The Role of Surface Nanotopography and Chemistry on Primary Neutrophil and Macrophage Cellular Responses
Synthetic materials employed for enhancing, replacing, or restoring biological functionality may be compromised by the host immune responses that they evoke. Surface modification has attracted substantial attention as a tool to modulate the host response to synthetic materials; however, how surface...
Uložené v:
| Vydané v: | Advanced healthcare materials Ročník 5; číslo 8; s. 956 - 965 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
Blackwell Publishing Ltd
20.04.2016
Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 2192-2640, 2192-2659, 2192-2659 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Synthetic materials employed for enhancing, replacing, or restoring biological functionality may be compromised by the host immune responses that they evoke. Surface modification has attracted substantial attention as a tool to modulate the host response to synthetic materials; however, how surface nanotopography combined with chemistry affects immune effector cell responses is still poorly understood. To address this open question, a unique set of model surfaces with controlled surface nanotopography in the range of 16, 38, and 68 nm has been generated. Tailored outermost surface chemistry that was amine, carboxyl, or methyl group rich has been provided. The combinations of these properties yield 12 surface types that are subject to functional assays assessing key immune effector cells, namely, primary neutrophil and macrophage responses in vitro. The data demonstrate that surface nanotopography leads to enhanced matrix metalloproteinase‐9 production from primary neutrophils, and a decrease in pro‐inflammatory cytokine secretion from primary macrophages. Together, these results are the first to directly compare the immunomodulatory effects of the cooperative interplay between surface nanotopography and chemistry.
Innate immune effector cells can differentially respond to the controlled surface nanotopography in the range of 16, 38, and 68 nm. Additional overcoating of these surfaces with amine, carboxyl, or methyl group rich chemistries demonstrates that surfaces with hydrophillic anionic overcoated 68 nm gold nanoparticles can modulate neutrophil and macrophage functionality. |
|---|---|
| AbstractList | Synthetic materials employed for enhancing, replacing, or restoring biological functionality may be compromised by the host immune responses that they evoke. Surface modification has attracted substantial attention as a tool to modulate the host response to synthetic materials; however, how surface nanotopography combined with chemistry affects immune effector cell responses is still poorly understood. To address this open question, a unique set of model surfaces with controlled surface nanotopography in the range of 16, 38, and 68 nm has been generated. Tailored outermost surface chemistry that was amine, carboxyl, or methyl group rich has been provided. The combinations of these properties yield 12 surface types that are subject to functional assays assessing key immune effector cells, namely, primary neutrophil and macrophage responses in vitro. The data demonstrate that surface nanotopography leads to enhanced matrix metalloproteinase-9 production from primary neutrophils, and a decrease in pro-inflammatory cytokine secretion from primary macrophages. Together, these results are the first to directly compare the immunomodulatory effects of the cooperative interplay between surface nanotopography and chemistry. Innate immune effector cells can differentially respond to the controlled surface nanotopography in the range of 16, 38, and 68 nm. Additional overcoating of these surfaces with amine, carboxyl, or methyl group rich chemistries demonstrates that surfaces with hydrophillic anionic overcoated 68 nm gold nanoparticles can modulate neutrophil and macrophage functionality. Synthetic materials employed for enhancing, replacing, or restoring biological functionality may be compromised by the host immune responses that they evoke. Surface modification has attracted substantial attention as a tool to modulate the host response to synthetic materials; however, how surface nanotopography combined with chemistry affects immune effector cell responses is still poorly understood. To address this open question, a unique set of model surfaces with controlled surface nanotopography in the range of 16, 38, and 68 nm has been generated. Tailored outermost surface chemistry that was amine, carboxyl, or methyl group rich has been provided. The combinations of these properties yield 12 surface types that are subject to functional assays assessing key immune effector cells, namely, primary neutrophil and macrophage responses in vitro. The data demonstrate that surface nanotopography leads to enhanced matrix metalloproteinase-9 production from primary neutrophils, and a decrease in pro-inflammatory cytokine secretion from primary macrophages. Together, these results are the first to directly compare the immunomodulatory effects of the cooperative interplay between surface nanotopography and chemistry. Synthetic materials employed for enhancing, replacing, or restoring biological functionality may be compromised by the host immune responses that they evoke. Surface modification has attracted substantial attention as a tool to modulate the host response to synthetic materials; however, how surface nanotopography combined with chemistry affects immune effector cell responses is still poorly understood. To address this open question, a unique set of model surfaces with controlled surface nanotopography in the range of 16, 38, and 68 nm has been generated. Tailored outermost surface chemistry that was amine, carboxyl, or methyl group rich has been provided. The combinations of these properties yield 12 surface types that are subject to functional assays assessing key immune effector cells, namely, primary neutrophil and macrophage responses in vitro. The data demonstrate that surface nanotopography leads to enhanced matrix metalloproteinase-9 production from primary neutrophils, and a decrease in pro-inflammatory cytokine secretion from primary macrophages. Together, these results are the first to directly compare the immunomodulatory effects of the cooperative interplay between surface nanotopography and chemistry.Synthetic materials employed for enhancing, replacing, or restoring biological functionality may be compromised by the host immune responses that they evoke. Surface modification has attracted substantial attention as a tool to modulate the host response to synthetic materials; however, how surface nanotopography combined with chemistry affects immune effector cell responses is still poorly understood. To address this open question, a unique set of model surfaces with controlled surface nanotopography in the range of 16, 38, and 68 nm has been generated. Tailored outermost surface chemistry that was amine, carboxyl, or methyl group rich has been provided. The combinations of these properties yield 12 surface types that are subject to functional assays assessing key immune effector cells, namely, primary neutrophil and macrophage responses in vitro. The data demonstrate that surface nanotopography leads to enhanced matrix metalloproteinase-9 production from primary neutrophils, and a decrease in pro-inflammatory cytokine secretion from primary macrophages. Together, these results are the first to directly compare the immunomodulatory effects of the cooperative interplay between surface nanotopography and chemistry. Synthetic materials employed for enhancing, replacing, or restoring biological functionality may be compromised by the host immune responses that they evoke. Surface modification has attracted substantial attention as a tool to modulate the host response to synthetic materials; however, how surface nanotopography combined with chemistry affects immune effector cell responses is still poorly understood. To address this open question, a unique set of model surfaces with controlled surface nanotopography in the range of 16, 38, and 68 nm has been generated. Tailored outermost surface chemistry that was amine, carboxyl, or methyl group rich has been provided. The combinations of these properties yield 12 surface types that are subject to functional assays assessing key immune effector cells, namely, primary neutrophil and macrophage responses in vitro. The data demonstrate that surface nanotopography leads to enhanced matrix metalloproteinase‐9 production from primary neutrophils, and a decrease in pro‐inflammatory cytokine secretion from primary macrophages. Together, these results are the first to directly compare the immunomodulatory effects of the cooperative interplay between surface nanotopography and chemistry. Innate immune effector cells can differentially respond to the controlled surface nanotopography in the range of 16, 38, and 68 nm. Additional overcoating of these surfaces with amine, carboxyl, or methyl group rich chemistries demonstrates that surfaces with hydrophillic anionic overcoated 68 nm gold nanoparticles can modulate neutrophil and macrophage functionality. |
| Author | Mierczynska, Agnieszka Bachhuka, Akash Vasilev, Krasimir Hayball, John D. Diener, Kerrilyn R. Christo, Susan N. |
| Author_xml | – sequence: 1 givenname: Susan N. surname: Christo fullname: Christo, Susan N. organization: Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, University of South Australia, SA, 5000, Adelaide, Australia – sequence: 2 givenname: Akash surname: Bachhuka fullname: Bachhuka, Akash organization: Mawson Institute, University of South Australia, SA, 5095, Adelaide, Australia – sequence: 3 givenname: Kerrilyn R. surname: Diener fullname: Diener, Kerrilyn R. organization: Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, University of South Australia, 5000, Adelaide, SA, Australia – sequence: 4 givenname: Agnieszka surname: Mierczynska fullname: Mierczynska, Agnieszka organization: Australian Wine Research Institute, SA, 5064, Adelaide, Australia – sequence: 5 givenname: John D. surname: Hayball fullname: Hayball, John D. email: John.Hayball@unisa.edu.au organization: Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, University of South Australia, 5000, Adelaide, SA, Australia – sequence: 6 givenname: Krasimir surname: Vasilev fullname: Vasilev, Krasimir email: John.Hayball@unisa.edu.au organization: Mawson Institute, University of South Australia, SA, 5095, Adelaide, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26845244$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1v1DAQhi1UREvplSOyxIVLFn_GzrHawhbULmi70KPlJJMmJRsHOxHsv8fbtCtUCRX74BnpeUcz4_clOuhcBwi9pmRGCWHvbVlvZoxQSYgW8hk6YjRjCUtldrCPBTlEJyHcknhSSVNNX6BDlkaeCXGE6nUNeOVawK7CV6OvbAF4aTs3uN7deNvXW2y7Es9r2DRh8FvsOvzVNxsbwyWMg3d93bR3zKUtdpm9ATyHth1b6_EKQu-6AOEVel7ZNsDJ_XuMvn38sJ6fJxdfFp_mpxdJIZSSiZBc6ZLHkfJcCULLItVQ5lywVGWWMyY4cG1pAZKUFeWc5TJjZaVLxYXVBT9G76a6vXc_RwiDiX0XsR3bgRuDoZrEqyUXT6NKq0zRuLT_QZnmgigW0beP0Fs3-i7OvKOoSjm7o97cU2O-gdL000rNw89EQExA3GkIHipTNIMdGtcN3jatocTsPGB2HjB7D0TZ7JHsofI_Bdkk-NW0sH2CNqdn55d_a5NJG50Bv_da63-YVHElzfVyYa7lerXIPn83V_wPeybQwA |
| CitedBy_id | crossref_primary_10_1016_j_mtchem_2024_102341 crossref_primary_10_3390_ijms222111390 crossref_primary_10_3389_fbioe_2022_917655 crossref_primary_10_1002_adfm_201807453 crossref_primary_10_3390_ijms20030636 crossref_primary_10_1039_D0NR03886E crossref_primary_10_1016_j_addr_2020_06_008 crossref_primary_10_1016_j_apsusc_2022_153518 crossref_primary_10_3390_polym12040828 crossref_primary_10_1016_j_bprint_2020_e00107 crossref_primary_10_1016_j_mtcomm_2024_109982 crossref_primary_10_1186_s13036_019_0173_4 crossref_primary_10_1038_s41565_018_0274_0 crossref_primary_10_1016_j_mtbio_2025_101710 crossref_primary_10_3390_ijms23073558 crossref_primary_10_1002_cnma_202200152 crossref_primary_10_3390_s20020492 crossref_primary_10_1088_1748_605X_ac5572 crossref_primary_10_1002_ange_202209499 crossref_primary_10_1002_admi_201700381 crossref_primary_10_1039_C7NR03131A crossref_primary_10_1016_j_actbio_2019_06_057 crossref_primary_10_1016_j_actbio_2019_06_058 crossref_primary_10_1002_adma_202001668 crossref_primary_10_1039_C9MH00291J crossref_primary_10_1088_1748_605X_ac5574 crossref_primary_10_1002_adhm_202100146 crossref_primary_10_1002_anie_202209499 crossref_primary_10_1039_D1NR06591B crossref_primary_10_1186_s12951_022_01721_1 crossref_primary_10_3390_polym14020344 crossref_primary_10_1016_j_actbio_2021_05_042 crossref_primary_10_1016_j_addr_2023_115083 crossref_primary_10_1088_2057_1976_ac154f crossref_primary_10_3390_jfb13030103 crossref_primary_10_3390_ma12010191 crossref_primary_10_1002_smsc_202300080 crossref_primary_10_1089_ten_tea_2016_0415 crossref_primary_10_1002_advs_202206150 crossref_primary_10_3390_mi12111336 crossref_primary_10_1002_wnan_1763 crossref_primary_10_3390_coatings9100654 crossref_primary_10_3390_nano12040682 crossref_primary_10_1002_advs_201700678 crossref_primary_10_1002_adfm_202007226 crossref_primary_10_1002_anbr_202100119 crossref_primary_10_1016_j_addr_2021_113871 crossref_primary_10_1002_adhm_202401253 crossref_primary_10_1016_j_apmt_2021_100969 crossref_primary_10_1016_j_colcom_2021_100464 crossref_primary_10_1038_s41598_023_49445_y crossref_primary_10_3390_coatings15091026 crossref_primary_10_1002_adbi_201700093 crossref_primary_10_1016_j_biomaterials_2019_119642 crossref_primary_10_3389_fbioe_2022_844091 crossref_primary_10_1016_j_bioadv_2022_212759 crossref_primary_10_1002_smll_202204662 crossref_primary_10_1016_j_biomaterials_2025_123136 crossref_primary_10_1002_jbm_b_34921 crossref_primary_10_1016_j_carbpol_2018_10_039 crossref_primary_10_1016_j_cej_2020_127849 crossref_primary_10_1016_j_jmst_2020_10_054 crossref_primary_10_1021_acsami_5c11330 crossref_primary_10_1016_j_biopha_2022_113841 crossref_primary_10_1002_btm2_10063 crossref_primary_10_1038_s41368_020_0073_y crossref_primary_10_1186_s12951_023_01912_4 crossref_primary_10_3389_fimmu_2023_1269960 crossref_primary_10_1002_adfm_202313157 crossref_primary_10_1016_j_ijbiomac_2023_123335 crossref_primary_10_1016_j_bioactmat_2022_05_036 crossref_primary_10_1177_22808000241266665 |
| Cites_doi | 10.2174/156802608783790901 10.1186/1556-276X-7-394 10.1002/1097-4636(20010615)55:4<661::AID-JBM1061>3.0.CO;2-F 10.1016/j.biomaterials.2011.05.078 10.1039/c2nr11455k 10.1016/j.biomaterials.2007.07.010 10.1016/j.smim.2007.11.004 10.1002/ppap.201000140 10.1002/ppap.201000030 10.1039/b904367e 10.1016/j.biomaterials.2006.07.004 10.1089/ten.tea.2012.0772 10.1016/j.biomaterials.2005.01.058 10.1016/j.biomaterials.2006.05.002 10.1016/j.biomaterials.2004.01.062 10.1002/jbm.a.31649 10.1371/journal.pone.0017314 10.1016/j.colsurfb.2013.04.010 10.1016/j.biomaterials.2014.08.025 10.1002/jbm.a.31220 10.1021/la7025973 10.1038/nrm1890 10.2334/josnusd.50.239 10.1177/193229680800200504 10.1016/j.colsurfb.2012.11.035 10.1016/j.biomaterials.2009.12.055 10.1039/C4BM00375F 10.1371/journal.pone.0012949 10.1016/j.biomaterials.2010.01.074 10.1016/j.jcis.2012.11.051 10.1016/j.biomaterials.2011.01.029 10.1016/j.matbio.2009.02.002 10.1159/000284367 10.3233/CH-2008-1090 10.1016/j.biomaterials.2014.08.047 10.1039/c2sm25221j 10.1002/jbm.a.30602 10.1089/ten.tea.2009.0141 10.1002/jbm.a.10537 10.1021/la035157u 10.1016/j.tsf.2012.04.087 10.2147/IJN.S51465 10.1039/df9511100055 10.1006/cyto.2002.1048 |
| ContentType | Journal Article |
| Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 7QO P64 |
| DOI | 10.1002/adhm.201500845 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Immunology Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Computer and Information Systems Abstracts Professional Immunology Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | Materials Research Database AIDS and Cancer Research Abstracts MEDLINE MEDLINE - Academic CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2192-2659 |
| EndPage | 965 |
| ExternalDocumentID | 4026853601 26845244 10_1002_adhm_201500845 ADHM201500845 ark_67375_WNG_W5TRG9JV_S |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: NHMRC funderid: PG631931 – fundername: ARC funderid: DP15104212 |
| GroupedDBID | 05W 0R~ 1OC 31~ 33P 53G 8-0 8-1 AAESR AAHQN AAIHA AAIPD AAMMB AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABLJU ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFS ACGOF ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADBTR ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BRXPI BSCLL C45 D-A D-B DCZOG DRFUL DRMAN DRSTM EBD EBS EJD EMOBN G-S GODZA HGLYW HZ~ KBYEO LATKE LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MXFUL MXMAN MXSTM MY. MY~ O9- OVD P2W PQQKQ ROL SUPJJ SV3 TEORI WBKPD WOHZO WXSBR ZZTAW AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 7QO P64 |
| ID | FETCH-LOGICAL-c4775-45378d3150bb7401dc68edb342679a32243e38a1ce50df1332b592df8d734a8c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 93 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374693700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2192-2640 2192-2659 |
| IngestDate | Wed Oct 01 13:28:17 EDT 2025 Tue Oct 07 09:38:51 EDT 2025 Thu Sep 04 17:29:45 EDT 2025 Sat Nov 29 14:38:34 EST 2025 Mon Jul 21 05:53:45 EDT 2025 Thu Oct 09 00:40:18 EDT 2025 Tue Nov 18 21:48:59 EST 2025 Sun Sep 21 06:23:43 EDT 2025 Sun Sep 21 06:17:03 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | immunomodulation macrophages surface nanotopographies neutrophils surface chemistries |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4775-45378d3150bb7401dc68edb342679a32243e38a1ce50df1332b592df8d734a8c3 |
| Notes | istex:515C6E1697CD011C792B473F8771763E5E5F07C8 ARC - No. DP15104212 ark:/67375/WNG-W5TRG9JV-S ArticleID:ADHM201500845 NHMRC - No. PG631931 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 26845244 |
| PQID | 1781763272 |
| PQPubID | 2032434 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1808088534 proquest_miscellaneous_1787971516 proquest_miscellaneous_1782834072 proquest_journals_1781763272 pubmed_primary_26845244 crossref_citationtrail_10_1002_adhm_201500845 crossref_primary_10_1002_adhm_201500845 wiley_primary_10_1002_adhm_201500845_ADHM201500845 istex_primary_ark_67375_WNG_W5TRG9JV_S |
| PublicationCentury | 2000 |
| PublicationDate | April 20, 2016 |
| PublicationDateYYYYMMDD | 2016-04-20 |
| PublicationDate_xml | – month: 04 year: 2016 text: April 20, 2016 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced healthcare materials |
| PublicationTitleAlternate | Adv. Healthcare Mater |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | a) K. Vasilev, A. Michelmore, H. J. Griesser, R. D. Short, Chem. Commun. 2009, 3600 A. Mierczynska, A. Michelmore, A. Tripathi, R. V. Goreham, R. Sedev, K. Vasilev, Soft Matter 2012, 8, 8399. J. M. Anderson, A. Rodriguez, D. T. Chang, Semin. Immunol. 2008, 20, 86. J. N. Barbosa, P. Madureira, M. A. Barbosa, A. P. Aguas, J. Biomed. Mater. Res. A 2006, 76, 737. M. Hulander, A. Lundgren, L. Faxalv, T. L. Lindahl, A. Palmquist, M. Berglin, H. Elwing, Colloids Surf. B Biointerf. 2013, 110,261. W. G. Brodbeck, M. S. Shive, E. Colton, Y. Nakayama, T. Matsuda, J. M. Anderson, J. Biomed. Mater. Res. 2001, 55, 661. W. G. Brodbeck, Y. Nakayama, T. Matsuda, E. Colton, N. P. Ziats, J. M. Anderson, Cytokine 2002, 18, 311. J. M. Anderson, J. A. Jones, Biomaterials 2007, 28, 5114. b) B. G. Keselowsky, D. M. Collard, A. J. Garcia, J. Biomed. Mater. Res. A 2003, 66, 247. J. A. Jones, A. K. McNally, D. T. Chang, L. A. Qin, H. Meyerson, E. Colton, I. L. Kwon, T. Matsuda, J. M. Anderson, J. Biomed. Mater. Res. A 2008, 84, 158. P. Rico, J. C. Rodriguez Hernandez, D. Moratal, G. Altankov, M. Monleon Pradas, M. Salmeron-Sanchez, Tissue Eng. Part A 2009, 15, 3271. a) P. Thevenot, W. Hu, L. Tang, Curr. Top. Med. Chem. 2008, 8, 270 b) J. Fink, R. Fuhrmann, T. Scharnweber, R. P. Franke, Clin. Hemorheol. Microcirc. 2008, 39, 205. a) S. Svensson, M. Forsberg, M. Hulander, F. Vazirisani, A. Palmquist, J. Lausmaa, P. Thomsen, M. Trobos, Int. J. Nanomedicine 2014, 9, 775 K. R. Kam, L. A. Walsh, S. M. Bock, J. D. Ollerenshaw, R. F. Ross, T. A. Desai, Tissue Eng. Part A 2014, 20, 130. a) J. R. Gamboa, S. Mohandes, P. L. Tran, M. J. Slepian, J. Y. Yoon, Colloids Surf. B Biointerf. 2013, 104, 318 J. Turkevich, P. C. Stevenson, J. Hillier, Discuss. Faraday Soc. 1951, 11, 55. b) T. D. Zaveri, N. V. Dolgova, B. H. Chu, J. Lee, J. Wong, T. P. Lele, F. Ren, B. G. Keselowsky, Biomaterials 2010, 31, 2999. L. Mesure, G. De Visscher, I. Vranken, A. Lebacq, W. Flameng, PLoS One 2010, 5, e12949. H. M. Rostam, S. Signgh, N. E. Vrana, M. R. Alexander, A. M. Ghaemmaghami, Biomater. Sci. 2015, 3, 424. C. L. Gilchrist, D. S. Ruch, D. Little, F. Guilak, Biomaterials 2014, 35, 10015. J. M. Lopacinska, C. Gradinaru, R. Wierzbicki, C. Kobler, M. S. Schmidt, M. T. Madsen, M. Skolimowski, M. Dufva, H. Flyvbjerg, K. Molhave, Nanoscale 2012, 4, 3739. M. Hasenberg, A. Kohler, S. Bonifatius, K. Borucki, M. Riek-Burchardt, J. Achilles, L. Mann, K. Baumgart, B. Schraven, M. Gunzer, PLoS One 2011, 6, e17314. V. Vogel, M. Sheetz, Nat. Rev. Mol. Cell Biol. 2006, 7, 265. K. Vasilev, A. Michelmore, P. Martinek, J. Chan, V. Sah, H. J. Griesser, R. D. Short, Plasma Process. Polym. 2010, 7,824. a) A. Michelmore, P. Martinek, V. Sah, R. D. Short, K. Vasilev, Plasma Process. Polym. 2011, 8, 367 B. Winnett, H. C. Tenenbaum, B. Ganss, A. Jokstad, Clin. Oral Implants Res. 2014, 00, 1-7. S. Chen, J. A. Jones, Y. Xu, H. Y. Low, J. M. Anderson, K. W. Leong, Biomaterials 2010, 31, 3479. T. Zhu, K. Vasilev, M. Kreiter, S. Mittler, W. Knoll, Langmuir 2003, 19, 9518. S. Fox, A. E. Leitch, R. Duffin, C. Haslett, A. G. Rossi, J. Innate Immun. 2010, 2, 216. D. G. Kalyvas, M. Tarenidou, J. Oral Sci. 2008, 50, 239. B. G. Keselowsky, D. M. Collard, A. J. Garcia, Biomaterials 2004, 25, 5947. W. K. Ward, J. Diabetes Sci. Technol. 2008, 2, 768. b) K. Vasilev, A. Michelmore, P. Martinek, J. Chan, V. Sah, H. J. Griesser, R. D. Short, Plasma Process. Polym. 2010, 7, 824. R. A. Gittens, T. McLachlan, R. Olivares-Navarrete, Y. Cai, S. Berner, R. Tannenbaum, Z. Schwartz, K. H. Sandhage, B. D. Boyan, Biomaterials 2011, 32, 3395. b) K. S. Tan, L. Qian, R. Rosado, P. M. Flood, L. F. Cooper, Biomaterials 2006, 27, 5170. D. T. Luttikhuizen, M. J. van Amerongen, P. C. de Feijter, A. H. Petersen, M. C. Harmsen, M. J. van Luyn, Biomaterials 2006, 27, 5763. S. Kamath, D. Bhattacharyya, C. Padukudru, R. B. Timmons, L. Tang, J. Biomed. Mater. Res. A 2008, 86, 617. A. Nair, L. Zou, D. Bhattacharyya, R. B. Timmons, L. Tang, Langmuir 2008, 24, 2015. E. K. Yim, R. M. Reano, S. W. Pang, A. F. Yee, C. S. Chen, K. W. Leong, Biomaterials 2005, 26, 5405. B. Cortese, M. O. Riehle, S. D'Amone, G. Gigli, J. Colloid Interface Sci 2013, 394, 582. S. Franz, S. Rammelt, D. Scharnweber, J. C. Simon, Biomaterials 2011, 32, 6692. b) R. V. Goreham, A. Mierczynska, M. Pierce, R. D. Short, S. Taheri, A. Bachhuka, A. Cavallaro, L. E. Smith, K. Vasilev, Thin Solid Films 2013, 528,106. W. Tian, T. R. Kyriakides, Matrix Biol. 2009, 28, 148. a) Q. L. Ma, L. Z. Zhao, R. R. Liu, B. Q. Jin, W. Song, Y. Wang, Y. S. Zhang, L. H. Chen, Y. M. Zhang, Biomaterials 2014, 35, 9853 M. Mohiuddin, H. A. Pan, Y. C. Hung, G. S. Huang, Nanoscale Res. Lett. 2012, 7, 394. 2010; 31 2002; 18 2015; 3 2006; 76 2008 2003; 8 66 2014 2010; 9 31 2004; 25 2006; 7 2013 2008; 104 39 2011; 32 2003; 19 2008; 50 2005; 26 2009 2010; 7 2008; 2 2011; 6 2014; 00 2011 2013; 8 528 2009; 28 2014; 20 2007; 28 2014 2006; 35 27 2006; 27 1951; 11 2014; 35 2008; 24 2013; 394 2013; 110 2008; 20 2008; 86 2001; 55 2012; 7 2010; 2 2008; 84 2010; 5 2012; 4 2010; 7 2009; 15 2012; 8 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_19_2 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_13_2 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_32_2 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_40_1 e_1_2_6_9_1 Winnett B. (e_1_2_6_5_1) 2014; 00 e_1_2_6_8_1 e_1_2_6_9_2 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_22_2 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_21_2 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
| References_xml | – reference: E. K. Yim, R. M. Reano, S. W. Pang, A. F. Yee, C. S. Chen, K. W. Leong, Biomaterials 2005, 26, 5405. – reference: J. N. Barbosa, P. Madureira, M. A. Barbosa, A. P. Aguas, J. Biomed. Mater. Res. A 2006, 76, 737. – reference: S. Chen, J. A. Jones, Y. Xu, H. Y. Low, J. M. Anderson, K. W. Leong, Biomaterials 2010, 31, 3479. – reference: a) P. Thevenot, W. Hu, L. Tang, Curr. Top. Med. Chem. 2008, 8, 270; – reference: b) K. S. Tan, L. Qian, R. Rosado, P. M. Flood, L. F. Cooper, Biomaterials 2006, 27, 5170. – reference: R. A. Gittens, T. McLachlan, R. Olivares-Navarrete, Y. Cai, S. Berner, R. Tannenbaum, Z. Schwartz, K. H. Sandhage, B. D. Boyan, Biomaterials 2011, 32, 3395. – reference: W. K. Ward, J. Diabetes Sci. Technol. 2008, 2, 768. – reference: b) T. D. Zaveri, N. V. Dolgova, B. H. Chu, J. Lee, J. Wong, T. P. Lele, F. Ren, B. G. Keselowsky, Biomaterials 2010, 31, 2999. – reference: J. M. Anderson, J. A. Jones, Biomaterials 2007, 28, 5114. – reference: A. Mierczynska, A. Michelmore, A. Tripathi, R. V. Goreham, R. Sedev, K. Vasilev, Soft Matter 2012, 8, 8399. – reference: a) J. R. Gamboa, S. Mohandes, P. L. Tran, M. J. Slepian, J. Y. Yoon, Colloids Surf. B Biointerf. 2013, 104, 318; – reference: S. Fox, A. E. Leitch, R. Duffin, C. Haslett, A. G. Rossi, J. Innate Immun. 2010, 2, 216. – reference: P. Rico, J. C. Rodriguez Hernandez, D. Moratal, G. Altankov, M. Monleon Pradas, M. Salmeron-Sanchez, Tissue Eng. Part A 2009, 15, 3271. – reference: L. Mesure, G. De Visscher, I. Vranken, A. Lebacq, W. Flameng, PLoS One 2010, 5, e12949. – reference: a) K. Vasilev, A. Michelmore, H. J. Griesser, R. D. Short, Chem. Commun. 2009, 3600; – reference: W. G. Brodbeck, Y. Nakayama, T. Matsuda, E. Colton, N. P. Ziats, J. M. Anderson, Cytokine 2002, 18, 311. – reference: J. Turkevich, P. C. Stevenson, J. Hillier, Discuss. Faraday Soc. 1951, 11, 55. – reference: W. G. Brodbeck, M. S. Shive, E. Colton, Y. Nakayama, T. Matsuda, J. M. Anderson, J. Biomed. Mater. Res. 2001, 55, 661. – reference: T. Zhu, K. Vasilev, M. Kreiter, S. Mittler, W. Knoll, Langmuir 2003, 19, 9518. – reference: M. Mohiuddin, H. A. Pan, Y. C. Hung, G. S. Huang, Nanoscale Res. Lett. 2012, 7, 394. – reference: V. Vogel, M. Sheetz, Nat. Rev. Mol. Cell Biol. 2006, 7, 265. – reference: b) B. G. Keselowsky, D. M. Collard, A. J. Garcia, J. Biomed. Mater. Res. A 2003, 66, 247. – reference: a) S. Svensson, M. Forsberg, M. Hulander, F. Vazirisani, A. Palmquist, J. Lausmaa, P. Thomsen, M. Trobos, Int. J. Nanomedicine 2014, 9, 775; – reference: b) K. Vasilev, A. Michelmore, P. Martinek, J. Chan, V. Sah, H. J. Griesser, R. D. Short, Plasma Process. Polym. 2010, 7, 824. – reference: K. R. Kam, L. A. Walsh, S. M. Bock, J. D. Ollerenshaw, R. F. Ross, T. A. Desai, Tissue Eng. Part A 2014, 20, 130. – reference: D. G. Kalyvas, M. Tarenidou, J. Oral Sci. 2008, 50, 239. – reference: K. Vasilev, A. Michelmore, P. Martinek, J. Chan, V. Sah, H. J. Griesser, R. D. Short, Plasma Process. Polym. 2010, 7,824. – reference: B. Winnett, H. C. Tenenbaum, B. Ganss, A. Jokstad, Clin. Oral Implants Res. 2014, 00, 1-7. – reference: D. T. Luttikhuizen, M. J. van Amerongen, P. C. de Feijter, A. H. Petersen, M. C. Harmsen, M. J. van Luyn, Biomaterials 2006, 27, 5763. – reference: J. A. Jones, A. K. McNally, D. T. Chang, L. A. Qin, H. Meyerson, E. Colton, I. L. Kwon, T. Matsuda, J. M. Anderson, J. Biomed. Mater. Res. A 2008, 84, 158. – reference: a) A. Michelmore, P. Martinek, V. Sah, R. D. Short, K. Vasilev, Plasma Process. Polym. 2011, 8, 367; – reference: b) J. Fink, R. Fuhrmann, T. Scharnweber, R. P. Franke, Clin. Hemorheol. Microcirc. 2008, 39, 205. – reference: A. Nair, L. Zou, D. Bhattacharyya, R. B. Timmons, L. Tang, Langmuir 2008, 24, 2015. – reference: B. G. Keselowsky, D. M. Collard, A. J. Garcia, Biomaterials 2004, 25, 5947. – reference: B. Cortese, M. O. Riehle, S. D'Amone, G. Gigli, J. Colloid Interface Sci 2013, 394, 582. – reference: J. M. Anderson, A. Rodriguez, D. T. Chang, Semin. Immunol. 2008, 20, 86. – reference: H. M. Rostam, S. Signgh, N. E. Vrana, M. R. Alexander, A. M. Ghaemmaghami, Biomater. Sci. 2015, 3, 424. – reference: b) R. V. Goreham, A. Mierczynska, M. Pierce, R. D. Short, S. Taheri, A. Bachhuka, A. Cavallaro, L. E. Smith, K. Vasilev, Thin Solid Films 2013, 528,106. – reference: W. Tian, T. R. Kyriakides, Matrix Biol. 2009, 28, 148. – reference: J. M. Lopacinska, C. Gradinaru, R. Wierzbicki, C. Kobler, M. S. Schmidt, M. T. Madsen, M. Skolimowski, M. Dufva, H. Flyvbjerg, K. Molhave, Nanoscale 2012, 4, 3739. – reference: S. Franz, S. Rammelt, D. Scharnweber, J. C. Simon, Biomaterials 2011, 32, 6692. – reference: S. Kamath, D. Bhattacharyya, C. Padukudru, R. B. Timmons, L. Tang, J. Biomed. Mater. Res. A 2008, 86, 617. – reference: M. Hulander, A. Lundgren, L. Faxalv, T. L. Lindahl, A. Palmquist, M. Berglin, H. Elwing, Colloids Surf. B Biointerf. 2013, 110,261. – reference: M. Hasenberg, A. Kohler, S. Bonifatius, K. Borucki, M. Riek-Burchardt, J. Achilles, L. Mann, K. Baumgart, B. Schraven, M. Gunzer, PLoS One 2011, 6, e17314. – reference: a) Q. L. Ma, L. Z. Zhao, R. R. Liu, B. Q. Jin, W. Song, Y. Wang, Y. S. Zhang, L. H. Chen, Y. M. Zhang, Biomaterials 2014, 35, 9853; – reference: C. L. Gilchrist, D. S. Ruch, D. Little, F. Guilak, Biomaterials 2014, 35, 10015. – volume: 26 start-page: 5405 year: 2005 publication-title: Biomaterials – volume: 7 start-page: 3600 824 year: 2009 2010 publication-title: Chem. Commun. Plasma Process. Polym. – volume: 32 start-page: 6692 year: 2011 publication-title: Biomaterials – volume: 15 start-page: 3271 year: 2009 publication-title: Tissue Eng. Part A – volume: 7 start-page: 394 year: 2012 publication-title: Nanoscale Res. Lett. – volume: 4 start-page: 3739 year: 2012 publication-title: Nanoscale – volume: 35 start-page: 10015 year: 2014 publication-title: Biomaterials – volume: 18 start-page: 311 year: 2002 publication-title: Cytokine – volume: 25 start-page: 5947 year: 2004 publication-title: Biomaterials – volume: 20 start-page: 86 year: 2008 publication-title: Semin. Immunol. – volume: 50 start-page: 239 year: 2008 publication-title: J. Oral Sci. – volume: 2 start-page: 216 year: 2010 publication-title: J. Innate Immun. – volume: 00 start-page: 1 year: 2014 end-page: 7 publication-title: Clin. Oral Implants Res. – volume: 6 start-page: e17314 year: 2011 publication-title: PLoS One – volume: 86 start-page: 617 year: 2008 publication-title: J. Biomed. Mater. Res. A – volume: 110 start-page: 261 year: 2013 publication-title: Colloids Surf. B Biointerf. – volume: 8 528 start-page: 367 106 year: 2011 2013 publication-title: Plasma Process. Polym. Thin Solid Films – volume: 35 27 start-page: 9853 5170 year: 2014 2006 publication-title: Biomaterials Biomaterials – volume: 27 start-page: 5763 year: 2006 publication-title: Biomaterials – volume: 24 start-page: 2015 year: 2008 publication-title: Langmuir – volume: 11 start-page: 55 year: 1951 publication-title: Discuss. Faraday Soc. – volume: 5 start-page: e12949 year: 2010 publication-title: PLoS One – volume: 28 start-page: 148 year: 2009 publication-title: Matrix Biol. – volume: 8 66 start-page: 270 247 year: 2008 2003 publication-title: Curr. Top. Med. Chem. J. Biomed. Mater. Res. A – volume: 76 start-page: 737 year: 2006 publication-title: J. Biomed. Mater. Res. A – volume: 31 start-page: 3479 year: 2010 publication-title: Biomaterials – volume: 28 start-page: 5114 year: 2007 publication-title: Biomaterials – volume: 3 start-page: 424 year: 2015 publication-title: Biomater. Sci. – volume: 32 start-page: 3395 year: 2011 publication-title: Biomaterials – volume: 394 start-page: 582 year: 2013 publication-title: J. Colloid Interface Sci – volume: 84 start-page: 158 year: 2008 publication-title: J. Biomed. Mater. Res. A – volume: 55 start-page: 661 year: 2001 publication-title: J. Biomed. Mater. Res. – volume: 20 start-page: 130 year: 2014 publication-title: Tissue Eng. Part A – volume: 2 start-page: 768 year: 2008 publication-title: J. Diabetes Sci. Technol. – volume: 7 start-page: 824 year: 2010 publication-title: Plasma Process. Polym. – volume: 19 start-page: 9518 year: 2003 publication-title: Langmuir – volume: 7 start-page: 265 year: 2006 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 104 39 start-page: 318 205 year: 2013 2008 publication-title: Colloids Surf. B Biointerf. Clin. Hemorheol. Microcirc. – volume: 9 31 start-page: 775 2999 year: 2014 2010 publication-title: Int. J. Nanomedicine Biomaterials – volume: 8 start-page: 8399 year: 2012 publication-title: Soft Matter – ident: e_1_2_6_32_1 doi: 10.2174/156802608783790901 – ident: e_1_2_6_18_1 doi: 10.1186/1556-276X-7-394 – ident: e_1_2_6_29_1 doi: 10.1002/1097-4636(20010615)55:4<661::AID-JBM1061>3.0.CO;2-F – ident: e_1_2_6_2_1 doi: 10.1016/j.biomaterials.2011.05.078 – ident: e_1_2_6_15_1 doi: 10.1039/c2nr11455k – ident: e_1_2_6_30_1 doi: 10.1016/j.biomaterials.2007.07.010 – ident: e_1_2_6_1_1 doi: 10.1016/j.smim.2007.11.004 – ident: e_1_2_6_21_1 doi: 10.1002/ppap.201000140 – ident: e_1_2_6_22_2 doi: 10.1002/ppap.201000030 – ident: e_1_2_6_22_1 doi: 10.1039/b904367e – ident: e_1_2_6_24_1 doi: 10.1016/j.biomaterials.2006.07.004 – ident: e_1_2_6_36_1 doi: 10.1089/ten.tea.2012.0772 – ident: e_1_2_6_14_1 doi: 10.1016/j.biomaterials.2005.01.058 – ident: e_1_2_6_13_2 doi: 10.1016/j.biomaterials.2006.05.002 – ident: e_1_2_6_33_1 doi: 10.1016/j.biomaterials.2004.01.062 – ident: e_1_2_6_6_1 doi: 10.1002/jbm.a.31649 – ident: e_1_2_6_40_1 doi: 10.1371/journal.pone.0017314 – ident: e_1_2_6_10_1 doi: 10.1016/j.colsurfb.2013.04.010 – volume: 00 start-page: 1 year: 2014 ident: e_1_2_6_5_1 publication-title: Clin. Oral Implants Res. – ident: e_1_2_6_13_1 doi: 10.1016/j.biomaterials.2014.08.025 – ident: e_1_2_6_25_1 doi: 10.1002/jbm.a.31220 – ident: e_1_2_6_28_1 doi: 10.1021/la7025973 – ident: e_1_2_6_11_1 doi: 10.1038/nrm1890 – ident: e_1_2_6_4_1 doi: 10.2334/josnusd.50.239 – ident: e_1_2_6_3_1 doi: 10.1177/193229680800200504 – ident: e_1_2_6_9_1 doi: 10.1016/j.colsurfb.2012.11.035 – ident: e_1_2_6_39_1 doi: 10.1002/ppap.201000030 – ident: e_1_2_6_19_2 doi: 10.1016/j.biomaterials.2009.12.055 – ident: e_1_2_6_8_1 doi: 10.1039/C4BM00375F – ident: e_1_2_6_7_1 doi: 10.1371/journal.pone.0012949 – ident: e_1_2_6_17_1 doi: 10.1016/j.biomaterials.2010.01.074 – ident: e_1_2_6_35_1 doi: 10.1016/j.jcis.2012.11.051 – ident: e_1_2_6_16_1 doi: 10.1016/j.biomaterials.2011.01.029 – ident: e_1_2_6_26_1 doi: 10.1016/j.matbio.2009.02.002 – ident: e_1_2_6_23_1 doi: 10.1159/000284367 – ident: e_1_2_6_9_2 doi: 10.3233/CH-2008-1090 – ident: e_1_2_6_12_1 doi: 10.1016/j.biomaterials.2014.08.047 – ident: e_1_2_6_20_1 doi: 10.1039/c2sm25221j – ident: e_1_2_6_27_1 doi: 10.1002/jbm.a.30602 – ident: e_1_2_6_34_1 doi: 10.1089/ten.tea.2009.0141 – ident: e_1_2_6_32_2 doi: 10.1002/jbm.a.10537 – ident: e_1_2_6_38_1 doi: 10.1021/la035157u – ident: e_1_2_6_21_2 doi: 10.1016/j.tsf.2012.04.087 – ident: e_1_2_6_19_1 doi: 10.2147/IJN.S51465 – ident: e_1_2_6_37_1 doi: 10.1039/df9511100055 – ident: e_1_2_6_31_1 doi: 10.1006/cyto.2002.1048 |
| SSID | ssj0000651681 |
| Score | 2.3961792 |
| Snippet | Synthetic materials employed for enhancing, replacing, or restoring biological functionality may be compromised by the host immune responses that they evoke.... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 956 |
| SubjectTerms | Acids - pharmacology Amines Animals Cell Line Cells, Cultured Control surfaces Cytokines - secretion Effectors immunomodulation Inflammation Mediators - metabolism Lead (metal) Macrophages Macrophages - drug effects Matrix Metalloproteinase 9 - biosynthesis Mice, Inbred C57BL Microscopy, Atomic Force Nanoparticles Nanoparticles - chemistry Nanostructure Nanotechnology - methods Neutrophil Activation Neutrophils Neutrophils - cytology Photoelectron Spectroscopy surface chemistries Surface chemistry surface nanotopographies Surface Properties Synthetic products T cell receptors |
| Title | The Role of Surface Nanotopography and Chemistry on Primary Neutrophil and Macrophage Cellular Responses |
| URI | https://api.istex.fr/ark:/67375/WNG-W5TRG9JV-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.201500845 https://www.ncbi.nlm.nih.gov/pubmed/26845244 https://www.proquest.com/docview/1781763272 https://www.proquest.com/docview/1782834072 https://www.proquest.com/docview/1787971516 https://www.proquest.com/docview/1808088534 |
| Volume | 5 |
| WOSCitedRecordID | wos000374693700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 2192-2659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651681 issn: 2192-2640 databaseCode: DRFUL dateStart: 20120101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RhgMceBcMpVokBKeo9vqx62OVklaIRlXa0tysfVmpsOzISRA_nxnbMY0ERYKLZctja3dm57G7s98AvBeBjnP0M0N0BQSqjReZaDvESFaa1FmCnmyKTYjJRM5m6fmtU_wtPkS_4Eaa0dhrUnCll4e_QEOVndNJcgxofBnFOzCgk1U4_RocT8dXX_p1FnSxQdLUKkXd5JTQ5W-wG31-uP2TLd80IDb_-F3guR3HNo5o_Pj_u_AEHnVBKDtqR81TuOfKZ_DwFjThc5jj-GHTqnCsytnFus6VcQxNcbWqFh3KNVOlZaNNwThWley8ha5gE7de1dViflM0NGeK6oTN0XKxkSsKSnxl0zY31y1fwNX40-XodNhVZRiaSIi4kae0ITZaayrnZ00indUhunqRKrQPUehCqQLjYt_mOAXmOk65zaUVYaSkCfdgt6xK9wqY9IUyhICvjR-ZQOsIfaoVMrc8tVwlHgw38shMB1lOlTOKrAVb5hlxMOs56MHHnn7R9viPlB8a8fZkqv5GKW4izq4nJ9l1fDk9ST9_zS482N_IP-u0e5kFQgZol7ngHrzrXyO3abNFla5aNzQYuRH83J00IhUYcyV30BDwp0RNijx42Y6_vtGE1BNjfOYBb4bZXzqdHR2fnvVPr__lozfwAO8T2k7j_j7sruq1ewv3zffVzbI-gB0xkwedBv4Etgwstw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEB5BggQ8cBYwFFgkBE9R7fWx68cqJS2QRFWa0r6t1rtrpSKyoxyIn8-M7RgiQZEQL5Zsj6095vi8O_4G4K0IsjjHONPDUECk2niQSWZ7iGSlSZ0l6smq2IQYj-XlZXraZBPSvzA1P0S74EaWUflrMnBakD74yRqq7Yx-JUdE48sovgndKAmF7ED3aDI4H7YLLRhjg6QqVorGySmjy9-SN_r8YPclO8GpS-P8_XfIcxfIVpFocP8_9OEB3GtgKDus9eYh3HDFI7j7CznhY5ihBrFJOXeszNnZZplr4xg643JdLhqea6YLy_rbknGsLNhpTV7Bxm6zXpaL2dW8khlpqhQ2Q9_F-m4-p9RXNqmzc91qD84HH6b9k15Tl6FnIiHiakalDbHRWUYF_axJpLNZiMFepBo9RBS6UOrAuNi3OX4E8yxOuc2lFWGkpQmfQKcoC_cMmPSFNsSBnxk_MkGWRRhVrZC55anlOvGgt50QZRrScqqdMVc13TJXNIKqHUEP3rfyi7rHf5R8V81vK6aXXynJTcTqYnysLuLp5Dj99EWdebC_VQDV2PdKBUIG6Jm54B68aW_jaNN2iy5cualkELsRAd21MiIViLqSa2SI-lOiLUUePK0VsG00cfXEiNA84JWe_aXT6vDoZNSePf-Xh17D7ZPpaKiGH8efX8AdvJ7Q5hr396GzXm7cS7hlvq2vVstXjSH-AKPKL78 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD6CFiF44DpGYICREDxFS5yLnceppRuwRVW3sb1Zju2o06KkSlvEz-c4SQOVYEiIl0hJTiJfzuWLffIdgHfMz6Ic44yLocCSauOBx5l2EclylRhtqSebYhMsTfnlZTLtsgntvzAtP0S_4GYto_HX1sDNQuf7P1lDpZ7bX8kR0Xg8jG7DMIySKBzAcDybnB_3Cy0YY_24KVaKxkltRpe3IW_06P72S7aC09CO8_ffIc9tINtEosnD_9CHR_Cgg6HkoNWbx3DLlE_g_i_khE9hjhpEZlVhSJWT03WdS2UIOuNqVS06nmsiS01Gm5JxpCrJtCWvIKlZr-pqMb8qGpkTaSuFzdF3kZEpCpv6SmZtdq5Z7sD55OPZ6Mjt6jK4KmQsamaU6wAbnWW2oJ9WMTc6CzDYs0SihwgDE3DpKxN5OsePYJpFCdU51ywIJVfBMxiUVWmeA-Eek8py4GfKC5WfZSFGVc14rmmiqYwdcDcTIlRHWm5rZxSipVumwo6g6EfQgQ-9_KLt8R8l3zfz24vJ-tomubFIXKSH4iI6mx0mn7-KUwf2NgogOvteCp9xHz0zZdSBt_1tHG273SJLU60bGcRuloDuRhmWMERd8Q0ylvqToy2FDuy2Ctg32nL1RIjQHKCNnv2l0-JgfHTSn734l4fewN3peCKOP6VfXsI9vBzbvTXq7cFgVa_NK7ijvq2ulvXrzg5_AOZ2Lzo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Surface+Nanotopography+and+Chemistry+on+Primary+Neutrophil+and+Macrophage+Cellular+Responses&rft.jtitle=Advanced+healthcare+materials&rft.au=Christo%2C+Susan+N.&rft.au=Bachhuka%2C+Akash&rft.au=Diener%2C+Kerrilyn+R.&rft.au=Mierczynska%2C+Agnieszka&rft.date=2016-04-20&rft.issn=2192-2640&rft.eissn=2192-2659&rft.volume=5&rft.issue=8&rft.spage=956&rft.epage=965&rft_id=info:doi/10.1002%2Fadhm.201500845&rft.externalDBID=10.1002%252Fadhm.201500845&rft.externalDocID=ADHM201500845 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon |