1007_s12668_024_01730_4 crossref_primary_10_1016_j_omto_2022_01_005 crossref_primary_10_3389_fbioe_2022_890257 crossref_primary_10_1016_j_jsps_2022_12_008 crossref_primary_10_3390_pharmaceutics13081235 crossref_primary_10_1016_j_jddst_2025_107402 crossref_primary_10_3389_fbioe_2023_1128856 crossref_primary_10_1142_S2737416524500716 crossref_primary_10_1007_s13206_024_00147_1 crossref_primary_10_1155_2023_8608428 crossref_primary_10_1007_s13205_025_04362_x crossref_primary_10_3390_pharmaceutics14010120 crossref_primary_10_1016_j_jconrel_2024_07_015 crossref_primary_10_1016_j_jddst_2025_107407 crossref_primary_10_1016_j_biomaterials_2024_122503 crossref_primary_10_1016_j_heliyon_2023_e18413 crossref_primary_10_1007_s44174_025_00428_9 crossref_primary_10_1039_D4RA06253A crossref_primary_10_6023_A20120578 crossref_primary_10_1016_j_arabjc_2023_105086 crossref_primary_10_3390_jnt5020003 crossref_primary_10_1016_j_jddst_2023_104969 crossref_primary_10_1002_advs_202200756 crossref_primary_10_1186_s12645_023_00174_x crossref_primary_10_1080_10717544_2021_2008056 |
| Cites_doi | 10.1038/nrc3239 10.1182/blood-2017-06-741033 10.1016/j.jconrel.2011.12.034 10.1038/nrclinonc.2016.25 10.1016/j.jconrel.2019.06.025 10.1021/mp3005947 10.1146/annurev.immunol.26.021607.090331 10.1080/2162402X.2020.1771925 10.1126/science.1099688 10.1016/j.colsurfb.2017.09.052 10.1074/jbc.271.14.8481 10.1172/JCI80011 10.1126/scitranslmed.3001374 10.3390/ijms21062244 10.1021/cr0682195 10.1126/science.1100369 10.1016/j.immuni.2004.08.010 10.1038/nrc.2016.108 10.1007/s11095-014-1419-y 10.3390/cancers12040810 10.2147/IJN.S125866 10.1016/j.cell.2018.09.035 10.1038/jid.2015.226 10.1002/ijc.27801 10.1038/embor.2009.276 10.1038/359693a0 10.1038/nm1196 10.1158/0008-5472.CAN-15-1330 10.2174/156720106778559029 10.1038/82231 10.1002/adma.201402996 10.1126/scitranslmed.3003689 10.1007/s00262-008-0531-4 10.1016/j.biomaterials.2010.01.086 10.1038/ni.1790 10.1016/j.jconrel.2019.12.052 10.3390/molecules21030342 10.1021/nn5002112 10.1016/S0006-3495(00)76395-8 10.1158/0008-5472.CAN-09-3690 10.1158/1078-0432.CCR-06-2363 10.1126/science.1138963 10.1158/1078-0432.CCR-08-1825 10.1016/S0169-409X(02)00226-0 10.1007/s00018-008-8228-6 10.3324/haematol.12521 10.1038/nri2506 10.1021/acsnano.8b00966 10.1016/j.semcancer.2017.10.001 10.1073/pnas.0810114105 10.1038/s41401-019-0281-1 10.1007/s00262-013-1396-8 10.1016/j.autrev.2005.03.006 10.1016/j.pharmthera.2009.06.012 10.1021/acs.biomac.8b01510 10.1007/s00262-007-0286-3 10.1038/ni.2703 10.1158/0008-5472.CAN-12-0320 10.1158/1078-0432.CCR-13-0545 10.1016/j.biomaterials.2012.12.031 10.1021/acsnano.8b00999 10.1097/CJI.0000000000000022 10.1016/j.biomaterials.2010.11.073 10.4049/jimmunol.1202781 10.1016/S0264-410X(00)00163-8 10.1158/0008-5472.CAN-12-3343 10.1634/theoncologist.12-7-864 10.1016/j.biomaterials.2020.119755 10.1016/j.addr.2017.07.007 10.1016/j.jconrel.2016.11.015 10.1016/j.it.2010.04.002 10.1038/nm863 10.1016/j.molimm.2007.04.009 10.1038/mt.2008.122 10.7150/thno.16184 10.4049/jimmunol.178.10.6259 10.4049/jimmunol.168.2.926 10.1016/1074-7613(95)90125-6 10.1586/14760584.2014.863715 10.1007/s00262-010-0846-9 10.1016/j.jconrel.2008.05.005 10.1038/nbt.4047 10.1007/s00280-017-3427-1 10.1093/annonc/mdv383 10.1053/j.seminoncol.2015.05.003 10.1016/j.jconrel.2018.03.035 10.14694/EdBook_AM.2015.35.76 10.1084/jem.20051776 10.1016/j.addr.2010.09.003 10.1016/j.jconrel.2017.11.035 10.2217/nnm.13.66 10.1073/pnas.89.1.358 10.7150/thno.17237 10.1016/j.jconrel.2016.02.018 10.1128/MCB.25.21.9543-9553.2005 10.1073/pnas.0712237105 10.1080/09687860600790537 10.1158/0008-5472.CAN-13-1342 10.1038/nmat3355 10.1056/NEJMoa1200690 10.1038/nrd3810 10.3390/pharmaceutics9020012 10.1016/j.biomaterials.2011.03.067 10.1021/nn500216y 10.1158/2326-6066.CIR-17-0055 10.1016/j.addr.2010.04.009 10.1021/acs.molpharmaceut.7b00606 10.1016/j.msec.2016.11.073 10.1038/nbt.3330 10.1021/acsnano.8b05189 10.1016/S0092-8674(01)00449-4 10.1016/j.cellimm.2009.01.006 10.1016/j.jconrel.2015.05.284 10.1208/s12248-014-9686-4 10.1021/acs.molpharmaceut.7b00649 10.1021/nl102184c 10.1016/j.nano.2018.12.016 10.1016/j.addr.2015.01.002 10.1016/j.cell.2011.02.013 10.1002/jcp.26361 10.1158/0008-5472.CAN-13-3581 10.1016/j.ymthe.2017.02.008 10.2147/IJN.S225807 10.1038/ncomms13193 10.1016/j.addr.2015.10.022 10.1586/erv.11.17 10.1126/science.1095833 10.1158/2326-6066.CIR-17-0502 10.1002/wnan.1358 10.1016/j.ijpharm.2013.11.005 10.1158/2326-6066.CIR-16-0283 10.1016/j.imbio.2017.06.002 10.1016/j.vaccine.2012.01.070 10.1586/14760584.2015.986104 10.1166/jbn.2011.1264 10.1021/nn404083m 10.1021/acsnano.7b00078 10.1038/nature04444 10.1038/nature18300 10.1016/0264-410X(89)90274-0 10.1021/bc7004736 10.1158/0008-5472.CAN-11-0096 10.1016/S0168-3659(99)00097-8 10.1084/jem.182.2.459 10.1172/JCI40269 10.1007/978-3-319-39147-2_1 10.1016/j.ijpharm.2005.06.010 10.1186/s40425-015-0094-9 10.1200/JCO.2006.10.2822 10.4161/cam.20419 10.1016/j.jconrel.2016.04.005 10.1056/NEJMoa1200694 10.1016/j.biomaterials.2013.04.007 10.1021/acs.nanolett.9b01571 10.1155/2016/5274084 10.1016/j.immuni.2010.10.007 10.1016/j.jconrel.2016.06.023 10.1016/j.nano.2017.08.010 10.1038/s41467-019-09760-3 10.1007/s11095-018-2490-6 10.1210/en.2009-1082 10.1016/j.jconrel.2018.08.011 10.1038/nrc3930 10.1016/j.semcancer.2015.03.004 10.1126/science.1093616 10.7150/thno.19826 10.1038/nmat3792 10.1002/adma.201806202 10.7150/thno.22056 10.2147/ITT.S32617 10.1021/jacs.6b11846 10.1615/CritRevTherDrugCarrierSyst.2018020591 10.1186/s12916-015-0455-8 10.1038/s41467-017-02191-y 10.1016/j.bbamcr.2008.01.024 10.7150/thno.35343 10.1016/j.immuni.2016.05.001 10.1021/acsami.9b09560 10.1016/j.nano.2010.12.010 10.1016/S0169-409X(02)00073-X 10.1007/BF00205743 10.1016/j.biomaterials.2016.01.006 10.1016/j.addr.2012.09.037 10.1016/j.jconrel.2017.01.004 10.1038/sj.gt.3300683 10.1021/acsami.9b11371 |
| ContentType | Journal Article |
| Copyright | 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3390/pharmaceutics12111054 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1999-4923 |
| ExternalDocumentID | oai_doaj_org_article_e65ce88b16ba42e49435cc1b4b121fe4 PMC7694212 33158166 10_3390_pharmaceutics12111054 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: China Scholarship Council grantid: CSC201906100211 – fundername: H2020-MSCA-Intra European Fellowship-2018 grantid: 832455-Need2immune |
| GroupedDBID | --- 53G 5VS 8G5 AADQD AAYXX ABDBF ABUWG ACGFO ACIHN ACUHS AEAQA AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BPHCQ CCPQU CITATION DIK DWQXO EBD ESX F5P FD6 GNUQQ GROUPED_DOAJ GUQSH GX1 HH5 HYE IHR KQ8 M2O M48 MK0 MODMG M~E OK1 P6G PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 TUS NPM 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c477t-c8463b65eb9dfa6a8bc658d37d97d6ce92453dbf289e50eb936ee3b3fe91ce203 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 118 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000593704800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-4923 |
| IngestDate | Fri Oct 03 12:42:43 EDT 2025 Tue Nov 04 02:00:14 EST 2025 Thu Sep 04 19:43:17 EDT 2025 Thu Apr 03 06:57:31 EDT 2025 Sat Nov 29 07:16:27 EST 2025 Tue Nov 18 21:49:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | immunomodulation drug delivery liposome cancer immunotherapy |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c477t-c8463b65eb9dfa6a8bc658d37d97d6ce92453dbf289e50eb936ee3b3fe91ce203 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-5718-7011 0000-0003-1646-8356 |
| OpenAccessLink | https://doaj.org/article/e65ce88b16ba42e49435cc1b4b121fe4 |
| PMID | 33158166 |
| PQID | 2458731917 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e65ce88b16ba42e49435cc1b4b121fe4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7694212 proquest_miscellaneous_2458731917 pubmed_primary_33158166 crossref_citationtrail_10_3390_pharmaceutics12111054 crossref_primary_10_3390_pharmaceutics12111054 |
| PublicationCentury | 2000 |
| PublicationDate | 20201104 |
| PublicationDateYYYYMMDD | 2020-11-04 |
| PublicationDate_xml | – month: 11 year: 2020 text: 20201104 day: 4 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Pharmaceutics |
| PublicationTitleAlternate | Pharmaceutics |
| PublicationYear | 2020 |
| Publisher | MDPI MDPI AG |
| Publisher_xml | – name: MDPI – name: MDPI AG |
| References | Yan (ref_88) 2008; 130 Gu (ref_27) 2017; 160 Cekic (ref_69) 2007; 316 Kiss (ref_6) 2007; 56 Li (ref_101) 1998; 5 Ramakrishnan (ref_173) 2008; 57 Allen (ref_32) 2013; 65 Gu (ref_143) 2018; 286 ref_12 Bialkowski (ref_108) 2018; 12 ref_97 Keir (ref_131) 2006; 203 Nars (ref_172) 2013; 132 Furuta (ref_14) 2011; 3 Zhang (ref_54) 2018; 9 Christensen (ref_87) 2011; 10 Iclozan (ref_117) 2013; 62 Huang (ref_151) 2019; 9 Liu (ref_174) 2019; 20 Shi (ref_22) 2010; 10 Davies (ref_82) 2006; 3 Zolnik (ref_86) 2010; 151 Lai (ref_65) 2018; 8 Dwivedi (ref_49) 2011; 7 Palucka (ref_7) 2010; 33 Kleinovink (ref_180) 2017; 5 Mellman (ref_4) 2001; 106 Zhai (ref_152) 2017; 14 Chang (ref_124) 1998; 12 Siriwon (ref_156) 2018; 6 Rueda (ref_171) 2016; 83 Vinay (ref_113) 2015; 35 Kobayashi (ref_116) 2007; 13 Fang (ref_35) 2011; 63 Pardoll (ref_123) 2015; 42 Nakamura (ref_63) 2008; 16 Akhurst (ref_163) 2012; 11 Diebold (ref_91) 2004; 303 Otsuka (ref_37) 2003; 55 Allard (ref_158) 2013; 19 Curiel (ref_138) 2003; 9 Moon (ref_148) 2015; 3 Ojha (ref_46) 2017; 119 Gu (ref_23) 2018; 35 ref_29 Xu (ref_162) 2014; 8 Immordino (ref_57) 2006; 1 Hafez (ref_140) 2000; 79 Midoux (ref_103) 2014; 14 Yan (ref_75) 2007; 44 Cheung (ref_111) 2018; 36 Salomon (ref_98) 2020; 9 Varypataki (ref_76) 2016; 226 Vosika (ref_71) 1984; 18 Rezaee (ref_107) 2016; 236 Ngiow (ref_145) 2011; 71 Meng (ref_159) 2013; 7 Berchel (ref_104) 2014; 460 Feng (ref_40) 2010; 31 Poley (ref_84) 2019; 307 Prakken (ref_110) 2000; 6 Yang (ref_175) 2016; 6 Goc (ref_5) 2014; 74 Smith (ref_135) 2012; 366 Varypataki (ref_79) 2017; 5 Heuts (ref_78) 2018; 35 Kwong (ref_66) 2011; 32 Baraldi (ref_155) 2008; 108 Du (ref_137) 2017; 14 Bertrand (ref_128) 2015; 13 Fife (ref_133) 2009; 10 Krummel (ref_126) 1995; 182 ref_147 Khalil (ref_1) 2016; 13 Heuts (ref_77) 2018; 269 Nakanishi (ref_85) 1999; 61 Guo (ref_187) 2014; 8 Lu (ref_153) 2018; 12 Lofthouse (ref_58) 2002; 54 Burugu (ref_17) 2018; 52 Weber (ref_129) 2007; 12 Vangasseri (ref_74) 2006; 23 ref_89 Moles (ref_41) 2015; 210 Chen (ref_189) 2016; 7 He (ref_64) 2007; 178 Tivol (ref_125) 1995; 3 Lang (ref_136) 2019; 31 Steinman (ref_3) 2004; 305 Boks (ref_73) 2015; 135 Huang (ref_144) 2004; 21 Shull (ref_164) 1992; 359 Wang (ref_186) 2019; 11 Hei (ref_142) 2020; 15 Zamani (ref_59) 2018; 233 Vincent (ref_169) 2010; 70 Yuan (ref_122) 2008; 105 Shi (ref_95) 2017; 25 Naidoo (ref_120) 2015; 26 Blattman (ref_24) 2004; 305 Stremersch (ref_96) 2016; 232 Yang (ref_160) 2010; 31 Linton (ref_28) 2016; 8 Kwong (ref_55) 2013; 73 Ismaili (ref_68) 2002; 168 Postow (ref_119) 2015; 35 ref_179 Keir (ref_8) 2008; 26 Ritsma (ref_181) 2020; 320 Li (ref_190) 2018; 8 Yuba (ref_94) 2013; 34 Rowshanravan (ref_127) 2018; 131 Liang (ref_83) 2005; 301 Shi (ref_26) 2017; 17 Shirota (ref_60) 2014; 13 Ludewig (ref_81) 2000; 19 Danhier (ref_48) 2016; 244 Rueda (ref_51) 2017; 222 Allen (ref_33) 2004; 303 Hu (ref_25) 2016; 98 Varypataki (ref_80) 2015; 17 Park (ref_166) 2012; 11 (ref_18) 2015; 75 Malard (ref_105) 2018; 278 Kim (ref_185) 2019; 19 Merino (ref_139) 2019; 17 Yuba (ref_93) 2013; 34 Ramakrishnan (ref_170) 2010; 120 Sevko (ref_168) 2013; 190 Gajewski (ref_13) 2013; 14 Yue (ref_178) 2019; 10 Gao (ref_90) 2017; 12 Watson (ref_43) 2012; 30 Liang (ref_53) 2012; 72 Lee (ref_102) 1996; 271 Blanco (ref_99) 2015; 33 Yegutkin (ref_157) 2008; 1783 Nikpoor (ref_130) 2017; 13 Margadant (ref_161) 2010; 11 Casella (ref_67) 2008; 65 Dubrot (ref_52) 2010; 59 Cekic (ref_154) 2014; 74 Weiner (ref_109) 2015; 15 Gao (ref_30) 2019; 40 Chen (ref_20) 2015; 125 Salehi (ref_31) 2017; 71 Richards (ref_70) 1989; 7 Sanmamed (ref_19) 2018; 175 Chauhan (ref_47) 2013; 12 Taube (ref_114) 2012; 4 Guo (ref_39) 2017; 7 Li (ref_10) 2009; 15 Tarhini (ref_21) 2007; 25 Iyer (ref_38) 2011; 32 Muller (ref_149) 2005; 11 Hodi (ref_9) 2008; 105 Gabrilovich (ref_16) 2009; 9 Sahdev (ref_56) 2014; 31 Bayyurt (ref_61) 2017; 247 Barral (ref_92) 2009; 124 Peters (ref_115) 2017; 80 Anderson (ref_146) 2016; 44 Ozcelikkale (ref_36) 2013; 10 Tripathi (ref_11) 2012; 6 Schmidt (ref_42) 2016; 8 Barber (ref_132) 2006; 439 Pardoll (ref_121) 2012; 12 Zhu (ref_182) 2017; 8 Wang (ref_188) 2014; 26 Peer (ref_44) 2012; 161 Brahmer (ref_118) 2012; 366 Huang (ref_176) 2017; 139 Ou (ref_141) 2019; 11 Aoki (ref_165) 2005; 4 Zappasodi (ref_112) 2008; 93 ref_183 Sakaguchi (ref_62) 2008; 19 Shin (ref_15) 2009; 256 Maeda (ref_45) 2015; 91 Hanahan (ref_2) 2011; 144 Maruyama (ref_34) 2011; 63 Fries (ref_72) 1992; 89 Perche (ref_106) 2011; 7 Chen (ref_150) 2014; 37 Cruz (ref_50) 2014; 9 Zheng (ref_167) 2017; 11 Kranz (ref_100) 2016; 534 Parry (ref_134) 2005; 25 Shi (ref_184) 2020; 233 Zhu (ref_177) 2018; 12 |
| References_xml | – volume: 12 start-page: 252 year: 2012 ident: ref_121 article-title: The blockade of immune checkpoints in cancer immunotherapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3239 – volume: 131 start-page: 58 year: 2018 ident: ref_127 article-title: CTLA-4: A moving target in immunotherapy publication-title: Blood doi: 10.1182/blood-2017-06-741033 – volume: 161 start-page: 600 year: 2012 ident: ref_44 article-title: Altering the immune response with lipid-based nanoparticles publication-title: J. Control. Release doi: 10.1016/j.jconrel.2011.12.034 – volume: 13 start-page: 273 year: 2016 ident: ref_1 article-title: The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2016.25 – volume: 307 start-page: 331 year: 2019 ident: ref_84 article-title: Tailoring the lipid composition of nanoparticles modulates their cellular uptake and affects the viability of triple negative breast cancer cells publication-title: J. Control. Release doi: 10.1016/j.jconrel.2019.06.025 – volume: 10 start-page: 2111 year: 2013 ident: ref_36 article-title: Multifaceted transport characteristics of nanomedicine: Needs for characterization in dynamic environment publication-title: Mol. Pharm. doi: 10.1021/mp3005947 – volume: 8 start-page: 1 year: 2016 ident: ref_42 article-title: Liposome-based adjuvants for subunit vaccines: Formulation strategies for subunit antigens and immunostimulators publication-title: Pharmaceutics – volume: 26 start-page: 677 year: 2008 ident: ref_8 article-title: PD-1 and Its Ligands in Tolerance and Immunity publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.26.021607.090331 – volume: 9 start-page: 1 year: 2020 ident: ref_98 article-title: A liposomal RNA vaccine inducing neoantigen-specific CD4+ T cells augments the antitumor activity of local radiotherapy in mice publication-title: Oncoimmunology doi: 10.1080/2162402X.2020.1771925 – volume: 305 start-page: 197 year: 2004 ident: ref_3 article-title: Immunotherapy: Bewitched, bothered, and bewildered no more publication-title: Science doi: 10.1126/science.1099688 – volume: 160 start-page: 395 year: 2017 ident: ref_27 article-title: NGR-modified pH-sensitive liposomes for controlled release and tumor target delivery of docetaxel publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2017.09.052 – volume: 271 start-page: 8481 year: 1996 ident: ref_102 article-title: DNA for Tumor Cell-specific Gene Transfer publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.14.8481 – volume: 125 start-page: 3384 year: 2015 ident: ref_20 article-title: Anti–PD-1 / PD-L1 therapy of human cancer: Past, present, and future Find the latest version: Anti–PD-1/PD-L1 therapy of human cancer: Past, present, and future publication-title: J. Clin. Investig. doi: 10.1172/JCI80011 – volume: 3 start-page: 78ra31 year: 2011 ident: ref_14 article-title: IL-25 causes apoptosis of IL-25R-expressing breast cancer cells without toxicity to nonmalignant cells publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3001374 – ident: ref_97 doi: 10.3390/ijms21062244 – volume: 108 start-page: 238 year: 2008 ident: ref_155 article-title: Adenosine receptor antagonists: Translating medicinal chemistry and pharmacology into clinical utility publication-title: Chem. Rev. doi: 10.1021/cr0682195 – volume: 305 start-page: 200 year: 2004 ident: ref_24 article-title: Cancer immunotherapy: A treatment for the masses publication-title: Science doi: 10.1126/science.1100369 – volume: 21 start-page: 503 year: 2004 ident: ref_144 article-title: Role of LAG-3 in regulatory T cells publication-title: Immunity doi: 10.1016/j.immuni.2004.08.010 – volume: 17 start-page: 20 year: 2017 ident: ref_26 article-title: Cancer nanomedicine: Progress, challenges and opportunities publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.108 – volume: 31 start-page: 2563 year: 2014 ident: ref_56 article-title: Biomaterials for nanoparticle vaccine delivery systems publication-title: Pharm. Res. doi: 10.1007/s11095-014-1419-y – ident: ref_89 doi: 10.3390/cancers12040810 – volume: 12 start-page: 1251 year: 2017 ident: ref_90 article-title: Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S125866 – volume: 175 start-page: 313 year: 2018 ident: ref_19 article-title: A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization publication-title: Cell doi: 10.1016/j.cell.2018.09.035 – volume: 135 start-page: 2697 year: 2015 ident: ref_73 article-title: In situ Delivery of Tumor Antigen- and Adjuvant-Loaded Liposomes Boosts Antigen-Specific T-Cell Responses by Human Dermal Dendritic Cells publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2015.226 – volume: 132 start-page: 2471 year: 2013 ident: ref_172 article-title: Immunomodulatory effects of low dose chemotherapy and perspectives of its combination with immunotherapy publication-title: Int. J. Cancer doi: 10.1002/ijc.27801 – volume: 11 start-page: 97 year: 2010 ident: ref_161 article-title: Integrin-TGF-Β crosstalk in fibrosis, cancer and wound healing publication-title: EMBO Rep. doi: 10.1038/embor.2009.276 – volume: 359 start-page: 693 year: 1992 ident: ref_164 article-title: Targeted disruption of the mouse TGF-beita1 gene results in multifocal idammatory disease publication-title: Nature doi: 10.1038/359693a0 – volume: 11 start-page: 312 year: 2005 ident: ref_149 article-title: Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy publication-title: Nat. Med. doi: 10.1038/nm1196 – volume: 75 start-page: 5008 year: 2015 ident: ref_18 article-title: Antibody-dependent phagocytosis of tumor cells by Macrophages: A Potent effector mechanism of monoclonal antibody therapy of cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-1330 – volume: 3 start-page: 379 year: 2006 ident: ref_82 article-title: Particulate Systems as Adjuvants and Carriers for Peptide and Protein Antigens publication-title: Curr. Drug Deliv. doi: 10.2174/156720106778559029 – volume: 6 start-page: 1406 year: 2000 ident: ref_110 article-title: Artificial antigen-presenting cells as a tool to exploit the immune “synapse” publication-title: Nat. Med. doi: 10.1038/82231 – volume: 26 start-page: 8154 year: 2014 ident: ref_188 article-title: Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis publication-title: Adv. Mater. doi: 10.1002/adma.201402996 – volume: 4 start-page: 127ra37 year: 2012 ident: ref_114 article-title: Colocalization of inflammatory response with B7-H1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3003689 – volume: 57 start-page: 1523 year: 2008 ident: ref_173 article-title: Combined modality immunotherapy and chemotherapy: A new perspective publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-008-0531-4 – volume: 31 start-page: 4139 year: 2010 ident: ref_40 article-title: Development of a bifunctional immunoliposome system for combined drug delivery and imaging in vivo publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.01.086 – volume: 10 start-page: 1185 year: 2009 ident: ref_133 article-title: Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal publication-title: Nat. Immunol. doi: 10.1038/ni.1790 – volume: 320 start-page: 19 year: 2020 ident: ref_181 article-title: Photodynamic cancer therapy enhances accumulation of nanoparticles in tumor-associated myeloid cells publication-title: J. Control. Release doi: 10.1016/j.jconrel.2019.12.052 – ident: ref_183 doi: 10.3390/molecules21030342 – volume: 8 start-page: 5670 year: 2014 ident: ref_187 article-title: Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles publication-title: ACS Nano doi: 10.1021/nn5002112 – volume: 79 start-page: 1438 year: 2000 ident: ref_140 article-title: Tunable pH-sensitive liposomes composed of mixtures of cationic and anionic lipids publication-title: Biophys. J. doi: 10.1016/S0006-3495(00)76395-8 – volume: 70 start-page: 3052 year: 2010 ident: ref_169 article-title: 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-3690 – volume: 13 start-page: 902 year: 2007 ident: ref_116 article-title: FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-06-2363 – volume: 316 start-page: 1628 year: 2007 ident: ref_69 article-title: The Vaccine Adjuvant Monophosphoryl Lipid A as a TRIF-biased Agonist of TLR4 publication-title: Science doi: 10.1126/science.1138963 – volume: 15 start-page: 1623 year: 2009 ident: ref_10 article-title: Anti-programmed death-1 synergizes with granulocyte macrophage colony-stimulating factor-secreting tumor cell immunotherapy providing therapeutic benefit to mice with established tumors publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-08-1825 – volume: 55 start-page: 403 year: 2003 ident: ref_37 article-title: PEGylated nanoparticles for biological and pharmaceutical applications publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(02)00226-0 – volume: 65 start-page: 3231 year: 2008 ident: ref_67 article-title: Putting endotoxin to work for us: Monophosphoryl lipid a as a safe and effective vaccine adjuvant publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-008-8228-6 – volume: 93 start-page: 1523 year: 2008 ident: ref_112 article-title: The effect of artificial antigen-presenting cells with preclustered anti-CD28/-CD3/-LFA-1 monoclonal antibodies on the induction of ex vivo expansion of functional human antitumor T cells publication-title: Haematologica doi: 10.3324/haematol.12521 – volume: 9 start-page: 162 year: 2009 ident: ref_16 article-title: Myeloid-derived suppressor cells as regulators of the immune system publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2506 – volume: 12 start-page: 9815 year: 2018 ident: ref_108 article-title: Dendritic Cell Targeting mRNA Lipopolyplexes Combine Strong Antitumor T-Cell Immunity with Improved Inflammatory Safety publication-title: ACS Nano doi: 10.1021/acsnano.8b00966 – volume: 52 start-page: 39 year: 2018 ident: ref_17 article-title: Emerging targets in cancer immunotherapy publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2017.10.001 – volume: 105 start-page: 20410 year: 2008 ident: ref_122 article-title: CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0810114105 – volume: 40 start-page: 1129 year: 2019 ident: ref_30 article-title: Overview of recent advances in liposomal nanoparticle-based cancer immunotherapy publication-title: Acta Pharmacol. Sin. doi: 10.1038/s41401-019-0281-1 – volume: 62 start-page: 909 year: 2013 ident: ref_117 article-title: Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-013-1396-8 – volume: 4 start-page: 450 year: 2005 ident: ref_165 article-title: Transforming growth factor β (TGF-β) and autoimmunity publication-title: Autoimmun. Rev. doi: 10.1016/j.autrev.2005.03.006 – volume: 124 start-page: 219 year: 2009 ident: ref_92 article-title: Functions of the cytoplasmic RNA sensors RIG-I and MDA-5: Key regulators of innate immunity publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2009.06.012 – volume: 20 start-page: 882 year: 2019 ident: ref_174 article-title: Tumor Microenvironmental pH and Enzyme Dual Responsive Polymer-Liposomes for Synergistic Treatment of Cancer Immuno-Chemotherapy publication-title: Biomacromolecules doi: 10.1021/acs.biomac.8b01510 – volume: 56 start-page: 1459 year: 2007 ident: ref_6 article-title: Density of DC-LAMP + mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-007-0286-3 – volume: 14 start-page: 1014 year: 2013 ident: ref_13 article-title: Innate and adaptive immune cells in the tumor microenvironment publication-title: Nat. Immunol. doi: 10.1038/ni.2703 – volume: 72 start-page: 2791 year: 2012 ident: ref_53 article-title: Inhibiting systemic autophagy during interleukin 2 immunotherapy promotes long-term tumor regression publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-0320 – volume: 19 start-page: 5626 year: 2013 ident: ref_158 article-title: Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-13-0545 – volume: 34 start-page: 3042 year: 2013 ident: ref_94 article-title: A liposome-based antigen delivery system using pH-sensitive fusogenic polymers for cancer immunotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.12.031 – volume: 12 start-page: 3780 year: 2018 ident: ref_177 article-title: Nanoenzyme-Augmented Cancer Sonodynamic Therapy by Catalytic Tumor Oxygenation publication-title: ACS Nano doi: 10.1021/acsnano.8b00999 – volume: 37 start-page: 123 year: 2014 ident: ref_150 article-title: Targeted siRNA Silencing of Indoleamine 2, 3-Dioxygenase in Antigen-presenting Cells Using Mannose-conjugated Liposomes: A Novel Strategy for Treatment of Melanoma publication-title: J. Immunother. doi: 10.1097/CJI.0000000000000022 – volume: 32 start-page: 2605 year: 2011 ident: ref_38 article-title: Biomaterials The effect of internalizing human single chain antibody fragment on liposome targeting to epithelioid and sarcomatoid mesothelioma publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.11.073 – volume: 190 start-page: 2464 year: 2013 ident: ref_168 article-title: Antitumor Effect of Paclitaxel Is Mediated by Inhibition of Myeloid-Derived Suppressor Cells and Chronic Inflammation in the Spontaneous Melanoma Model publication-title: J. Immunol. doi: 10.4049/jimmunol.1202781 – volume: 19 start-page: 23 year: 2000 ident: ref_81 article-title: In vivo antigen loading and activation of dendritic cells via a liposomal peptide vaccine mediates protective antiviral and anti-tumour immunity publication-title: Vaccine doi: 10.1016/S0264-410X(00)00163-8 – volume: 73 start-page: 1547 year: 2013 ident: ref_55 article-title: Localized Immunotherapy via Liposome-Anchored Anti- CD137 þ IL-2 Prevents Lethal Toxicity and Elicits Local and Systemic Antitumor Immunity publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-3343 – volume: 12 start-page: 864 year: 2007 ident: ref_129 article-title: Review: Anti CTLA-4 Antibody Ipilimumab: Case Studies of Clinical Response and Immune-Related Adverse Events publication-title: Oncologist doi: 10.1634/theoncologist.12-7-864 – volume: 233 start-page: 119755 year: 2020 ident: ref_184 article-title: Catalase-based liposomal for reversing immunosuppressive tumor microenvironment and enhanced cancer chemo-photodynamic therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.119755 – volume: 119 start-page: 44 year: 2017 ident: ref_46 article-title: Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2017.07.007 – volume: 244 start-page: 108 year: 2016 ident: ref_48 article-title: To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.11.015 – volume: 31 start-page: 220 year: 2010 ident: ref_160 article-title: TGF-β and immune cells: An important regulatory axis in the tumor microenvironment and progression publication-title: Trends Immunol. doi: 10.1016/j.it.2010.04.002 – volume: 9 start-page: 548 year: 2003 ident: ref_138 article-title: Blockade of B7-H1 improves myeloid dendritic cell–mediated antitumor immunity publication-title: Nat. Med. doi: 10.1038/nm863 – volume: 44 start-page: 3672 year: 2007 ident: ref_75 article-title: Mechanism of adjuvant activity of cationic liposome: Phosphorylation of a MAP kinase, ERK and induction of chemokines publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2007.04.009 – volume: 16 start-page: 1507 year: 2008 ident: ref_63 article-title: Efficient MHC class I presentation by controlled intracellular trafficking of antigens in octaarginine-modified liposomes publication-title: Mol. Ther. doi: 10.1038/mt.2008.122 – volume: 6 start-page: 2141 year: 2016 ident: ref_175 article-title: A New Concept of Enhancing Immuno-Chemothera- peutic Effects Against B16F10 Tumor via Systemic Administration by Taking Advantages of the Limitation of EPR Effect publication-title: Theranostics doi: 10.7150/thno.16184 – volume: 178 start-page: 6259 year: 2007 ident: ref_64 article-title: Antigenic Targeting of the Human Mannose Receptor Induces Tumor Immunity publication-title: J. Immunol. doi: 10.4049/jimmunol.178.10.6259 – volume: 168 start-page: 926 year: 2002 ident: ref_68 article-title: Monophosphoryl Lipid A Activates Both Human Dendritic Cells and T Cells publication-title: J. Immunol. doi: 10.4049/jimmunol.168.2.926 – volume: 3 start-page: 541 year: 1995 ident: ref_125 article-title: Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4 publication-title: Immunity doi: 10.1016/1074-7613(95)90125-6 – volume: 13 start-page: 299 year: 2014 ident: ref_60 article-title: Recent progress concerning CpG DNA and its use as a vaccine adjuvant publication-title: Expert Rev. Vaccines doi: 10.1586/14760584.2014.863715 – volume: 59 start-page: 1223 year: 2010 ident: ref_52 article-title: Treatment with anti-CD137 mAbs causes intense accumulations of liver T cells without selective antitumor immunotherapeutic effects in this organ publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-010-0846-9 – volume: 130 start-page: 22 year: 2008 ident: ref_88 article-title: Reactive oxygen species play a central role in the activity of cationic liposome based cancer vaccine publication-title: J. Control. Release doi: 10.1016/j.jconrel.2008.05.005 – volume: 36 start-page: 160 year: 2018 ident: ref_111 article-title: Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4047 – volume: 80 start-page: 881 year: 2017 ident: ref_115 article-title: The potential of multi-compound nanoparticles to bypass drug resistance in cancer publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/s00280-017-3427-1 – volume: 26 start-page: 2375 year: 2015 ident: ref_120 article-title: Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies publication-title: Ann. Oncol. doi: 10.1093/annonc/mdv383 – volume: 42 start-page: 523 year: 2015 ident: ref_123 article-title: Cancer and the Immune System: Basic Concepts and Targets for Intervention publication-title: Semin. Oncol. doi: 10.1053/j.seminoncol.2015.05.003 – volume: 278 start-page: 110 year: 2018 ident: ref_105 article-title: Preclinical evaluation of mRNA trimannosylated lipopolyplexes as therapeutic cancer vaccines targeting dendritic cells publication-title: J. Control. Release doi: 10.1016/j.jconrel.2018.03.035 – volume: 35 start-page: 76 year: 2015 ident: ref_119 article-title: Managing Immune Checkpoint-Blocking Antibody Side Effects publication-title: Am. Soc. Clin. Oncol. Educ. B doi: 10.14694/EdBook_AM.2015.35.76 – volume: 203 start-page: 883 year: 2006 ident: ref_131 article-title: Tissue expression of PD-L1 mediates peripheral T cell tolerance publication-title: J. Exp. Med. doi: 10.1084/jem.20051776 – volume: 63 start-page: 161 year: 2011 ident: ref_34 article-title: Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2010.09.003 – volume: 269 start-page: 347 year: 2018 ident: ref_77 article-title: Hollow microneedle-mediated micro-injections of a liposomal HPV E743–63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.11.035 – volume: 9 start-page: 435 year: 2014 ident: ref_50 article-title: Liposomes containing NY-ESO-1/tetanus toxoid and adjuvant peptides targeted to human dendritic cells via the Fc receptor for cancer vaccines publication-title: Nanomedicine doi: 10.2217/nnm.13.66 – volume: 89 start-page: 358 year: 1992 ident: ref_72 article-title: Liposomal malaria vaccine in humans: A safe and potent adjuvant strategy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.89.1.358 – volume: 7 start-page: 775 year: 2017 ident: ref_39 article-title: Liposomal Nanoparticles Carrying anti-IL6R Antibody to the Tumour Microenvironment Inhibit Metastasis in Two Molecular Subtypes of Breast Cancer Mouse Models publication-title: Theranostics doi: 10.7150/thno.17237 – volume: 226 start-page: 98 year: 2016 ident: ref_76 article-title: Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: A comparative study of cationic liposomes and PLGA nanoparticles publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.02.018 – volume: 25 start-page: 9543 year: 2005 ident: ref_134 article-title: CTLA-4 and PD-1 Receptors Inhibit T-Cell Activation by Distinct Mechanisms publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.21.9543-9553.2005 – volume: 105 start-page: 3005 year: 2008 ident: ref_9 article-title: Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0712237105 – volume: 23 start-page: 385 year: 2006 ident: ref_74 article-title: Immunostimulation of dendritic cells by cationic liposomes publication-title: Mol. Membr. Biol. doi: 10.1080/09687860600790537 – volume: 74 start-page: 705 year: 2014 ident: ref_5 article-title: Dendritic cells in tumor-associated tertiary lymphoid structures signal a th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ t cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-1342 – volume: 11 start-page: 895 year: 2012 ident: ref_166 article-title: Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy publication-title: Nat. Mater. doi: 10.1038/nmat3355 – volume: 366 start-page: 2443 year: 2012 ident: ref_135 article-title: Safety, Activity, and Immune Correlates of anti-PD-1 Antibody in Cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1200690 – volume: 11 start-page: 790 year: 2012 ident: ref_163 article-title: Targeting the TGFβ signalling pathway in disease publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3810 – ident: ref_29 doi: 10.3390/pharmaceutics9020012 – volume: 32 start-page: 5134 year: 2011 ident: ref_66 article-title: Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.03.067 – volume: 8 start-page: 3636 year: 2014 ident: ref_162 article-title: Nanoparticle-delivered transforming growth factor-β siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment publication-title: ACS Nano. doi: 10.1021/nn500216y – volume: 5 start-page: 832 year: 2017 ident: ref_180 article-title: Photodynamic-immune checkpoint therapy eradicates local and distant tumors by CD8+ T cells publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-17-0055 – volume: 63 start-page: 136 year: 2011 ident: ref_35 article-title: The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2010.04.009 – volume: 14 start-page: 3888 year: 2017 ident: ref_152 article-title: Lymphoma Immunochemotherapy: Targeted Delivery of Doxorubicin via a Dual Functional Nanocarrier publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.7b00606 – volume: 71 start-page: 1327 year: 2017 ident: ref_31 article-title: Liposome-based drug co-delivery systems in cancer cells publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.11.073 – volume: 33 start-page: 941 year: 2015 ident: ref_99 article-title: Principles of nanoparticle design for overcoming biological barriers to drug delivery publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3330 – volume: 12 start-page: 11041 year: 2018 ident: ref_153 article-title: Breast Cancer Chemo-immunotherapy through Liposomal Delivery of an Immunogenic Cell Death Stimulus Plus Interference in the IDO-1 Pathway publication-title: ACS Nano doi: 10.1021/acsnano.8b05189 – volume: 106 start-page: 255 year: 2001 ident: ref_4 article-title: Dendritic cells: Specialized and regulated antigen processing machines publication-title: Cell doi: 10.1016/S0092-8674(01)00449-4 – volume: 256 start-page: 72 year: 2009 ident: ref_15 article-title: Vascular endothelial growth factor-induced chemotaxis and IL-10 from T cells publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2009.01.006 – volume: 210 start-page: 217 year: 2015 ident: ref_41 article-title: Immunoliposome-mediated drug delivery to Plasmodium-infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial strategy publication-title: J. Control. Release doi: 10.1016/j.jconrel.2015.05.284 – volume: 17 start-page: 216 year: 2015 ident: ref_80 article-title: Cationic Liposomes Loaded with a Synthetic Long Peptide and Poly(I:C): A Defined Adjuvanted Vaccine for Induction of Antigen-Specific T Cell Cytotoxicity publication-title: AAPS J. doi: 10.1208/s12248-014-9686-4 – volume: 14 start-page: 3978 year: 2017 ident: ref_137 article-title: Nuclear and Fluorescent Labeled PD-1-Liposome-DOX-64Cu/IRDye800CW Allows Improved Breast Tumor Targeted Imaging and Therapy publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.7b00649 – volume: 10 start-page: 3223 year: 2010 ident: ref_22 article-title: Nanotechnology in drug delivery and tissue engineering: From discovery to applications publication-title: Nano Lett. doi: 10.1021/nl102184c – volume: 17 start-page: 13 year: 2019 ident: ref_139 article-title: A new immune-nanoplatform for promoting adaptive antitumor immune response publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2018.12.016 – volume: 91 start-page: 3 year: 2015 ident: ref_45 article-title: Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2015.01.002 – volume: 144 start-page: 646 year: 2011 ident: ref_2 article-title: Hallmarks of cancer: The next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 233 start-page: 5189 year: 2018 ident: ref_59 article-title: Nanoliposomes as the adjuvant delivery systems in cancer immunotherapy publication-title: J. Cell. Physiol. doi: 10.1002/jcp.26361 – volume: 74 start-page: 7239 year: 2014 ident: ref_154 article-title: Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-3581 – volume: 25 start-page: 1567 year: 2017 ident: ref_95 article-title: Dual Functional LipoMET Mediates Envelope-type Nanoparticles to Combinational Oncogene Silencing and Tumor Growth Inhibition publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.02.008 – volume: 15 start-page: 1677 year: 2020 ident: ref_142 article-title: Multifunctional immunoliposomes combining catalase and PD-L1 antibodies overcome tumor hypoxia and enhance immunotherapeutic effects against melanoma publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S225807 – volume: 7 start-page: 1 year: 2016 ident: ref_189 article-title: Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy publication-title: Nat. Commun. doi: 10.1038/ncomms13193 – volume: 98 start-page: 19 year: 2016 ident: ref_25 article-title: Recent advances of cocktail chemotherapy by combination drug delivery systems publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2015.10.022 – volume: 10 start-page: 513 year: 2011 ident: ref_87 article-title: Cationic liposomes as vaccine adjuvants publication-title: Expert Rev. Vaccines doi: 10.1586/erv.11.17 – volume: 303 start-page: 1818 year: 2004 ident: ref_33 article-title: Drug Delivery Systems: Entering the Mainstream publication-title: Science doi: 10.1126/science.1095833 – volume: 6 start-page: 812 year: 2018 ident: ref_156 article-title: CAR-T cells surface-engineered with drug-encapsulated nanoparticles can ameliorate intratumoral T-cell hypofunction publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-17-0502 – volume: 8 start-page: 208 year: 2016 ident: ref_28 article-title: Targeting cancer cells in the tumor microenvironment: Opportunities and challenges in combinatorial nanomedicine publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. doi: 10.1002/wnan.1358 – volume: 460 start-page: 264 year: 2014 ident: ref_104 article-title: Lipopolyplexes comprising imidazole/imidazolium lipophosphoramidate, histidinylated polyethyleneimine and siRNA as efficient formulation for siRNA transfection publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2013.11.005 – volume: 5 start-page: 222 year: 2017 ident: ref_79 article-title: Efficient eradication of established tumors in mice with cationic liposome-based synthetic long-peptide vaccines publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-16-0283 – volume: 222 start-page: 989 year: 2017 ident: ref_51 article-title: Effect of TLR ligands co-encapsulated with multiepitopic antigen in nanoliposomes targeted to human DCs via Fc receptor for cancer vaccines publication-title: Immunobiology doi: 10.1016/j.imbio.2017.06.002 – volume: 30 start-page: 2256 year: 2012 ident: ref_43 article-title: Design considerations for liposomal vaccines: Influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens publication-title: Vaccine doi: 10.1016/j.vaccine.2012.01.070 – volume: 14 start-page: 221 year: 2014 ident: ref_103 article-title: Lipid-based mRNA vaccine delivery systems publication-title: Expert Rev. Vaccines doi: 10.1586/14760584.2015.986104 – volume: 7 start-page: 193 year: 2011 ident: ref_49 article-title: Impact of nanoparticles on the immune system publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2011.1264 – volume: 7 start-page: 10048 year: 2013 ident: ref_159 article-title: Two-wave nanotherapy to target the stroma and optimize gemcitabine delivery to a human pancreatic cancer model in mice publication-title: ACS Nano doi: 10.1021/nn404083m – volume: 11 start-page: 3089 year: 2017 ident: ref_167 article-title: Enhancing Adoptive Cell Therapy of Cancer through targeted delivery of small-molecule immunomodulators to internalizing or noninternalizing receptors publication-title: ACS Nano doi: 10.1021/acsnano.7b00078 – volume: 439 start-page: 682 year: 2006 ident: ref_132 article-title: Restoring function in exhausted CD8 T cells during chronic viral infection publication-title: Nature doi: 10.1038/nature04444 – volume: 534 start-page: 396 year: 2016 ident: ref_100 article-title: Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy publication-title: Nature doi: 10.1038/nature18300 – volume: 9 start-page: 1 year: 2018 ident: ref_54 article-title: Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity publication-title: Nat. Commun. – volume: 7 start-page: 506 year: 1989 ident: ref_70 article-title: mmunogenicity of liposomal malaria sporozoite antigen in monkeys: Adjuvant effects of aluminium hydroxide and non-pyrogenic liposomal lipid A publication-title: Vaccine doi: 10.1016/0264-410X(89)90274-0 – volume: 19 start-page: 1040 year: 2008 ident: ref_62 article-title: Preparation of pH-sensitive poly(glycidol) derivatives with varying hydrophobicities: Their ability to sensitize stable liposomes to pH publication-title: Bioconjug. Chem. doi: 10.1021/bc7004736 – volume: 71 start-page: 3540 year: 2011 ident: ref_145 article-title: Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-0096 – volume: 61 start-page: 233 year: 1999 ident: ref_85 article-title: Positively charged liposome functions as an efficient immunoadjuvant in inducing cell-mediated immune response to soluble proteins publication-title: J. Control. Release doi: 10.1016/S0168-3659(99)00097-8 – volume: 182 start-page: 459 year: 1995 ident: ref_126 article-title: CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation publication-title: J. Exp. Med. doi: 10.1084/jem.182.2.459 – volume: 120 start-page: 1111 year: 2010 ident: ref_170 article-title: Chemotherapy enhances tumor cell susceptibility to CTL- mediated killing during cancer immunotherapy in mice publication-title: J. Clin. Invest. doi: 10.1172/JCI40269 – ident: ref_12 doi: 10.1007/978-3-319-39147-2_1 – volume: 301 start-page: 247 year: 2005 ident: ref_83 article-title: Encapsulation of lipopeptides within liposomes: Effect of number of lipid chains, chain length and method of liposome preparation publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2005.06.010 – volume: 3 start-page: 1 year: 2015 ident: ref_148 article-title: Targeting the indoleamine 2,3-dioxygenase pathway in cancer publication-title: J. Immunother. Cancer doi: 10.1186/s40425-015-0094-9 – volume: 25 start-page: 3802 year: 2007 ident: ref_21 article-title: Durable complete responses with high-dose bolus interleukin-2 in patients with metastatic melanoma who have experienced progression after biochemotherapy publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2006.10.2822 – volume: 6 start-page: 231 year: 2012 ident: ref_11 article-title: Understanding the role of stromal fibroblasts in cancer progression publication-title: Cell Adhes. Migr. doi: 10.4161/cam.20419 – volume: 232 start-page: 51 year: 2016 ident: ref_96 article-title: Comparing exosome-like vesicles with liposomes for the functional cellular delivery of small RNAs publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.04.005 – volume: 366 start-page: 2455 year: 2012 ident: ref_118 article-title: Safety and Activity of Anti–PD-L1 Antibody in Patients with Advanced Cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1200694 – volume: 34 start-page: 5711 year: 2013 ident: ref_93 article-title: The application of pH-sensitive polymer-lipids to antigen delivery forcancer immunotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.04.007 – volume: 19 start-page: 5185 year: 2019 ident: ref_185 article-title: Immunomodulatory Lipocomplex Functionalized with Photosensitizer-Embedded Cancer Cell Membrane Inhibits Tumor Growth and Metastasis publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01571 – ident: ref_179 doi: 10.1155/2016/5274084 – volume: 33 start-page: 464 year: 2010 ident: ref_7 article-title: Designing vaccines based on biology of human dendritic cell subsets publication-title: Immunity doi: 10.1016/j.immuni.2010.10.007 – volume: 236 start-page: 1 year: 2016 ident: ref_107 article-title: Progress in the development of lipopolyplexes as efficient non-viral gene delivery systems publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.06.023 – volume: 13 start-page: 2671 year: 2017 ident: ref_130 article-title: Improved tumor accumulation and therapeutic efficacy of CTLA-4-blocking antibody using liposome-encapsulated antibody: In vitro and in vivo studies publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2017.08.010 – volume: 10 start-page: 1 year: 2019 ident: ref_178 article-title: Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice publication-title: Nat. Commun. doi: 10.1038/s41467-019-09760-3 – volume: 35 start-page: 207 year: 2018 ident: ref_78 article-title: Cationic Liposomes: A Flexible Vaccine Delivery System for Physicochemically Diverse Antigenic Peptides publication-title: Pharm. Res. doi: 10.1007/s11095-018-2490-6 – volume: 151 start-page: 458 year: 2010 ident: ref_86 article-title: Nanoparticles and the immune system publication-title: Endocrinology doi: 10.1210/en.2009-1082 – volume: 286 start-page: 369 year: 2018 ident: ref_143 article-title: Nanotechnology-mediated immunochemotherapy combined with docetaxel and PD-L1 antibody increase therapeutic effects and decrease systemic toxicity publication-title: J. Control. Release doi: 10.1016/j.jconrel.2018.08.011 – volume: 15 start-page: 361 year: 2015 ident: ref_109 article-title: Building better monoclonal antibody-based therapeutics publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3930 – volume: 35 start-page: S185 year: 2015 ident: ref_113 article-title: Immune evasion in cancer: Mechanistic basis and therapeutic strategies publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2015.03.004 – volume: 1 start-page: 297 year: 2006 ident: ref_57 article-title: Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential publication-title: Int. J. Nanomedicine – volume: 303 start-page: 1529 year: 2004 ident: ref_91 article-title: Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA publication-title: Science doi: 10.1126/science.1093616 – volume: 8 start-page: 860 year: 2018 ident: ref_190 article-title: An endogenous vaccine based on fluorophores and multivalent immunoadjuvants regulates tumor micro-environment for synergistic photothermal and immunotherapy publication-title: Theranostics doi: 10.7150/thno.19826 – volume: 12 start-page: 958 year: 2013 ident: ref_47 article-title: Strategies for advancing cancer nanomedicine publication-title: Nat. Mater. doi: 10.1038/nmat3792 – volume: 31 start-page: 1 year: 2019 ident: ref_136 article-title: Cocktail Strategy Based on Spatio-Temporally Controlled Nano Device Improves Therapy of Breast Cancer publication-title: Adv. Mater. doi: 10.1002/adma.201806202 – volume: 8 start-page: 1723 year: 2018 ident: ref_65 article-title: The enhanced antitumor-specific immune response with mannose- and CpG-ODN-coated liposomes delivering TRP2 peptide publication-title: Theranostics doi: 10.7150/thno.22056 – ident: ref_147 doi: 10.2147/ITT.S32617 – volume: 139 start-page: 1275 year: 2017 ident: ref_176 article-title: Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11846 – volume: 35 start-page: 369 year: 2018 ident: ref_23 article-title: Novel “Stereoscopic Response” Strategy Can Be Used in Combination Therapy publication-title: Crit. Rev. Ther. Drug Carr. Syst. doi: 10.1615/CritRevTherDrugCarrierSyst.2018020591 – volume: 12 start-page: 405 year: 1998 ident: ref_124 article-title: CTLA-4 can function as a potent negative regulator of T cell activation publication-title: Immunity – volume: 13 start-page: 1 year: 2015 ident: ref_128 article-title: Immune related adverse events associated with anti-CTLA-4 antibodies: Systematic review and meta-analysis publication-title: BMC Med. doi: 10.1186/s12916-015-0455-8 – volume: 8 start-page: 1 year: 2017 ident: ref_182 article-title: Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy publication-title: Nat. Commun. doi: 10.1038/s41467-017-02191-y – volume: 1783 start-page: 673 year: 2008 ident: ref_157 article-title: Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade publication-title: Biochim. Biophys. Acta Mol. Cell Res. doi: 10.1016/j.bbamcr.2008.01.024 – volume: 9 start-page: 5542 year: 2019 ident: ref_151 article-title: Enhanced cancer therapy through synergetic photodynamic/immune checkpoint blockade mediated by a liposomal conjugate comprised of porphyrin and IDO inhibitor publication-title: Theranostics doi: 10.7150/thno.35343 – volume: 44 start-page: 989 year: 2016 ident: ref_146 article-title: Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation publication-title: Immunity doi: 10.1016/j.immuni.2016.05.001 – volume: 11 start-page: 41829 year: 2019 ident: ref_186 article-title: Chlorin-Based Photoactivable Galectin-3-Inhibitor Nanoliposome for Enhanced Photodynamic Therapy and NK Cell-Related Immunity in Melanoma publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b09560 – volume: 7 start-page: 445 year: 2011 ident: ref_106 article-title: Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2010.12.010 – volume: 54 start-page: 863 year: 2002 ident: ref_58 article-title: Immunological aspects of controlled antigen delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(02)00073-X – volume: 18 start-page: 107 year: 1984 ident: ref_71 article-title: Phase-I study of intravenous modified lipid A publication-title: Cancer Immunol. Immunother. doi: 10.1007/BF00205743 – volume: 83 start-page: 308 year: 2016 ident: ref_171 article-title: Combinatorial prospects of nano-targeted chemoimmunotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.01.006 – volume: 65 start-page: 36 year: 2013 ident: ref_32 article-title: Liposomal drug delivery systems: From concept to clinical applications publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.09.037 – volume: 247 start-page: 134 year: 2017 ident: ref_61 article-title: Encapsulation of two different TLR ligands into liposomes confer protective immunity and prevent tumor development publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.01.004 – volume: 5 start-page: 930 year: 1998 ident: ref_101 article-title: Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery publication-title: Gene Ther. doi: 10.1038/sj.gt.3300683 – volume: 11 start-page: 36333 year: 2019 ident: ref_141 article-title: Regulatory T Cells Tailored with pH-Responsive Liposomes Shape an Immuno-Antitumor Milieu against Tumors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b11371 |
| SSID | ssj0000331839 |
| Score | 2.549075 |
| SecondaryResourceType | review_article |
| Snippet | Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1054 |
| SubjectTerms | cancer immunotherapy drug delivery immunomodulation liposome Review |
| Title | Liposome-Based Drug Delivery Systems in Cancer Immunotherapy |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33158166 https://www.proquest.com/docview/2458731917 https://pubmed.ncbi.nlm.nih.gov/PMC7694212 https://doaj.org/article/e65ce88b16ba42e49435cc1b4b121fe4 |
| Volume | 12 |
| WOSCitedRecordID | wos000593704800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-4923 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331839 issn: 1999-4923 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4923 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331839 issn: 1999-4923 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1999-4923 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331839 issn: 1999-4923 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library customDbUrl: eissn: 1999-4923 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331839 issn: 1999-4923 databaseCode: M2O dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1999-4923 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331839 issn: 1999-4923 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5B4cAF8SY8VkZCPTU0iR0_JC5sH6ISXSJUpOUUxc6kXalkV5tdpP33jJN0H6hSL1xy8COxxuPMfLbnG4CP3NMBxrEN06qSoXDSbzQpDDlhZ6exIitv22QTajTS47HJtlJ9-TthHT1wJ7hDlKlDrW0sbSESFIbsu3OxFTZO4gpbJtBImS0w1f6DuddV04XscML1h7OrzRZx43nNyLEQO8ao5ey_zdH8977klgE6fQKPe8-RfelG_BTuYf0M9rPug6sDdrGJpGoO2D7LNqTUq-fw-dtkNm2mvzEckt0q2fF8ecmO8dpfy1ixnrecTWp25NVgzs583EgfnbV6AT9PTy6OvoZ95oTQCaUWoSOvgluZojVlVchCW0eeRslVaVQpHRLoSnlpK0JbmEbUiktEbnmFJnaYRPwl7NXTGl8Dsy5CNKhtIUtBNbpIiihGJVN6dVWoAMSNCHPX04r77BbXOcELL_n8VskH8GndbdbxatzVYejnZ93Y02K3BaQsea8s-V3KEsCHm9nNaRn5s5GixumyyUkgWnEPXgN41c32-lOkS6k_Xg1A7ejBzlh2a-rJVUvVraTxR-5v_sfg38KjxIN9v6ct3sHeYr7E9_DQ_VlMmvkA7quxHsCD4cko-zFoVwM9z5PvVJadnWe__gKFOhTX |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liposome-Based+Drug+Delivery+Systems+in+Cancer+Immunotherapy&rft.jtitle=Pharmaceutics&rft.au=Gu%2C+Zili&rft.au=Da+Silva%2C+Candido+G.&rft.au=Van+der+Maaden%2C+Koen&rft.au=Ossendorp%2C+Ferry&rft.date=2020-11-04&rft.pub=MDPI&rft.eissn=1999-4923&rft.volume=12&rft.issue=11&rft_id=info:doi/10.3390%2Fpharmaceutics12111054&rft_id=info%3Apmid%2F33158166&rft.externalDocID=PMC7694212 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4923&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4923&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4923&client=summon |