Enhanced Surface Interactions Enable Fast Li+ Conduction in Oxide/Polymer Composite Electrolyte

Li+‐conducting oxides are considered better ceramic fillers than Li+‐insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+‐insulating oxides...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Angewandte Chemie (International ed.) Ročník 59; číslo 10; s. 4131 - 4137
Hlavní autori: Wu, Nan, Chien, Po‐Hsiu, Qian, Yumin, Li, Yutao, Xu, Henghui, Grundish, Nicholas S., Xu, Biyi, Jin, Haibo, Hu, Yan‐Yan, Yu, Guihua, Goodenough, John B.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany Wiley Subscription Services, Inc 02.03.2020
Wiley Blackwell (John Wiley & Sons)
Vydanie:International ed. in English
Predmet:
ISSN:1433-7851, 1521-3773, 1521-3773
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Li+‐conducting oxides are considered better ceramic fillers than Li+‐insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+‐insulating oxides (fluorite Gd0.1Ce0.9O1.95 and perovskite La0.8Sr0.2Ga0.8Mg0.2O2.55) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)‐based polymer composite electrolytes, each with a Li+ conductivity above 10−4 S cm−1 at 30 °C. Li solid‐state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2‐site occupancy originates from the strong interaction between the O2− of Li‐salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All‐solid‐state Li‐metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C. The strong interaction between the surface oxygen vacancies of GDC/LSGM and the TFSI− anions in the composite polymer electrolyte changes Li+ distribution in two local environments, and the population increase of mobile Li+ ions in A2 significantly enhances the Li+ conductivity of the composite electrolyte.
AbstractList Li -conducting oxides are considered better ceramic fillers than Li -insulating oxides for improving Li conductivity in composite polymer electrolytes owing to their ability to conduct Li through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li -insulating oxides (fluorite Gd Ce O and perovskite La Sr Ga Mg O ) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)-based polymer composite electrolytes, each with a Li conductivity above 10  S cm at 30 °C. Li solid-state NMR results show an increase in Li ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2-site occupancy originates from the strong interaction between the O of Li-salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li transport. All-solid-state Li-metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C.
Li+‐conducting oxides are considered better ceramic fillers than Li+‐insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+‐insulating oxides (fluorite Gd0.1Ce0.9O1.95 and perovskite La0.8Sr0.2Ga0.8Mg0.2O2.55) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)‐based polymer composite electrolytes, each with a Li+ conductivity above 10−4 S cm−1 at 30 °C. Li solid‐state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2‐site occupancy originates from the strong interaction between the O2− of Li‐salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All‐solid‐state Li‐metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C. The strong interaction between the surface oxygen vacancies of GDC/LSGM and the TFSI− anions in the composite polymer electrolyte changes Li+ distribution in two local environments, and the population increase of mobile Li+ ions in A2 significantly enhances the Li+ conductivity of the composite electrolyte.
Li+‐conducting oxides are considered better ceramic fillers than Li+‐insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+‐insulating oxides (fluorite Gd0.1Ce0.9O1.95 and perovskite La0.8Sr0.2Ga0.8Mg0.2O2.55) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)‐based polymer composite electrolytes, each with a Li+ conductivity above 10−4 S cm−1 at 30 °C. Li solid‐state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2‐site occupancy originates from the strong interaction between the O2− of Li‐salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All‐solid‐state Li‐metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C.
Li+ -conducting oxides are considered better ceramic fillers than Li+ -insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+ -insulating oxides (fluorite Gd0.1 Ce0.9 O1.95 and perovskite La0.8 Sr0.2 Ga0.8 Mg0.2 O2.55 ) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)-based polymer composite electrolytes, each with a Li+ conductivity above 10-4  S cm-1 at 30 °C. Li solid-state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2-site occupancy originates from the strong interaction between the O2- of Li-salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All-solid-state Li-metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C.Li+ -conducting oxides are considered better ceramic fillers than Li+ -insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+ -insulating oxides (fluorite Gd0.1 Ce0.9 O1.95 and perovskite La0.8 Sr0.2 Ga0.8 Mg0.2 O2.55 ) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)-based polymer composite electrolytes, each with a Li+ conductivity above 10-4  S cm-1 at 30 °C. Li solid-state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2-site occupancy originates from the strong interaction between the O2- of Li-salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All-solid-state Li-metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C.
Li + ‐conducting oxides are considered better ceramic fillers than Li + ‐insulating oxides for improving Li + conductivity in composite polymer electrolytes owing to their ability to conduct Li + through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li + ‐insulating oxides (fluorite Gd 0.1 Ce 0.9 O 1.95 and perovskite La 0.8 Sr 0.2 Ga 0.8 Mg 0.2 O 2.55 ) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)‐based polymer composite electrolytes, each with a Li + conductivity above 10 −4  S cm −1 at 30 °C. Li solid‐state NMR results show an increase in Li + ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2‐site occupancy originates from the strong interaction between the O 2− of Li‐salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li + transport. All‐solid‐state Li‐metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C.
Author Xu, Biyi
Chien, Po‐Hsiu
Grundish, Nicholas S.
Li, Yutao
Jin, Haibo
Hu, Yan‐Yan
Goodenough, John B.
Qian, Yumin
Wu, Nan
Xu, Henghui
Yu, Guihua
Author_xml – sequence: 1
  givenname: Nan
  orcidid: 0000-0003-3100-199X
  surname: Wu
  fullname: Wu, Nan
  organization: The University of Texas at Austin
– sequence: 2
  givenname: Po‐Hsiu
  surname: Chien
  fullname: Chien, Po‐Hsiu
  organization: National High Magnetic Field Laboratory
– sequence: 3
  givenname: Yumin
  surname: Qian
  fullname: Qian, Yumin
  organization: The University of Texas at Austin
– sequence: 4
  givenname: Yutao
  orcidid: 0000-0003-0798-6880
  surname: Li
  fullname: Li, Yutao
  email: lytthu@utexas.edu
  organization: The University of Texas at Austin
– sequence: 5
  givenname: Henghui
  orcidid: 0000-0003-2790-3122
  surname: Xu
  fullname: Xu, Henghui
  organization: The University of Texas at Austin
– sequence: 6
  givenname: Nicholas S.
  surname: Grundish
  fullname: Grundish, Nicholas S.
  organization: The University of Texas at Austin
– sequence: 7
  givenname: Biyi
  orcidid: 0000-0002-8608-5257
  surname: Xu
  fullname: Xu, Biyi
  organization: The University of Texas at Austin
– sequence: 8
  givenname: Haibo
  surname: Jin
  fullname: Jin, Haibo
  organization: Beijing Institute of Technology
– sequence: 9
  givenname: Yan‐Yan
  surname: Hu
  fullname: Hu, Yan‐Yan
  organization: Florida State University
– sequence: 10
  givenname: Guihua
  surname: Yu
  fullname: Yu, Guihua
  organization: The University of Texas at Austin
– sequence: 11
  givenname: John B.
  orcidid: 0000-0001-9350-3034
  surname: Goodenough
  fullname: Goodenough, John B.
  email: jgoodenough@mail.utexas.edu
  organization: The University of Texas at Austin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31893468$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1593491$$D View this record in Osti.gov
BookMark eNqFkctr3DAQxkVJaR7ttcci2kuheKOXLfkYFqddWJJC27OQ5VmiYEtbSSbd_77abh4QKDlp0Py-4Zv5TtGRDx4Qek_JghLCzo13sGCEtlQIqV6hE1ozWnEp-VGpBeeVVDU9Rqcp3RZeKdK8QcecqpaLRp0g3fkb4y0M-MccN8YCXvkM0djsgk-486YfAV-alPHafcHL4If5Xw87j6__uAHOv4dxN0EsvWkbksuAuxFsjuU7w1v0emPGBO_u3zP067L7ufxWra-_rpYX68oKKVVlhOoNswRYLzZCAMiWS0ubgVFKe9FwoQYirCRGEkmoFYq1VvaCWV73tWT8DH08zA0pO51ssWFvbPC-ONG0Ltu2tECfD9A2ht8zpKwnlyyMo_EQ5qQZ51S2bdM2Bf30DL0Nc_RlhUIpVteCMFGoD_fU3E8w6G10k4k7_XDfAogDYGNIKcJGF2dmf78cjRs1JXofo97HqB9jLLLFM9nD5P8K2oPgzo2we4HWF1er7kn7F6KlrWM
CitedBy_id crossref_primary_10_1016_j_jallcom_2022_165138
crossref_primary_10_1002_anie_202104183
crossref_primary_10_3390_app14073115
crossref_primary_10_3390_molecules29184452
crossref_primary_10_1002_adfm_202007172
crossref_primary_10_3390_membranes12040416
crossref_primary_10_1016_j_est_2025_117737
crossref_primary_10_1021_acsaem_5c01380
crossref_primary_10_1039_D4SC07151D
crossref_primary_10_1002_smll_202301275
crossref_primary_10_1007_s12598_023_02375_0
crossref_primary_10_1016_j_nanoen_2022_107105
crossref_primary_10_1002_sstr_202400312
crossref_primary_10_1002_batt_202300001
crossref_primary_10_3390_catal13040711
crossref_primary_10_1007_s11581_023_05028_5
crossref_primary_10_1002_idm2_12020
crossref_primary_10_1002_adma_202110423
crossref_primary_10_1016_j_pmatsci_2025_101559
crossref_primary_10_1002_ange_202414119
crossref_primary_10_1016_j_apcatb_2024_124155
crossref_primary_10_1016_j_jechem_2025_05_062
crossref_primary_10_1021_jacs_0c12965
crossref_primary_10_1002_smll_202208164
crossref_primary_10_1038_s41467_024_51191_2
crossref_primary_10_1002_anie_202417778
crossref_primary_10_1002_anie_202410463
crossref_primary_10_1002_ange_202421427
crossref_primary_10_1016_j_jechem_2025_01_014
crossref_primary_10_1039_D1EE03345J
crossref_primary_10_1002_anie_202410347
crossref_primary_10_1002_ange_202425221
crossref_primary_10_1016_j_cej_2023_141329
crossref_primary_10_1002_advs_202205108
crossref_primary_10_1002_adma_202311687
crossref_primary_10_1016_j_jmst_2025_09_008
crossref_primary_10_1002_ange_202511822
crossref_primary_10_1002_adfm_202101380
crossref_primary_10_1002_cssc_202200999
crossref_primary_10_1016_j_jpowsour_2025_237987
crossref_primary_10_1016_j_cej_2023_144150
crossref_primary_10_1016_j_nanoen_2024_109623
crossref_primary_10_1002_ange_202305004
crossref_primary_10_1002_advs_202501012
crossref_primary_10_1002_anie_202413502
crossref_primary_10_1002_smll_202407430
crossref_primary_10_1007_s12598_024_02710_z
crossref_primary_10_1016_j_apt_2021_05_012
crossref_primary_10_1016_j_clay_2021_106363
crossref_primary_10_1016_j_cej_2025_161626
crossref_primary_10_1039_D0SC03121F
crossref_primary_10_1002_cey2_146
crossref_primary_10_1016_j_nanoen_2023_108985
crossref_primary_10_1002_ange_202113086
crossref_primary_10_1002_anie_202511822
crossref_primary_10_1002_cssc_202401860
crossref_primary_10_1002_anie_202305004
crossref_primary_10_26599_NR_2025_94907316
crossref_primary_10_1002_ange_202400619
crossref_primary_10_1007_s40843_024_2915_3
crossref_primary_10_1007_s43979_024_00096_6
crossref_primary_10_1002_anie_202411535
crossref_primary_10_1007_s11581_024_05873_y
crossref_primary_10_1016_j_memsci_2023_121636
crossref_primary_10_1039_D2EE02931F
crossref_primary_10_1039_D0PY00728E
crossref_primary_10_1002_aenm_202203547
crossref_primary_10_1016_j_jpowsour_2022_232034
crossref_primary_10_1039_D5TA04882F
crossref_primary_10_1002_ange_202304339
crossref_primary_10_1039_D4SE00354C
crossref_primary_10_1002_advs_202201718
crossref_primary_10_1002_ange_202410347
crossref_primary_10_1002_ange_202410463
crossref_primary_10_1016_j_matdes_2024_112740
crossref_primary_10_1002_adma_202406315
crossref_primary_10_1007_s12598_021_01951_6
crossref_primary_10_1002_adfm_202104830
crossref_primary_10_1016_j_mtcomm_2020_101910
crossref_primary_10_1002_anie_202113086
crossref_primary_10_1016_j_snb_2024_136844
crossref_primary_10_1002_ange_202417778
crossref_primary_10_1002_anie_202503587
crossref_primary_10_1002_aenm_202200967
crossref_primary_10_1016_j_jpowsour_2022_231297
crossref_primary_10_1016_j_etran_2023_100310
crossref_primary_10_1016_j_hydromet_2022_105929
crossref_primary_10_1002_ange_202413502
crossref_primary_10_1073_pnas_2300197120
crossref_primary_10_1016_j_chempr_2020_06_030
crossref_primary_10_1016_j_jpowsour_2025_237733
crossref_primary_10_1002_smll_202501010
crossref_primary_10_1016_j_progpolymsci_2023_101743
crossref_primary_10_1016_j_cej_2023_144120
crossref_primary_10_1016_j_nanoen_2020_105475
crossref_primary_10_1016_j_electacta_2023_142493
crossref_primary_10_1021_acsaem_5c00106
crossref_primary_10_1007_s12613_021_2278_2
crossref_primary_10_1016_j_compscitech_2023_110134
crossref_primary_10_1016_j_jpowsour_2025_237952
crossref_primary_10_1007_s10853_022_07185_w
crossref_primary_10_1002_smtd_202401737
crossref_primary_10_1002_adsu_202400369
crossref_primary_10_1007_s41918_023_00204_7
crossref_primary_10_1002_aenm_202101813
crossref_primary_10_1149_1945_7111_ad5efc
crossref_primary_10_1016_j_jcis_2022_04_067
crossref_primary_10_1016_j_coelec_2020_07_006
crossref_primary_10_1002_ange_202411535
crossref_primary_10_1002_cssc_202201801
crossref_primary_10_1002_inf2_12394
crossref_primary_10_1039_D4EE00798K
crossref_primary_10_1039_D5NJ02206A
crossref_primary_10_1016_j_jcis_2022_03_148
crossref_primary_10_1002_anie_202414119
crossref_primary_10_1016_j_ensm_2025_104210
crossref_primary_10_1002_ange_202104183
crossref_primary_10_1002_smll_202307942
crossref_primary_10_1016_j_surfcoat_2021_127389
crossref_primary_10_1016_j_jechem_2022_09_042
crossref_primary_10_1016_j_jechem_2024_03_033
crossref_primary_10_1002_adfm_202008208
crossref_primary_10_1002_cey2_108
crossref_primary_10_1002_cjoc_202400647
crossref_primary_10_1002_aenm_202302785
crossref_primary_10_1016_j_mseb_2025_118316
crossref_primary_10_1016_j_nxmate_2024_100360
crossref_primary_10_1016_j_cclet_2023_109173
crossref_primary_10_1002_ange_202503587
crossref_primary_10_1016_j_est_2025_116243
crossref_primary_10_1002_advs_202003887
crossref_primary_10_1016_j_cej_2024_150298
crossref_primary_10_1002_anie_202425221
crossref_primary_10_1080_10408436_2021_1886045
crossref_primary_10_1002_celc_202000784
crossref_primary_10_1016_j_susmat_2021_e00297
crossref_primary_10_1016_j_cej_2022_136436
crossref_primary_10_1016_j_mtener_2021_100694
crossref_primary_10_1016_j_jpowsour_2020_228146
crossref_primary_10_1039_D3NR06308A
crossref_primary_10_1002_smll_202102978
crossref_primary_10_1016_j_coelec_2021_100828
crossref_primary_10_1002_smll_202503636
crossref_primary_10_1002_anie_202421427
crossref_primary_10_1016_j_cej_2024_149516
crossref_primary_10_1016_j_jcis_2025_02_188
crossref_primary_10_1002_ange_202400477
crossref_primary_10_1016_j_jpowsour_2020_228929
crossref_primary_10_1002_adfm_202101523
crossref_primary_10_1002_anie_202403661
crossref_primary_10_1016_j_jechem_2022_08_036
crossref_primary_10_1016_j_memsci_2023_121442
crossref_primary_10_1007_s11581_021_04203_w
crossref_primary_10_1002_anie_202506662
crossref_primary_10_1016_j_jpowsour_2023_233213
crossref_primary_10_1002_anie_202304339
crossref_primary_10_1016_j_actamat_2025_120720
crossref_primary_10_1016_j_cej_2023_143222
crossref_primary_10_1002_aenm_202000049
crossref_primary_10_1038_s41467_023_41513_1
crossref_primary_10_1016_j_jpowsour_2021_229843
crossref_primary_10_1007_s12598_022_02260_2
crossref_primary_10_1002_adfm_202303121
crossref_primary_10_1039_D1SC06745A
crossref_primary_10_1016_j_cclet_2025_110851
crossref_primary_10_1016_j_nanoen_2022_107763
crossref_primary_10_1039_D2SE01093C
crossref_primary_10_1039_D4QM00182F
crossref_primary_10_1002_anie_202400619
crossref_primary_10_1016_j_cej_2021_131948
crossref_primary_10_1021_acsami_4c23123
crossref_primary_10_1021_jacs_3c11988
crossref_primary_10_1002_adfm_202316018
crossref_primary_10_1016_j_jechem_2022_07_006
crossref_primary_10_1002_smll_202102039
crossref_primary_10_1002_adfm_202308250
crossref_primary_10_1016_j_cej_2020_126517
crossref_primary_10_1016_j_jmst_2025_04_075
crossref_primary_10_1002_celc_202400472
crossref_primary_10_1016_j_ssi_2024_116515
crossref_primary_10_1002_adfm_202213211
crossref_primary_10_1002_adfm_202307045
crossref_primary_10_1002_adfm_202415303
crossref_primary_10_1021_jacs_1c00752
crossref_primary_10_1016_j_susmat_2024_e01213
crossref_primary_10_1002_ange_202106039
crossref_primary_10_1016_S1003_6326_24_66587_8
crossref_primary_10_1038_s41467_024_45372_2
crossref_primary_10_1002_elan_202200240
crossref_primary_10_1039_D0EE02620D
crossref_primary_10_1002_smll_202301521
crossref_primary_10_1007_s40820_024_01415_3
crossref_primary_10_1016_j_nanoen_2023_108192
crossref_primary_10_1002_anie_202422942
crossref_primary_10_1016_j_ensm_2025_104623
crossref_primary_10_1016_j_est_2022_105382
crossref_primary_10_1002_adma_202107183
crossref_primary_10_1016_j_cej_2024_156000
crossref_primary_10_1002_adfm_202301165
crossref_primary_10_1039_D3QM00784G
crossref_primary_10_1002_sstr_202200206
crossref_primary_10_1002_smll_202303779
crossref_primary_10_1002_anie_202106039
crossref_primary_10_1002_anie_202400477
crossref_primary_10_1002_bte2_20230037
crossref_primary_10_1002_ange_202506662
crossref_primary_10_1016_j_jpowsour_2021_229796
crossref_primary_10_1111_ijac_14523
crossref_primary_10_1002_adma_202307599
crossref_primary_10_1002_aenm_202003663
crossref_primary_10_1016_j_jmst_2023_04_009
crossref_primary_10_3389_fenrg_2021_726738
crossref_primary_10_26599_NR_2025_94907304
crossref_primary_10_1002_adfm_202419095
crossref_primary_10_1002_advs_202506640
crossref_primary_10_1002_smtd_202400356
crossref_primary_10_1002_adfm_202511014
crossref_primary_10_1038_s41560_023_01208_9
crossref_primary_10_1007_s10904_022_02461_3
crossref_primary_10_1002_adma_202205560
crossref_primary_10_1002_advs_202106032
crossref_primary_10_1016_j_cclet_2021_12_022
crossref_primary_10_1039_D0QM01058H
crossref_primary_10_1002_smtd_202301162
crossref_primary_10_26599_NR_2025_94907651
crossref_primary_10_1002_ange_202403661
crossref_primary_10_1002_adfm_202503649
crossref_primary_10_1039_D4MH01181C
crossref_primary_10_1016_j_mattod_2024_06_001
crossref_primary_10_1016_j_cej_2022_138787
crossref_primary_10_1016_j_jelechem_2020_114916
crossref_primary_10_1016_j_cclet_2025_111434
crossref_primary_10_1016_j_jechem_2021_11_015
crossref_primary_10_1002_smll_202204163
crossref_primary_10_1016_j_mtener_2022_101117
crossref_primary_10_1016_j_jechem_2023_09_049
crossref_primary_10_1016_j_scib_2022_11_027
crossref_primary_10_1002_smll_202207223
crossref_primary_10_1016_j_colsurfa_2022_130520
crossref_primary_10_1016_j_cclet_2022_107767
crossref_primary_10_1007_s40145_022_0580_8
crossref_primary_10_1007_s12598_022_02081_3
crossref_primary_10_1016_j_cej_2021_134353
crossref_primary_10_1007_s40820_023_01055_z
crossref_primary_10_1016_j_cej_2021_132971
crossref_primary_10_1016_j_electacta_2024_143949
crossref_primary_10_1002_anie_202306948
crossref_primary_10_1016_j_jallcom_2025_179925
crossref_primary_10_1016_j_jmr_2023_107516
crossref_primary_10_1016_j_seppur_2024_126789
crossref_primary_10_1002_advs_202300226
crossref_primary_10_1002_cssc_202401710
crossref_primary_10_1002_cnma_202100262
crossref_primary_10_1002_ange_202404728
crossref_primary_10_1016_j_cjche_2021_07_008
crossref_primary_10_1002_adma_202308586
crossref_primary_10_1002_ange_202422942
crossref_primary_10_3389_fmats_2021_697257
crossref_primary_10_3390_molecules28248029
crossref_primary_10_1016_j_nanoen_2024_110127
crossref_primary_10_1016_j_est_2025_117200
crossref_primary_10_1002_adfm_202422147
crossref_primary_10_1002_adma_202303226
crossref_primary_10_1021_acsnano_5c00198
crossref_primary_10_1002_adfm_202305186
crossref_primary_10_1002_adma_202311195
crossref_primary_10_1002_cey2_180
crossref_primary_10_1016_j_jechem_2022_02_041
crossref_primary_10_1016_j_snb_2022_132629
crossref_primary_10_1002_aenm_202503420
crossref_primary_10_1002_adma_202504186
crossref_primary_10_1002_ange_202306948
crossref_primary_10_1002_anie_202404728
crossref_primary_10_1007_s12598_020_01501_6
Cites_doi 10.1002/ange.200703900
10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I
10.1016/j.electacta.2004.01.095
10.1002/ange.201607539
10.1016/j.jeurceramsoc.2007.08.006
10.1021/ja3091438
10.1021/acs.nanolett.8b01111
10.1073/pnas.1907507116
10.1038/nnano.2016.237
10.1002/ange.200701144
10.1021/jacs.8b03106
10.1021/acs.nanolett.5b00600
10.1039/C5TA03471J
10.1038/28818
10.1016/j.electacta.2017.11.164
10.1038/s41560-019-0338-x
10.1021/acsami.7b17301
10.1016/j.electacta.2016.12.172
10.1039/C7TA10517G
10.1038/natrevmats.2016.103
10.1016/j.ssi.2007.11.035
10.1002/ange.201814222
10.1039/b208354j
10.1039/C7TA05832B
10.1016/j.jpowsour.2006.02.044
10.1016/j.ensm.2016.07.003
10.1002/adma.201803075
10.1146/annurev.ms.16.080186.001333
10.1016/0167-2738(88)90314-1
10.1073/pnas.1615912113
10.1002/anie.201802248
10.1002/anie.201814222
10.1038/nenergy.2017.35
10.1038/s41565-019-0465-3
10.1016/j.jpowsour.2008.09.119
10.1002/anie.200703900
10.1016/S0167-2738(97)00488-8
10.1016/j.nanoen.2017.01.028
10.1002/anie.201607539
10.1073/pnas.1600422113
10.1039/c2jm31413d
10.1002/anie.200701144
10.1016/j.nanoen.2017.12.037
10.1021/jacs.7b10864
10.1016/0032-3861(95)96841-U
10.1002/ange.201802248
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
OTOTI
DOI 10.1002/anie.201914478
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 4137
ExternalDocumentID 1593491
31893468
10_1002_anie_201914478
ANIE201914478
Genre article
Journal Article
GrantInformation_xml – fundername: Tafel
  funderid: UTA18-000175
– fundername: U.S. Department of Energy
  funderid: DE-EE0007762
– fundername: National Science Foundation
  funderid: DMR-1808517; NSF/DMR-1644779
– fundername: Tafel
  grantid: UTA18-000175
– fundername: National Science Foundation
  grantid: NSF/DMR-1644779
– fundername: National Science Foundation
  grantid: DMR-1808517
– fundername: U.S. Department of Energy
  grantid: DE-EE0007762
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
CITATION
O8X
NPM
YIN
7TM
K9.
7X8
AAPBV
ABHUG
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
B-7
OTOTI
PQEST
ID FETCH-LOGICAL-c4778-a48ba2c0e2b4f44ee7937c16d2111b46348d04c70a70701c4829c7b42c35b5723
IEDL.DBID DRFUL
ISICitedReferencesCount 371
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000508742800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Thu May 18 22:40:00 EDT 2023
Fri Jul 11 10:49:08 EDT 2025
Sat Nov 29 14:43:43 EST 2025
Wed Feb 19 02:31:09 EST 2025
Sat Nov 29 03:45:02 EST 2025
Tue Nov 18 21:57:18 EST 2025
Wed Jan 22 16:36:30 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Li-ion conductivity
composite electrolyte
solid-state NMR
all-solid-state battery
Li-ion transfer mechanism
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4778-a48ba2c0e2b4f44ee7937c16d2111b46348d04c70a70701c4829c7b42c35b5723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
EE0007762
USDOE
ORCID 0000-0003-3100-199X
0000-0003-0798-6880
0000-0002-8608-5257
0000-0001-9350-3034
0000-0003-2790-3122
000000033100199X
0000000286085257
0000000307986880
0000000327903122
0000000193503034
OpenAccessLink https://www.osti.gov/biblio/1593491
PMID 31893468
PQID 2382554024
PQPubID 946352
PageCount 7
ParticipantIDs osti_scitechconnect_1593491
proquest_miscellaneous_2331799696
proquest_journals_2382554024
pubmed_primary_31893468
crossref_citationtrail_10_1002_anie_201914478
crossref_primary_10_1002_anie_201914478
wiley_primary_10_1002_anie_201914478_ANIE201914478
PublicationCentury 2000
PublicationDate March 2, 2020
PublicationDateYYYYMMDD 2020-03-02
PublicationDate_xml – month: 03
  year: 2020
  text: March 2, 2020
  day: 02
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie (International ed.)
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2017; 5
2015; 15
2019; 4
2017; 2
2018; 140
2015; 3
1988; 28–30
1995; 36
2019; 14
1986; 16
2003; 13
2008 2008; 47 120
2006; 159
2017; 258
2019 2019; 58 131
2016; 11
1998; 394
2018; 46
2016; 5
2018; 6
2018; 18
2004; 50
2016 2016; 55 128
2020
2017; 33
2018 2018; 57 130
2007 2007; 46 119
2008; 28
2016; 113
2019; 116
2013; 135
2018; 30
1998; 106
2008; 179
2009; 186
1998; 10
2018; 10
2012; 22
2017; 227
e_1_2_6_51_1
e_1_2_6_51_2
e_1_2_6_32_1
e_1_2_6_30_2
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_13_3
e_1_2_6_15_1
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_7_2
e_1_2_6_5_1
e_1_2_6_3_2
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_2
e_1_2_6_43_2
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_2
e_1_2_6_47_1
Wu N. (e_1_2_6_44_2) 2020
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_18_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_10_3
e_1_2_6_12_1
e_1_2_6_39_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_14_3
e_1_2_6_16_1
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_1
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_48_1
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_29_1
e_1_2_6_27_2
e_1_2_6_46_1
e_1_2_6_25_2
References_xml – volume: 16
  start-page: 245
  year: 1986
  end-page: 261
  publication-title: Annu. Rev. Mater. Sci.
– volume: 30
  start-page: 1803075
  year: 2018
  publication-title: Adv. Mater.
– volume: 140
  start-page: 82
  year: 2018
  end-page: 85
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 4279
  year: 2018
  end-page: 4285
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 803
  year: 2008
  end-page: 810
  publication-title: J. Eur. Ceram. Soc.
– volume: 10
  start-page: 4113
  year: 2018
  end-page: 4120
  publication-title: ACS Appl. Mater. Interfaces
– volume: 22
  start-page: 15357
  year: 2012
  end-page: 15361
  publication-title: J. Mater. Chem.
– volume: 11
  start-page: 1039
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 139
  year: 2016
  end-page: 164
  publication-title: Energy Storage Mater.
– volume: 13
  start-page: 814
  year: 2003
  end-page: 817
  publication-title: J. Mater. Chem.
– volume: 113
  start-page: 13313
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 46 119
  start-page: 7778 7925
  year: 2007 2007
  end-page: 7781 7928
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 18457
  year: 2017
  end-page: 18463
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 180
  year: 2019
  end-page: 186
  publication-title: Nat. Energy
– volume: 179
  start-page: 1670
  year: 2008
  end-page: 1678
  publication-title: Solid State Ionics
– volume: 15
  start-page: 2740
  year: 2015
  end-page: 2745
  publication-title: Nano Lett.
– volume: 58 131
  start-page: 8681 8773
  year: 2019 2019
  end-page: 8686 8778
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 1167
  year: 2013
  end-page: 1176
  publication-title: J. Am. Chem. Soc.
– volume: 106
  start-page: 25
  year: 1998
  end-page: 32
  publication-title: Solid State Ionics
– volume: 33
  start-page: 363
  year: 2017
  end-page: 386
  publication-title: Nano Energy
– volume: 2
  start-page: 16103
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 140
  start-page: 6448
  year: 2018
  end-page: 6455
  publication-title: J. Am. Chem. Soc.
– volume: 227
  start-page: 127
  year: 2017
  end-page: 135
  publication-title: Electrochim. Acta
– volume: 36
  start-page: 4371
  year: 1995
  end-page: 4378
  publication-title: Polymer
– volume: 10
  start-page: 439
  year: 1998
  end-page: 448
  publication-title: Adv. Mater.
– volume: 394
  start-page: 456
  year: 1998
  end-page: 458
  publication-title: Nature
– volume: 55 128
  start-page: 12538 12726
  year: 2016 2016
  end-page: 12542 12730
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 113
  start-page: 7094
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 46
  start-page: 176
  year: 2018
  end-page: 184
  publication-title: Nano Energy
– volume: 159
  start-page: 420
  year: 2006
  end-page: 430
  publication-title: J. Power Sources
– volume: 2
  start-page: 17035
  year: 2017
  publication-title: Nat. Energy
– volume: 186
  start-page: 268
  year: 2009
  end-page: 277
  publication-title: J. Power Sources
– volume: 3
  start-page: 19218
  year: 2015
  end-page: 19253
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 289
  year: 2004
  end-page: 293
  publication-title: Electrochim. Acta
– volume: 14
  start-page: 705
  year: 2019
  end-page: 711
  publication-title: Nat. Nanotechnol.
– year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 116
  start-page: 18815
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 28–30
  start-page: 975
  year: 1988
  end-page: 978
  publication-title: Solid State Ionics
– volume: 57 130
  start-page: 5449 5547
  year: 2018 2018
  end-page: 5453 5551
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 47 120
  start-page: 755 767
  year: 2008 2008
  end-page: 758 770
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 18
  start-page: 3829
  year: 2018
  end-page: 3838
  publication-title: Nano Lett.
– volume: 258
  start-page: 1106
  year: 2017
  end-page: 1114
  publication-title: Electrochim. Acta
– ident: e_1_2_6_14_3
  doi: 10.1002/ange.200703900
– ident: e_1_2_6_21_2
  doi: 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I
– ident: e_1_2_6_22_2
  doi: 10.1016/j.electacta.2004.01.095
– ident: e_1_2_6_30_2
  doi: 10.1002/ange.201607539
– ident: e_1_2_6_46_1
  doi: 10.1016/j.jeurceramsoc.2007.08.006
– ident: e_1_2_6_2_2
  doi: 10.1021/ja3091438
– year: 2020
  ident: e_1_2_6_44_2
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_6_37_2
  doi: 10.1021/acs.nanolett.8b01111
– ident: e_1_2_6_36_2
  doi: 10.1073/pnas.1907507116
– ident: e_1_2_6_3_2
  doi: 10.1038/nnano.2016.237
– ident: e_1_2_6_10_3
  doi: 10.1002/ange.200701144
– ident: e_1_2_6_17_2
  doi: 10.1021/jacs.8b03106
– ident: e_1_2_6_40_2
  doi: 10.1021/acs.nanolett.5b00600
– ident: e_1_2_6_42_2
  doi: 10.1039/C5TA03471J
– ident: e_1_2_6_28_1
  doi: 10.1038/28818
– ident: e_1_2_6_50_1
  doi: 10.1016/j.electacta.2017.11.164
– ident: e_1_2_6_7_2
  doi: 10.1038/s41560-019-0338-x
– ident: e_1_2_6_38_2
  doi: 10.1021/acsami.7b17301
– ident: e_1_2_6_25_2
  doi: 10.1016/j.electacta.2016.12.172
– ident: e_1_2_6_31_1
  doi: 10.1039/C7TA10517G
– ident: e_1_2_6_6_2
  doi: 10.1038/natrevmats.2016.103
– ident: e_1_2_6_9_1
– ident: e_1_2_6_27_2
  doi: 10.1016/j.ssi.2007.11.035
– ident: e_1_2_6_13_3
  doi: 10.1002/ange.201814222
– ident: e_1_2_6_12_1
– ident: e_1_2_6_1_1
– ident: e_1_2_6_48_1
  doi: 10.1039/b208354j
– ident: e_1_2_6_47_1
  doi: 10.1039/C7TA05832B
– ident: e_1_2_6_26_2
  doi: 10.1016/j.jpowsour.2006.02.044
– ident: e_1_2_6_4_2
  doi: 10.1016/j.ensm.2016.07.003
– ident: e_1_2_6_15_1
  doi: 10.1002/adma.201803075
– ident: e_1_2_6_20_2
  doi: 10.1146/annurev.ms.16.080186.001333
– ident: e_1_2_6_29_1
  doi: 10.1016/0167-2738(88)90314-1
– ident: e_1_2_6_18_2
  doi: 10.1073/pnas.1615912113
– ident: e_1_2_6_51_1
  doi: 10.1002/anie.201802248
– ident: e_1_2_6_13_2
  doi: 10.1002/anie.201814222
– ident: e_1_2_6_39_2
  doi: 10.1038/nenergy.2017.35
– ident: e_1_2_6_35_2
  doi: 10.1038/s41565-019-0465-3
– ident: e_1_2_6_41_1
– ident: e_1_2_6_19_1
– ident: e_1_2_6_5_1
– ident: e_1_2_6_45_1
  doi: 10.1016/j.jpowsour.2008.09.119
– ident: e_1_2_6_14_2
  doi: 10.1002/anie.200703900
– ident: e_1_2_6_43_2
  doi: 10.1016/S0167-2738(97)00488-8
– ident: e_1_2_6_8_1
  doi: 10.1016/j.nanoen.2017.01.028
– ident: e_1_2_6_24_1
– ident: e_1_2_6_30_1
  doi: 10.1002/anie.201607539
– ident: e_1_2_6_16_1
– ident: e_1_2_6_32_1
– ident: e_1_2_6_34_2
  doi: 10.1073/pnas.1600422113
– ident: e_1_2_6_11_2
  doi: 10.1039/c2jm31413d
– ident: e_1_2_6_10_2
  doi: 10.1002/anie.200701144
– ident: e_1_2_6_33_2
  doi: 10.1016/j.nanoen.2017.12.037
– ident: e_1_2_6_23_2
  doi: 10.1021/jacs.7b10864
– ident: e_1_2_6_49_1
  doi: 10.1016/0032-3861(95)96841-U
– ident: e_1_2_6_51_2
  doi: 10.1002/ange.201802248
SSID ssj0028806
Score 2.6986747
Snippet Li+‐conducting oxides are considered better ceramic fillers than Li+‐insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing...
Li + ‐conducting oxides are considered better ceramic fillers than Li + ‐insulating oxides for improving Li + conductivity in composite polymer electrolytes...
Li -conducting oxides are considered better ceramic fillers than Li -insulating oxides for improving Li conductivity in composite polymer electrolytes owing to...
Li+ -conducting oxides are considered better ceramic fillers than Li+ -insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4131
SubjectTerms all-solid-state battery
composite electrolyte
Composite materials
Conduction
Conductivity
Electrolytes
Electrolytic cells
Ethylene oxide
Fillers
Fluorite
Li-ion conductivity
Li-ion transfer mechanism
Lithium ions
NMR
Nuclear magnetic resonance
Occupancy
Oxides
Oxygen
Perovskites
Polyethylene oxide
Polymer matrix composites
Polymers
solid-state NMR
Strong interactions (field theory)
Vacancies
Title Enhanced Surface Interactions Enable Fast Li+ Conduction in Oxide/Polymer Composite Electrolyte
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201914478
https://www.ncbi.nlm.nih.gov/pubmed/31893468
https://www.proquest.com/docview/2382554024
https://www.proquest.com/docview/2331799696
https://www.osti.gov/biblio/1593491
Volume 59
WOSCitedRecordID wos000508742800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB-8PUFf_P5Y7zwiCD5I2TZJm_bxWLsoHOuhHuxbyFdxYW1l2xXvv3fSdKsLiqCPpWk6ZD4yk8z8BuClS6yqrMsjmwgTcct5VBTORFYxnlY6U0qHZhNiucxXq-Lylyr-gA8xHrh5zejttVdwpdvZT9BQX4HtU7MKDAlEfgTHFIWXT-D4zYfF1cUYdKF8hgojxiLfiH4P3BjT2eEMBxvTpEEF-53TeejD9pvQ4u7_k38P7gwOKDkPEnMfbrj6Adya7_u-PQRZ1p_7tADycbetlHGkPzUMBRAtKftiK7JQbUcu1q_JvKltQKAl65q8_762bnbZbK6_uC3xxsYnhTlShm47m-vOPYKrRflp_jYa2jBEhguMMRXPtaImdlTzinPnPKSeSTKLsWOiecZ4bmNuRKwE2o_E8JwWRmhODUt1Kih7DJO6qd1TIMyZFJVex5WznKEgZBhwWZFqpbgvuZtCtOeBNANGuW-VsZEBXZlKv2xyXLYpvBrHfw3oHH8ceeJZKtGv8OC4xmcRmU6iM8d4kUzhdM9pOehwK9GZwXgL42sk68X4Gpnhr1RU7ZqdH8M8pF5WZFN4EiRkJAStJU6e4a9pLwh_oVCeL9-V49Ozf_noBG5TfxzgU-ToKUy67c49h5vmW7dut2dwJFb52aAfPwClqg3f
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEB-0J5wvfn_UO3UFwQcJTTabbPJ41JQ7rPXQO7i3ZbO7wUJNpE3F---dyaaRgiKIjyGbzbDzkZnJzG8AXrvI6sq6LLCRNIGwQgR57kxgdSySqky1Lv2wCblYZFdX-XlfTUi9MB4fYki4kWZ09poUnBLSk1-oodSCTbVZOcYEMrsJBwJlKRnBwbtPs8v5EHWhgPoWozgOaBL9Drkx5JP9Hfa-TKMGNex3Xue-E9t9hWZ3_wP99-BO74KyEy8z9-GGqx_A4XQ3-e0hqKL-0hUGsM_bdaWNY13e0LdAbFjRtVuxmd60bL58y6ZNbT0GLVvW7OOPpXWT82Z1_dWtGZkbKgtzrPDzdlbXrXsEl7PiYnoa9IMYAiMkRplaZKXmJnS8FJUQzhGonolSi9FjVOKxi8yGwshQS7QgkREZz40sBTdxUiaSx49hVDe1ewosdiZBtS_DylkRoyikGHJZmZRaC2q6G0OwY4IyPUo5DctYKY-vzBUdmxqObQxvhvXfPD7HH1ceEU8VehYEj2uojsi0Ct25WOTRGI53rFa9Fm8UujMYcWGEjWS9Gm4jM-iniq5ds6U1MYHqpXk6hideRAZC0F7i5im-mneS8BcK1cnirBiunv3LQy_h8PTiw1zNzxbvj-A2p-QAFczxYxi16617DrfM93a5Wb_o1eQne0QQ5w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-6J3ovfp7eeqdGEHyQsm2SNu3jsdfi4bIu6sG9hTRJcWFtj92ueP-9M023sqAI4mNpmg6Zj8wkM78h5I2LrK6sSwMbSRMIK0SQZc4EVnMRV2WidembTcj5PL26yhZ9NiHWwnh8iOHADTWjs9eo4O7aVpNfqKFYgo25WRnEBDK9TQ5EnCWgmwfnn4rL2RB1gYD6EiPOA-xEv0NuDNlkf4a9nWnUgIb9zuvcd2K7Xah48B_of0ju9y4oPfMy84jccvVjcm-66_z2hKi8_tolBtDP23WljaPduaEvgdjQvCu3ooXetHS2fEenTW09Bi1d1vTjj6V1k0Wzuvnm1hTNDaaFOZr7fjurm9Ydkcsi_zJ9H_SNGAIjJESZWqSlZiZ0rBSVEM4hqJ6JEgvRY1SKhIvUhsLIUEuwIJERKcuMLAUzPC5jyfhTMqqb2h0Typ2JQe3LsHJWcBCFBEIuK-NSa4FFd2MS7JigTI9Sjs0yVsrjKzOFy6aGZRuTt8P4a4_P8ceRJ8hTBZ4FwuMazCMyrQJ3jossGpPTHatVr8UbBe4MRFwQYQNZr4fXwAy8VNG1a7Y4hiOoXpIlY_LMi8hACNhLmDyBX7NOEv5CoTqbX-TD0_N_-egVubs4L9TsYv7hhBwyPBvAfDl2SkbteutekDvme7vcrF_2WvIT7CQQYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Surface+Interactions+Enable+Fast+Li%2B+Conduction+in+Oxide%2FPolymer+Composite+Electrolyte&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wu%2C+Nan&rft.au=Po%E2%80%90Hsiu+Chien&rft.au=Qian%2C+Yumin&rft.au=Li%2C+Yutao&rft.date=2020-03-02&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=10&rft.spage=4131&rft.epage=4137&rft_id=info:doi/10.1002%2Fanie.201914478&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon