Enhanced Surface Interactions Enable Fast Li+ Conduction in Oxide/Polymer Composite Electrolyte

Li+‐conducting oxides are considered better ceramic fillers than Li+‐insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+‐insulating oxides...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Angewandte Chemie (International ed.) Ročník 59; číslo 10; s. 4131 - 4137
Hlavní autoři: Wu, Nan, Chien, Po‐Hsiu, Qian, Yumin, Li, Yutao, Xu, Henghui, Grundish, Nicholas S., Xu, Biyi, Jin, Haibo, Hu, Yan‐Yan, Yu, Guihua, Goodenough, John B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 02.03.2020
Wiley Blackwell (John Wiley & Sons)
Vydání:International ed. in English
Témata:
ISSN:1433-7851, 1521-3773, 1521-3773
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Li+‐conducting oxides are considered better ceramic fillers than Li+‐insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+‐insulating oxides (fluorite Gd0.1Ce0.9O1.95 and perovskite La0.8Sr0.2Ga0.8Mg0.2O2.55) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)‐based polymer composite electrolytes, each with a Li+ conductivity above 10−4 S cm−1 at 30 °C. Li solid‐state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2‐site occupancy originates from the strong interaction between the O2− of Li‐salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All‐solid‐state Li‐metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C. The strong interaction between the surface oxygen vacancies of GDC/LSGM and the TFSI− anions in the composite polymer electrolyte changes Li+ distribution in two local environments, and the population increase of mobile Li+ ions in A2 significantly enhances the Li+ conductivity of the composite electrolyte.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
EE0007762
USDOE
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.201914478