Enhanced Surface Interactions Enable Fast Li+ Conduction in Oxide/Polymer Composite Electrolyte
Li+‐conducting oxides are considered better ceramic fillers than Li+‐insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+‐insulating oxides...
Uloženo v:
| Vydáno v: | Angewandte Chemie (International ed.) Ročník 59; číslo 10; s. 4131 - 4137 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
02.03.2020
Wiley Blackwell (John Wiley & Sons) |
| Vydání: | International ed. in English |
| Témata: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Li+‐conducting oxides are considered better ceramic fillers than Li+‐insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+‐insulating oxides (fluorite Gd0.1Ce0.9O1.95 and perovskite La0.8Sr0.2Ga0.8Mg0.2O2.55) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)‐based polymer composite electrolytes, each with a Li+ conductivity above 10−4 S cm−1 at 30 °C. Li solid‐state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2‐site occupancy originates from the strong interaction between the O2− of Li‐salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All‐solid‐state Li‐metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C.
The strong interaction between the surface oxygen vacancies of GDC/LSGM and the TFSI− anions in the composite polymer electrolyte changes Li+ distribution in two local environments, and the population increase of mobile Li+ ions in A2 significantly enhances the Li+ conductivity of the composite electrolyte. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 EE0007762 USDOE |
| ISSN: | 1433-7851 1521-3773 1521-3773 |
| DOI: | 10.1002/anie.201914478 |