Long-time coherent integration detection of weak manoeuvring target via integration algorithm, improved axis rotation discrete chirp-Fourier transform

Range/Doppler migrations, which result from the integration time increasing and the target's manoeuvring motion, will affect the coherent integration performance severely. To deal with range/Doppler migration, a novel coherent integration algorithm, improved axis rotation discrete chirp-Fourier...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IET radar, sonar & navigation Ročník 9; číslo 7; s. 917 - 926
Hlavní autori: Rao, Xuan, Tao, Haihong, Xie, Jian, Su, Jia, Li, Weiping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: The Institution of Engineering and Technology 01.08.2015
Predmet:
ISSN:1751-8784, 1751-8792
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Range/Doppler migrations, which result from the integration time increasing and the target's manoeuvring motion, will affect the coherent integration performance severely. To deal with range/Doppler migration, a novel coherent integration algorithm, improved axis rotation discrete chirp-Fourier transform (IAR-DCFT), is proposed. IAR-DCFT could eliminate range migration via improved axis rotation transform, and realise the compensation of Doppler migration and coherent integration via discrete chirp-Fourier transform. IAR-DCFT may be regarded as tri-dimensional motion parameter filter banks, which is analogous to moving target detection that can be treated as Doppler filter banks, and estimate a target's velocity, acceleration and jerk simultaneously. Then the derivations of maximum-likelihood estimator and likelihood ratio test detector show that IAR-DCFT is the optimal estimator and a detector. The performance of the optimal estimator is verified by comparing with Cramer-Rao lower bound. Subsequently, the detailed performance analyses of IAR-DCFT are provided, including coherent integration gain, coherent integration time, multi-target detection and computational complexity. Furthermore, the authors introduce the generalisation of IAR-DCFT, that is, multi-range-cell associated IAR-DCFT (MR-IAR-DCFT), which can be applied to detect a target with high-manoeuvring motion or used in a longer time integration case. Finally, some numerical experiments are given to verify the performance of IAR-DCFT and MR-IAR-DCFT.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1751-8784
1751-8792
DOI:10.1049/iet-rsn.2014.0344