Enhanced Surface Interactions Enable Fast Li+ Conduction in Oxide/Polymer Composite Electrolyte
Li+‐conducting oxides are considered better ceramic fillers than Li+‐insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+‐insulating oxides...
Uložené v:
| Vydané v: | Angewandte Chemie (International ed.) Ročník 59; číslo 10; s. 4131 - 4137 |
|---|---|
| Hlavní autori: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
Wiley Subscription Services, Inc
02.03.2020
Wiley Blackwell (John Wiley & Sons) |
| Vydanie: | International ed. in English |
| Predmet: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Li+‐conducting oxides are considered better ceramic fillers than Li+‐insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+‐insulating oxides (fluorite Gd0.1Ce0.9O1.95 and perovskite La0.8Sr0.2Ga0.8Mg0.2O2.55) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)‐based polymer composite electrolytes, each with a Li+ conductivity above 10−4 S cm−1 at 30 °C. Li solid‐state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2‐site occupancy originates from the strong interaction between the O2− of Li‐salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All‐solid‐state Li‐metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C.
The strong interaction between the surface oxygen vacancies of GDC/LSGM and the TFSI− anions in the composite polymer electrolyte changes Li+ distribution in two local environments, and the population increase of mobile Li+ ions in A2 significantly enhances the Li+ conductivity of the composite electrolyte. |
|---|---|
| AbstractList | Li
-conducting oxides are considered better ceramic fillers than Li
-insulating oxides for improving Li
conductivity in composite polymer electrolytes owing to their ability to conduct Li
through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li
-insulating oxides (fluorite Gd
Ce
O
and perovskite La
Sr
Ga
Mg
O
) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)-based polymer composite electrolytes, each with a Li
conductivity above 10
S cm
at 30 °C. Li solid-state NMR results show an increase in Li
ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2-site occupancy originates from the strong interaction between the O
of Li-salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li
transport. All-solid-state Li-metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C. Li+‐conducting oxides are considered better ceramic fillers than Li+‐insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+‐insulating oxides (fluorite Gd0.1Ce0.9O1.95 and perovskite La0.8Sr0.2Ga0.8Mg0.2O2.55) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)‐based polymer composite electrolytes, each with a Li+ conductivity above 10−4 S cm−1 at 30 °C. Li solid‐state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2‐site occupancy originates from the strong interaction between the O2− of Li‐salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All‐solid‐state Li‐metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C. The strong interaction between the surface oxygen vacancies of GDC/LSGM and the TFSI− anions in the composite polymer electrolyte changes Li+ distribution in two local environments, and the population increase of mobile Li+ ions in A2 significantly enhances the Li+ conductivity of the composite electrolyte. Li+‐conducting oxides are considered better ceramic fillers than Li+‐insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+‐insulating oxides (fluorite Gd0.1Ce0.9O1.95 and perovskite La0.8Sr0.2Ga0.8Mg0.2O2.55) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)‐based polymer composite electrolytes, each with a Li+ conductivity above 10−4 S cm−1 at 30 °C. Li solid‐state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2‐site occupancy originates from the strong interaction between the O2− of Li‐salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All‐solid‐state Li‐metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C. Li+ -conducting oxides are considered better ceramic fillers than Li+ -insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+ -insulating oxides (fluorite Gd0.1 Ce0.9 O1.95 and perovskite La0.8 Sr0.2 Ga0.8 Mg0.2 O2.55 ) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)-based polymer composite electrolytes, each with a Li+ conductivity above 10-4 S cm-1 at 30 °C. Li solid-state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2-site occupancy originates from the strong interaction between the O2- of Li-salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All-solid-state Li-metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C.Li+ -conducting oxides are considered better ceramic fillers than Li+ -insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+ -insulating oxides (fluorite Gd0.1 Ce0.9 O1.95 and perovskite La0.8 Sr0.2 Ga0.8 Mg0.2 O2.55 ) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)-based polymer composite electrolytes, each with a Li+ conductivity above 10-4 S cm-1 at 30 °C. Li solid-state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2-site occupancy originates from the strong interaction between the O2- of Li-salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All-solid-state Li-metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C. Li + ‐conducting oxides are considered better ceramic fillers than Li + ‐insulating oxides for improving Li + conductivity in composite polymer electrolytes owing to their ability to conduct Li + through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li + ‐insulating oxides (fluorite Gd 0.1 Ce 0.9 O 1.95 and perovskite La 0.8 Sr 0.2 Ga 0.8 Mg 0.2 O 2.55 ) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)‐based polymer composite electrolytes, each with a Li + conductivity above 10 −4 S cm −1 at 30 °C. Li solid‐state NMR results show an increase in Li + ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2‐site occupancy originates from the strong interaction between the O 2− of Li‐salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li + transport. All‐solid‐state Li‐metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C. |
| Author | Xu, Biyi Chien, Po‐Hsiu Grundish, Nicholas S. Li, Yutao Jin, Haibo Hu, Yan‐Yan Goodenough, John B. Qian, Yumin Wu, Nan Xu, Henghui Yu, Guihua |
| Author_xml | – sequence: 1 givenname: Nan orcidid: 0000-0003-3100-199X surname: Wu fullname: Wu, Nan organization: The University of Texas at Austin – sequence: 2 givenname: Po‐Hsiu surname: Chien fullname: Chien, Po‐Hsiu organization: National High Magnetic Field Laboratory – sequence: 3 givenname: Yumin surname: Qian fullname: Qian, Yumin organization: The University of Texas at Austin – sequence: 4 givenname: Yutao orcidid: 0000-0003-0798-6880 surname: Li fullname: Li, Yutao email: lytthu@utexas.edu organization: The University of Texas at Austin – sequence: 5 givenname: Henghui orcidid: 0000-0003-2790-3122 surname: Xu fullname: Xu, Henghui organization: The University of Texas at Austin – sequence: 6 givenname: Nicholas S. surname: Grundish fullname: Grundish, Nicholas S. organization: The University of Texas at Austin – sequence: 7 givenname: Biyi orcidid: 0000-0002-8608-5257 surname: Xu fullname: Xu, Biyi organization: The University of Texas at Austin – sequence: 8 givenname: Haibo surname: Jin fullname: Jin, Haibo organization: Beijing Institute of Technology – sequence: 9 givenname: Yan‐Yan surname: Hu fullname: Hu, Yan‐Yan organization: Florida State University – sequence: 10 givenname: Guihua surname: Yu fullname: Yu, Guihua organization: The University of Texas at Austin – sequence: 11 givenname: John B. orcidid: 0000-0001-9350-3034 surname: Goodenough fullname: Goodenough, John B. email: jgoodenough@mail.utexas.edu organization: The University of Texas at Austin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31893468$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1593491$$D View this record in Osti.gov |
| BookMark | eNqFkctr3DAQxkVJaR7ttcci2kuheKOXLfkYFqddWJJC27OQ5VmiYEtbSSbd_77abh4QKDlp0Py-4Zv5TtGRDx4Qek_JghLCzo13sGCEtlQIqV6hE1ozWnEp-VGpBeeVVDU9Rqcp3RZeKdK8QcecqpaLRp0g3fkb4y0M-MccN8YCXvkM0djsgk-486YfAV-alPHafcHL4If5Xw87j6__uAHOv4dxN0EsvWkbksuAuxFsjuU7w1v0emPGBO_u3zP067L7ufxWra-_rpYX68oKKVVlhOoNswRYLzZCAMiWS0ubgVFKe9FwoQYirCRGEkmoFYq1VvaCWV73tWT8DH08zA0pO51ssWFvbPC-ONG0Ltu2tECfD9A2ht8zpKwnlyyMo_EQ5qQZ51S2bdM2Bf30DL0Nc_RlhUIpVteCMFGoD_fU3E8w6G10k4k7_XDfAogDYGNIKcJGF2dmf78cjRs1JXofo97HqB9jLLLFM9nD5P8K2oPgzo2we4HWF1er7kn7F6KlrWM |
| CitedBy_id | crossref_primary_10_1016_j_jallcom_2022_165138 crossref_primary_10_1002_anie_202104183 crossref_primary_10_3390_app14073115 crossref_primary_10_3390_molecules29184452 crossref_primary_10_1002_adfm_202007172 crossref_primary_10_3390_membranes12040416 crossref_primary_10_1016_j_est_2025_117737 crossref_primary_10_1021_acsaem_5c01380 crossref_primary_10_1039_D4SC07151D crossref_primary_10_1002_smll_202301275 crossref_primary_10_1007_s12598_023_02375_0 crossref_primary_10_1016_j_nanoen_2022_107105 crossref_primary_10_1002_sstr_202400312 crossref_primary_10_1002_batt_202300001 crossref_primary_10_3390_catal13040711 crossref_primary_10_1007_s11581_023_05028_5 crossref_primary_10_1002_idm2_12020 crossref_primary_10_1002_adma_202110423 crossref_primary_10_1016_j_pmatsci_2025_101559 crossref_primary_10_1002_ange_202414119 crossref_primary_10_1016_j_apcatb_2024_124155 crossref_primary_10_1016_j_jechem_2025_05_062 crossref_primary_10_1021_jacs_0c12965 crossref_primary_10_1002_smll_202208164 crossref_primary_10_1038_s41467_024_51191_2 crossref_primary_10_1002_anie_202417778 crossref_primary_10_1002_anie_202410463 crossref_primary_10_1002_ange_202421427 crossref_primary_10_1016_j_jechem_2025_01_014 crossref_primary_10_1039_D1EE03345J crossref_primary_10_1002_anie_202410347 crossref_primary_10_1002_ange_202425221 crossref_primary_10_1016_j_cej_2023_141329 crossref_primary_10_1002_advs_202205108 crossref_primary_10_1002_adma_202311687 crossref_primary_10_1016_j_jmst_2025_09_008 crossref_primary_10_1002_ange_202511822 crossref_primary_10_1002_adfm_202101380 crossref_primary_10_1002_cssc_202200999 crossref_primary_10_1016_j_jpowsour_2025_237987 crossref_primary_10_1016_j_cej_2023_144150 crossref_primary_10_1016_j_nanoen_2024_109623 crossref_primary_10_1002_ange_202305004 crossref_primary_10_1002_advs_202501012 crossref_primary_10_1002_anie_202413502 crossref_primary_10_1002_smll_202407430 crossref_primary_10_1007_s12598_024_02710_z crossref_primary_10_1016_j_apt_2021_05_012 crossref_primary_10_1016_j_clay_2021_106363 crossref_primary_10_1016_j_cej_2025_161626 crossref_primary_10_1039_D0SC03121F crossref_primary_10_1002_cey2_146 crossref_primary_10_1016_j_nanoen_2023_108985 crossref_primary_10_1002_ange_202113086 crossref_primary_10_1002_anie_202511822 crossref_primary_10_1002_cssc_202401860 crossref_primary_10_1002_anie_202305004 crossref_primary_10_26599_NR_2025_94907316 crossref_primary_10_1002_ange_202400619 crossref_primary_10_1007_s40843_024_2915_3 crossref_primary_10_1007_s43979_024_00096_6 crossref_primary_10_1002_anie_202411535 crossref_primary_10_1007_s11581_024_05873_y crossref_primary_10_1016_j_memsci_2023_121636 crossref_primary_10_1039_D2EE02931F crossref_primary_10_1039_D0PY00728E crossref_primary_10_1002_aenm_202203547 crossref_primary_10_1016_j_jpowsour_2022_232034 crossref_primary_10_1039_D5TA04882F crossref_primary_10_1002_ange_202304339 crossref_primary_10_1039_D4SE00354C crossref_primary_10_1002_advs_202201718 crossref_primary_10_1002_ange_202410347 crossref_primary_10_1002_ange_202410463 crossref_primary_10_1016_j_matdes_2024_112740 crossref_primary_10_1002_adma_202406315 crossref_primary_10_1007_s12598_021_01951_6 crossref_primary_10_1002_adfm_202104830 crossref_primary_10_1016_j_mtcomm_2020_101910 crossref_primary_10_1002_anie_202113086 crossref_primary_10_1016_j_snb_2024_136844 crossref_primary_10_1002_ange_202417778 crossref_primary_10_1002_anie_202503587 crossref_primary_10_1002_aenm_202200967 crossref_primary_10_1016_j_jpowsour_2022_231297 crossref_primary_10_1016_j_etran_2023_100310 crossref_primary_10_1016_j_hydromet_2022_105929 crossref_primary_10_1002_ange_202413502 crossref_primary_10_1073_pnas_2300197120 crossref_primary_10_1016_j_chempr_2020_06_030 crossref_primary_10_1016_j_jpowsour_2025_237733 crossref_primary_10_1002_smll_202501010 crossref_primary_10_1016_j_progpolymsci_2023_101743 crossref_primary_10_1016_j_cej_2023_144120 crossref_primary_10_1016_j_nanoen_2020_105475 crossref_primary_10_1016_j_electacta_2023_142493 crossref_primary_10_1021_acsaem_5c00106 crossref_primary_10_1007_s12613_021_2278_2 crossref_primary_10_1016_j_compscitech_2023_110134 crossref_primary_10_1016_j_jpowsour_2025_237952 crossref_primary_10_1007_s10853_022_07185_w crossref_primary_10_1002_smtd_202401737 crossref_primary_10_1002_adsu_202400369 crossref_primary_10_1007_s41918_023_00204_7 crossref_primary_10_1002_aenm_202101813 crossref_primary_10_1149_1945_7111_ad5efc crossref_primary_10_1016_j_jcis_2022_04_067 crossref_primary_10_1016_j_coelec_2020_07_006 crossref_primary_10_1002_ange_202411535 crossref_primary_10_1002_cssc_202201801 crossref_primary_10_1002_inf2_12394 crossref_primary_10_1039_D4EE00798K crossref_primary_10_1039_D5NJ02206A crossref_primary_10_1016_j_jcis_2022_03_148 crossref_primary_10_1002_anie_202414119 crossref_primary_10_1016_j_ensm_2025_104210 crossref_primary_10_1002_ange_202104183 crossref_primary_10_1002_smll_202307942 crossref_primary_10_1016_j_surfcoat_2021_127389 crossref_primary_10_1016_j_jechem_2022_09_042 crossref_primary_10_1016_j_jechem_2024_03_033 crossref_primary_10_1002_adfm_202008208 crossref_primary_10_1002_cey2_108 crossref_primary_10_1002_cjoc_202400647 crossref_primary_10_1002_aenm_202302785 crossref_primary_10_1016_j_mseb_2025_118316 crossref_primary_10_1016_j_nxmate_2024_100360 crossref_primary_10_1016_j_cclet_2023_109173 crossref_primary_10_1002_ange_202503587 crossref_primary_10_1016_j_est_2025_116243 crossref_primary_10_1002_advs_202003887 crossref_primary_10_1016_j_cej_2024_150298 crossref_primary_10_1002_anie_202425221 crossref_primary_10_1080_10408436_2021_1886045 crossref_primary_10_1002_celc_202000784 crossref_primary_10_1016_j_susmat_2021_e00297 crossref_primary_10_1016_j_cej_2022_136436 crossref_primary_10_1016_j_mtener_2021_100694 crossref_primary_10_1016_j_jpowsour_2020_228146 crossref_primary_10_1039_D3NR06308A crossref_primary_10_1002_smll_202102978 crossref_primary_10_1016_j_coelec_2021_100828 crossref_primary_10_1002_smll_202503636 crossref_primary_10_1002_anie_202421427 crossref_primary_10_1016_j_cej_2024_149516 crossref_primary_10_1016_j_jcis_2025_02_188 crossref_primary_10_1002_ange_202400477 crossref_primary_10_1016_j_jpowsour_2020_228929 crossref_primary_10_1002_adfm_202101523 crossref_primary_10_1002_anie_202403661 crossref_primary_10_1016_j_jechem_2022_08_036 crossref_primary_10_1016_j_memsci_2023_121442 crossref_primary_10_1007_s11581_021_04203_w crossref_primary_10_1002_anie_202506662 crossref_primary_10_1016_j_jpowsour_2023_233213 crossref_primary_10_1002_anie_202304339 crossref_primary_10_1016_j_actamat_2025_120720 crossref_primary_10_1016_j_cej_2023_143222 crossref_primary_10_1002_aenm_202000049 crossref_primary_10_1038_s41467_023_41513_1 crossref_primary_10_1016_j_jpowsour_2021_229843 crossref_primary_10_1007_s12598_022_02260_2 crossref_primary_10_1002_adfm_202303121 crossref_primary_10_1039_D1SC06745A crossref_primary_10_1016_j_cclet_2025_110851 crossref_primary_10_1016_j_nanoen_2022_107763 crossref_primary_10_1039_D2SE01093C crossref_primary_10_1039_D4QM00182F crossref_primary_10_1002_anie_202400619 crossref_primary_10_1016_j_cej_2021_131948 crossref_primary_10_1021_acsami_4c23123 crossref_primary_10_1021_jacs_3c11988 crossref_primary_10_1002_adfm_202316018 crossref_primary_10_1016_j_jechem_2022_07_006 crossref_primary_10_1002_smll_202102039 crossref_primary_10_1002_adfm_202308250 crossref_primary_10_1016_j_cej_2020_126517 crossref_primary_10_1016_j_jmst_2025_04_075 crossref_primary_10_1002_celc_202400472 crossref_primary_10_1016_j_ssi_2024_116515 crossref_primary_10_1002_adfm_202213211 crossref_primary_10_1002_adfm_202307045 crossref_primary_10_1002_adfm_202415303 crossref_primary_10_1021_jacs_1c00752 crossref_primary_10_1016_j_susmat_2024_e01213 crossref_primary_10_1002_ange_202106039 crossref_primary_10_1016_S1003_6326_24_66587_8 crossref_primary_10_1038_s41467_024_45372_2 crossref_primary_10_1002_elan_202200240 crossref_primary_10_1039_D0EE02620D crossref_primary_10_1002_smll_202301521 crossref_primary_10_1007_s40820_024_01415_3 crossref_primary_10_1016_j_nanoen_2023_108192 crossref_primary_10_1002_anie_202422942 crossref_primary_10_1016_j_ensm_2025_104623 crossref_primary_10_1016_j_est_2022_105382 crossref_primary_10_1002_adma_202107183 crossref_primary_10_1016_j_cej_2024_156000 crossref_primary_10_1002_adfm_202301165 crossref_primary_10_1039_D3QM00784G crossref_primary_10_1002_sstr_202200206 crossref_primary_10_1002_smll_202303779 crossref_primary_10_1002_anie_202106039 crossref_primary_10_1002_anie_202400477 crossref_primary_10_1002_bte2_20230037 crossref_primary_10_1002_ange_202506662 crossref_primary_10_1016_j_jpowsour_2021_229796 crossref_primary_10_1111_ijac_14523 crossref_primary_10_1002_adma_202307599 crossref_primary_10_1002_aenm_202003663 crossref_primary_10_1016_j_jmst_2023_04_009 crossref_primary_10_3389_fenrg_2021_726738 crossref_primary_10_26599_NR_2025_94907304 crossref_primary_10_1002_adfm_202419095 crossref_primary_10_1002_advs_202506640 crossref_primary_10_1002_smtd_202400356 crossref_primary_10_1002_adfm_202511014 crossref_primary_10_1038_s41560_023_01208_9 crossref_primary_10_1007_s10904_022_02461_3 crossref_primary_10_1002_adma_202205560 crossref_primary_10_1002_advs_202106032 crossref_primary_10_1016_j_cclet_2021_12_022 crossref_primary_10_1039_D0QM01058H crossref_primary_10_1002_smtd_202301162 crossref_primary_10_26599_NR_2025_94907651 crossref_primary_10_1002_ange_202403661 crossref_primary_10_1002_adfm_202503649 crossref_primary_10_1039_D4MH01181C crossref_primary_10_1016_j_mattod_2024_06_001 crossref_primary_10_1016_j_cej_2022_138787 crossref_primary_10_1016_j_jelechem_2020_114916 crossref_primary_10_1016_j_cclet_2025_111434 crossref_primary_10_1016_j_jechem_2021_11_015 crossref_primary_10_1002_smll_202204163 crossref_primary_10_1016_j_mtener_2022_101117 crossref_primary_10_1016_j_jechem_2023_09_049 crossref_primary_10_1016_j_scib_2022_11_027 crossref_primary_10_1002_smll_202207223 crossref_primary_10_1016_j_colsurfa_2022_130520 crossref_primary_10_1016_j_cclet_2022_107767 crossref_primary_10_1007_s40145_022_0580_8 crossref_primary_10_1007_s12598_022_02081_3 crossref_primary_10_1016_j_cej_2021_134353 crossref_primary_10_1007_s40820_023_01055_z crossref_primary_10_1016_j_cej_2021_132971 crossref_primary_10_1016_j_electacta_2024_143949 crossref_primary_10_1002_anie_202306948 crossref_primary_10_1016_j_jallcom_2025_179925 crossref_primary_10_1016_j_jmr_2023_107516 crossref_primary_10_1016_j_seppur_2024_126789 crossref_primary_10_1002_advs_202300226 crossref_primary_10_1002_cssc_202401710 crossref_primary_10_1002_cnma_202100262 crossref_primary_10_1002_ange_202404728 crossref_primary_10_1016_j_cjche_2021_07_008 crossref_primary_10_1002_adma_202308586 crossref_primary_10_1002_ange_202422942 crossref_primary_10_3389_fmats_2021_697257 crossref_primary_10_3390_molecules28248029 crossref_primary_10_1016_j_nanoen_2024_110127 crossref_primary_10_1016_j_est_2025_117200 crossref_primary_10_1002_adfm_202422147 crossref_primary_10_1002_adma_202303226 crossref_primary_10_1021_acsnano_5c00198 crossref_primary_10_1002_adfm_202305186 crossref_primary_10_1002_adma_202311195 crossref_primary_10_1002_cey2_180 crossref_primary_10_1016_j_jechem_2022_02_041 crossref_primary_10_1016_j_snb_2022_132629 crossref_primary_10_1002_aenm_202503420 crossref_primary_10_1002_adma_202504186 crossref_primary_10_1002_ange_202306948 crossref_primary_10_1002_anie_202404728 crossref_primary_10_1007_s12598_020_01501_6 |
| Cites_doi | 10.1002/ange.200703900 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I 10.1016/j.electacta.2004.01.095 10.1002/ange.201607539 10.1016/j.jeurceramsoc.2007.08.006 10.1021/ja3091438 10.1021/acs.nanolett.8b01111 10.1073/pnas.1907507116 10.1038/nnano.2016.237 10.1002/ange.200701144 10.1021/jacs.8b03106 10.1021/acs.nanolett.5b00600 10.1039/C5TA03471J 10.1038/28818 10.1016/j.electacta.2017.11.164 10.1038/s41560-019-0338-x 10.1021/acsami.7b17301 10.1016/j.electacta.2016.12.172 10.1039/C7TA10517G 10.1038/natrevmats.2016.103 10.1016/j.ssi.2007.11.035 10.1002/ange.201814222 10.1039/b208354j 10.1039/C7TA05832B 10.1016/j.jpowsour.2006.02.044 10.1016/j.ensm.2016.07.003 10.1002/adma.201803075 10.1146/annurev.ms.16.080186.001333 10.1016/0167-2738(88)90314-1 10.1073/pnas.1615912113 10.1002/anie.201802248 10.1002/anie.201814222 10.1038/nenergy.2017.35 10.1038/s41565-019-0465-3 10.1016/j.jpowsour.2008.09.119 10.1002/anie.200703900 10.1016/S0167-2738(97)00488-8 10.1016/j.nanoen.2017.01.028 10.1002/anie.201607539 10.1073/pnas.1600422113 10.1039/c2jm31413d 10.1002/anie.200701144 10.1016/j.nanoen.2017.12.037 10.1021/jacs.7b10864 10.1016/0032-3861(95)96841-U 10.1002/ange.201802248 |
| ContentType | Journal Article |
| Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION NPM 7TM K9. 7X8 OTOTI |
| DOI | 10.1002/anie.201914478 |
| DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic OSTI.GOV |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | 4137 |
| ExternalDocumentID | 1593491 31893468 10_1002_anie_201914478 ANIE201914478 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Tafel funderid: UTA18-000175 – fundername: U.S. Department of Energy funderid: DE-EE0007762 – fundername: National Science Foundation funderid: DMR-1808517; NSF/DMR-1644779 – fundername: Tafel grantid: UTA18-000175 – fundername: National Science Foundation grantid: NSF/DMR-1644779 – fundername: National Science Foundation grantid: DMR-1808517 – fundername: U.S. Department of Energy grantid: DE-EE0007762 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI ABUFD AEYWJ AGHNM AGYGG CITATION O8X NPM YIN 7TM K9. 7X8 AAPBV ABHUG ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS B-7 OTOTI PQEST |
| ID | FETCH-LOGICAL-c4778-a48ba2c0e2b4f44ee7937c16d2111b46348d04c70a70701c4829c7b42c35b5723 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 371 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000508742800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Thu May 18 22:40:00 EDT 2023 Fri Jul 11 10:49:08 EDT 2025 Sat Nov 29 14:43:43 EST 2025 Wed Feb 19 02:31:09 EST 2025 Sat Nov 29 03:45:02 EST 2025 Tue Nov 18 21:57:18 EST 2025 Wed Jan 22 16:36:30 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Li-ion conductivity composite electrolyte solid-state NMR all-solid-state battery Li-ion transfer mechanism |
| Language | English |
| License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4778-a48ba2c0e2b4f44ee7937c16d2111b46348d04c70a70701c4829c7b42c35b5723 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 EE0007762 USDOE |
| ORCID | 0000-0003-3100-199X 0000-0003-0798-6880 0000-0002-8608-5257 0000-0001-9350-3034 0000-0003-2790-3122 000000033100199X 0000000286085257 0000000307986880 0000000327903122 0000000193503034 |
| OpenAccessLink | https://www.osti.gov/biblio/1593491 |
| PMID | 31893468 |
| PQID | 2382554024 |
| PQPubID | 946352 |
| PageCount | 7 |
| ParticipantIDs | osti_scitechconnect_1593491 proquest_miscellaneous_2331799696 proquest_journals_2382554024 pubmed_primary_31893468 crossref_citationtrail_10_1002_anie_201914478 crossref_primary_10_1002_anie_201914478 wiley_primary_10_1002_anie_201914478_ANIE201914478 |
| PublicationCentury | 2000 |
| PublicationDate | March 2, 2020 |
| PublicationDateYYYYMMDD | 2020-03-02 |
| PublicationDate_xml | – month: 03 year: 2020 text: March 2, 2020 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Angewandte Chemie (International ed.) |
| PublicationTitleAlternate | Angew Chem Int Ed Engl |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
| References | 2017; 5 2015; 15 2019; 4 2017; 2 2018; 140 2015; 3 1988; 28–30 1995; 36 2019; 14 1986; 16 2003; 13 2008 2008; 47 120 2006; 159 2017; 258 2019 2019; 58 131 2016; 11 1998; 394 2018; 46 2016; 5 2018; 6 2018; 18 2004; 50 2016 2016; 55 128 2020 2017; 33 2018 2018; 57 130 2007 2007; 46 119 2008; 28 2016; 113 2019; 116 2013; 135 2018; 30 1998; 106 2008; 179 2009; 186 1998; 10 2018; 10 2012; 22 2017; 227 e_1_2_6_51_1 e_1_2_6_51_2 e_1_2_6_32_1 e_1_2_6_30_2 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_13_3 e_1_2_6_15_1 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_7_2 e_1_2_6_5_1 e_1_2_6_3_2 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_22_2 e_1_2_6_43_2 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_2 e_1_2_6_47_1 Wu N. (e_1_2_6_44_2) 2020 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_18_2 e_1_2_6_35_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_10_3 e_1_2_6_12_1 e_1_2_6_39_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_14_3 e_1_2_6_16_1 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_1 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_48_1 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_29_1 e_1_2_6_27_2 e_1_2_6_46_1 e_1_2_6_25_2 |
| References_xml | – volume: 16 start-page: 245 year: 1986 end-page: 261 publication-title: Annu. Rev. Mater. Sci. – volume: 30 start-page: 1803075 year: 2018 publication-title: Adv. Mater. – volume: 140 start-page: 82 year: 2018 end-page: 85 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 4279 year: 2018 end-page: 4285 publication-title: J. Mater. Chem. A – volume: 28 start-page: 803 year: 2008 end-page: 810 publication-title: J. Eur. Ceram. Soc. – volume: 10 start-page: 4113 year: 2018 end-page: 4120 publication-title: ACS Appl. Mater. Interfaces – volume: 22 start-page: 15357 year: 2012 end-page: 15361 publication-title: J. Mater. Chem. – volume: 11 start-page: 1039 year: 2016 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 139 year: 2016 end-page: 164 publication-title: Energy Storage Mater. – volume: 13 start-page: 814 year: 2003 end-page: 817 publication-title: J. Mater. Chem. – volume: 113 start-page: 13313 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 46 119 start-page: 7778 7925 year: 2007 2007 end-page: 7781 7928 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 18457 year: 2017 end-page: 18463 publication-title: J. Mater. Chem. A – volume: 4 start-page: 180 year: 2019 end-page: 186 publication-title: Nat. Energy – volume: 179 start-page: 1670 year: 2008 end-page: 1678 publication-title: Solid State Ionics – volume: 15 start-page: 2740 year: 2015 end-page: 2745 publication-title: Nano Lett. – volume: 58 131 start-page: 8681 8773 year: 2019 2019 end-page: 8686 8778 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 135 start-page: 1167 year: 2013 end-page: 1176 publication-title: J. Am. Chem. Soc. – volume: 106 start-page: 25 year: 1998 end-page: 32 publication-title: Solid State Ionics – volume: 33 start-page: 363 year: 2017 end-page: 386 publication-title: Nano Energy – volume: 2 start-page: 16103 year: 2017 publication-title: Nat. Rev. Mater. – volume: 140 start-page: 6448 year: 2018 end-page: 6455 publication-title: J. Am. Chem. Soc. – volume: 227 start-page: 127 year: 2017 end-page: 135 publication-title: Electrochim. Acta – volume: 36 start-page: 4371 year: 1995 end-page: 4378 publication-title: Polymer – volume: 10 start-page: 439 year: 1998 end-page: 448 publication-title: Adv. Mater. – volume: 394 start-page: 456 year: 1998 end-page: 458 publication-title: Nature – volume: 55 128 start-page: 12538 12726 year: 2016 2016 end-page: 12542 12730 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 113 start-page: 7094 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 46 start-page: 176 year: 2018 end-page: 184 publication-title: Nano Energy – volume: 159 start-page: 420 year: 2006 end-page: 430 publication-title: J. Power Sources – volume: 2 start-page: 17035 year: 2017 publication-title: Nat. Energy – volume: 186 start-page: 268 year: 2009 end-page: 277 publication-title: J. Power Sources – volume: 3 start-page: 19218 year: 2015 end-page: 19253 publication-title: J. Mater. Chem. A – volume: 50 start-page: 289 year: 2004 end-page: 293 publication-title: Electrochim. Acta – volume: 14 start-page: 705 year: 2019 end-page: 711 publication-title: Nat. Nanotechnol. – year: 2020 publication-title: J. Am. Chem. Soc. – volume: 116 start-page: 18815 year: 2019 publication-title: Proc. Natl. Acad. Sci. USA – volume: 28–30 start-page: 975 year: 1988 end-page: 978 publication-title: Solid State Ionics – volume: 57 130 start-page: 5449 5547 year: 2018 2018 end-page: 5453 5551 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 47 120 start-page: 755 767 year: 2008 2008 end-page: 758 770 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 18 start-page: 3829 year: 2018 end-page: 3838 publication-title: Nano Lett. – volume: 258 start-page: 1106 year: 2017 end-page: 1114 publication-title: Electrochim. Acta – ident: e_1_2_6_14_3 doi: 10.1002/ange.200703900 – ident: e_1_2_6_21_2 doi: 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I – ident: e_1_2_6_22_2 doi: 10.1016/j.electacta.2004.01.095 – ident: e_1_2_6_30_2 doi: 10.1002/ange.201607539 – ident: e_1_2_6_46_1 doi: 10.1016/j.jeurceramsoc.2007.08.006 – ident: e_1_2_6_2_2 doi: 10.1021/ja3091438 – year: 2020 ident: e_1_2_6_44_2 publication-title: J. Am. Chem. Soc. – ident: e_1_2_6_37_2 doi: 10.1021/acs.nanolett.8b01111 – ident: e_1_2_6_36_2 doi: 10.1073/pnas.1907507116 – ident: e_1_2_6_3_2 doi: 10.1038/nnano.2016.237 – ident: e_1_2_6_10_3 doi: 10.1002/ange.200701144 – ident: e_1_2_6_17_2 doi: 10.1021/jacs.8b03106 – ident: e_1_2_6_40_2 doi: 10.1021/acs.nanolett.5b00600 – ident: e_1_2_6_42_2 doi: 10.1039/C5TA03471J – ident: e_1_2_6_28_1 doi: 10.1038/28818 – ident: e_1_2_6_50_1 doi: 10.1016/j.electacta.2017.11.164 – ident: e_1_2_6_7_2 doi: 10.1038/s41560-019-0338-x – ident: e_1_2_6_38_2 doi: 10.1021/acsami.7b17301 – ident: e_1_2_6_25_2 doi: 10.1016/j.electacta.2016.12.172 – ident: e_1_2_6_31_1 doi: 10.1039/C7TA10517G – ident: e_1_2_6_6_2 doi: 10.1038/natrevmats.2016.103 – ident: e_1_2_6_9_1 – ident: e_1_2_6_27_2 doi: 10.1016/j.ssi.2007.11.035 – ident: e_1_2_6_13_3 doi: 10.1002/ange.201814222 – ident: e_1_2_6_12_1 – ident: e_1_2_6_1_1 – ident: e_1_2_6_48_1 doi: 10.1039/b208354j – ident: e_1_2_6_47_1 doi: 10.1039/C7TA05832B – ident: e_1_2_6_26_2 doi: 10.1016/j.jpowsour.2006.02.044 – ident: e_1_2_6_4_2 doi: 10.1016/j.ensm.2016.07.003 – ident: e_1_2_6_15_1 doi: 10.1002/adma.201803075 – ident: e_1_2_6_20_2 doi: 10.1146/annurev.ms.16.080186.001333 – ident: e_1_2_6_29_1 doi: 10.1016/0167-2738(88)90314-1 – ident: e_1_2_6_18_2 doi: 10.1073/pnas.1615912113 – ident: e_1_2_6_51_1 doi: 10.1002/anie.201802248 – ident: e_1_2_6_13_2 doi: 10.1002/anie.201814222 – ident: e_1_2_6_39_2 doi: 10.1038/nenergy.2017.35 – ident: e_1_2_6_35_2 doi: 10.1038/s41565-019-0465-3 – ident: e_1_2_6_41_1 – ident: e_1_2_6_19_1 – ident: e_1_2_6_5_1 – ident: e_1_2_6_45_1 doi: 10.1016/j.jpowsour.2008.09.119 – ident: e_1_2_6_14_2 doi: 10.1002/anie.200703900 – ident: e_1_2_6_43_2 doi: 10.1016/S0167-2738(97)00488-8 – ident: e_1_2_6_8_1 doi: 10.1016/j.nanoen.2017.01.028 – ident: e_1_2_6_24_1 – ident: e_1_2_6_30_1 doi: 10.1002/anie.201607539 – ident: e_1_2_6_16_1 – ident: e_1_2_6_32_1 – ident: e_1_2_6_34_2 doi: 10.1073/pnas.1600422113 – ident: e_1_2_6_11_2 doi: 10.1039/c2jm31413d – ident: e_1_2_6_10_2 doi: 10.1002/anie.200701144 – ident: e_1_2_6_33_2 doi: 10.1016/j.nanoen.2017.12.037 – ident: e_1_2_6_23_2 doi: 10.1021/jacs.7b10864 – ident: e_1_2_6_49_1 doi: 10.1016/0032-3861(95)96841-U – ident: e_1_2_6_51_2 doi: 10.1002/ange.201802248 |
| SSID | ssj0028806 |
| Score | 2.6986747 |
| Snippet | Li+‐conducting oxides are considered better ceramic fillers than Li+‐insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing... Li + ‐conducting oxides are considered better ceramic fillers than Li + ‐insulating oxides for improving Li + conductivity in composite polymer electrolytes... Li -conducting oxides are considered better ceramic fillers than Li -insulating oxides for improving Li conductivity in composite polymer electrolytes owing to... Li+ -conducting oxides are considered better ceramic fillers than Li+ -insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing... |
| SourceID | osti proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4131 |
| SubjectTerms | all-solid-state battery composite electrolyte Composite materials Conduction Conductivity Electrolytes Electrolytic cells Ethylene oxide Fillers Fluorite Li-ion conductivity Li-ion transfer mechanism Lithium ions NMR Nuclear magnetic resonance Occupancy Oxides Oxygen Perovskites Polyethylene oxide Polymer matrix composites Polymers solid-state NMR Strong interactions (field theory) Vacancies |
| Title | Enhanced Surface Interactions Enable Fast Li+ Conduction in Oxide/Polymer Composite Electrolyte |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201914478 https://www.ncbi.nlm.nih.gov/pubmed/31893468 https://www.proquest.com/docview/2382554024 https://www.proquest.com/docview/2331799696 https://www.osti.gov/biblio/1593491 |
| Volume | 59 |
| WOSCitedRecordID | wos000508742800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB-8PUFf_P5Y7zwiCD5I2TZJm_bxWLsoHOuhHuxbyFdxYW1l2xXvv3fSdKsLiqCPpWk6ZD4yk8z8BuClS6yqrMsjmwgTcct5VBTORFYxnlY6U0qHZhNiucxXq-Lylyr-gA8xHrh5zejttVdwpdvZT9BQX4HtU7MKDAlEfgTHFIWXT-D4zYfF1cUYdKF8hgojxiLfiH4P3BjT2eEMBxvTpEEF-53TeejD9pvQ4u7_k38P7gwOKDkPEnMfbrj6Adya7_u-PQRZ1p_7tADycbetlHGkPzUMBRAtKftiK7JQbUcu1q_JvKltQKAl65q8_762bnbZbK6_uC3xxsYnhTlShm47m-vOPYKrRflp_jYa2jBEhguMMRXPtaImdlTzinPnPKSeSTKLsWOiecZ4bmNuRKwE2o_E8JwWRmhODUt1Kih7DJO6qd1TIMyZFJVex5WznKEgZBhwWZFqpbgvuZtCtOeBNANGuW-VsZEBXZlKv2xyXLYpvBrHfw3oHH8ceeJZKtGv8OC4xmcRmU6iM8d4kUzhdM9pOehwK9GZwXgL42sk68X4Gpnhr1RU7ZqdH8M8pF5WZFN4EiRkJAStJU6e4a9pLwh_oVCeL9-V49Ozf_noBG5TfxzgU-ToKUy67c49h5vmW7dut2dwJFb52aAfPwClqg3f |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEB-0J5wvfn_UO3UFwQcJTTabbPJ41JQ7rPXQO7i3ZbO7wUJNpE3F---dyaaRgiKIjyGbzbDzkZnJzG8AXrvI6sq6LLCRNIGwQgR57kxgdSySqky1Lv2wCblYZFdX-XlfTUi9MB4fYki4kWZ09poUnBLSk1-oodSCTbVZOcYEMrsJBwJlKRnBwbtPs8v5EHWhgPoWozgOaBL9Drkx5JP9Hfa-TKMGNex3Xue-E9t9hWZ3_wP99-BO74KyEy8z9-GGqx_A4XQ3-e0hqKL-0hUGsM_bdaWNY13e0LdAbFjRtVuxmd60bL58y6ZNbT0GLVvW7OOPpXWT82Z1_dWtGZkbKgtzrPDzdlbXrXsEl7PiYnoa9IMYAiMkRplaZKXmJnS8FJUQzhGonolSi9FjVOKxi8yGwshQS7QgkREZz40sBTdxUiaSx49hVDe1ewosdiZBtS_DylkRoyikGHJZmZRaC2q6G0OwY4IyPUo5DctYKY-vzBUdmxqObQxvhvXfPD7HH1ceEU8VehYEj2uojsi0Ct25WOTRGI53rFa9Fm8UujMYcWGEjWS9Gm4jM-iniq5ds6U1MYHqpXk6hideRAZC0F7i5im-mneS8BcK1cnirBiunv3LQy_h8PTiw1zNzxbvj-A2p-QAFczxYxi16617DrfM93a5Wb_o1eQne0QQ5w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-6J3ovfp7eeqdGEHyQsm2SNu3jsdfi4bIu6sG9hTRJcWFtj92ueP-9M023sqAI4mNpmg6Zj8wkM78h5I2LrK6sSwMbSRMIK0SQZc4EVnMRV2WidembTcj5PL26yhZ9NiHWwnh8iOHADTWjs9eo4O7aVpNfqKFYgo25WRnEBDK9TQ5EnCWgmwfnn4rL2RB1gYD6EiPOA-xEv0NuDNlkf4a9nWnUgIb9zuvcd2K7Xah48B_of0ju9y4oPfMy84jccvVjcm-66_z2hKi8_tolBtDP23WljaPduaEvgdjQvCu3ooXetHS2fEenTW09Bi1d1vTjj6V1k0Wzuvnm1hTNDaaFOZr7fjurm9Ydkcsi_zJ9H_SNGAIjJESZWqSlZiZ0rBSVEM4hqJ6JEgvRY1SKhIvUhsLIUEuwIJERKcuMLAUzPC5jyfhTMqqb2h0Typ2JQe3LsHJWcBCFBEIuK-NSa4FFd2MS7JigTI9Sjs0yVsrjKzOFy6aGZRuTt8P4a4_P8ceRJ8hTBZ4FwuMazCMyrQJ3jossGpPTHatVr8UbBe4MRFwQYQNZr4fXwAy8VNG1a7Y4hiOoXpIlY_LMi8hACNhLmDyBX7NOEv5CoTqbX-TD0_N_-egVubs4L9TsYv7hhBwyPBvAfDl2SkbteutekDvme7vcrF_2WvIT7CQQYg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Surface+Interactions+Enable+Fast+Li%2B+Conduction+in+Oxide%2FPolymer+Composite+Electrolyte&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wu%2C+Nan&rft.au=Po%E2%80%90Hsiu+Chien&rft.au=Qian%2C+Yumin&rft.au=Li%2C+Yutao&rft.date=2020-03-02&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=10&rft.spage=4131&rft.epage=4137&rft_id=info:doi/10.1002%2Fanie.201914478&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |