The Role of Surface Nanotopography and Chemistry on Primary Neutrophil and Macrophage Cellular Responses

Synthetic materials employed for enhancing, replacing, or restoring biological functionality may be compromised by the host immune responses that they evoke. Surface modification has attracted substantial attention as a tool to modulate the host response to synthetic materials; however, how surface...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced healthcare materials Ročník 5; číslo 8; s. 956 - 965
Hlavní autori: Christo, Susan N., Bachhuka, Akash, Diener, Kerrilyn R., Mierczynska, Agnieszka, Hayball, John D., Vasilev, Krasimir
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany Blackwell Publishing Ltd 20.04.2016
Wiley Subscription Services, Inc
Predmet:
ISSN:2192-2640, 2192-2659, 2192-2659
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Synthetic materials employed for enhancing, replacing, or restoring biological functionality may be compromised by the host immune responses that they evoke. Surface modification has attracted substantial attention as a tool to modulate the host response to synthetic materials; however, how surface nanotopography combined with chemistry affects immune effector cell responses is still poorly understood. To address this open question, a unique set of model surfaces with controlled surface nanotopography in the range of 16, 38, and 68 nm has been generated. Tailored outermost surface chemistry that was amine, carboxyl, or methyl group rich has been provided. The combinations of these properties yield 12 surface types that are subject to functional assays assessing key immune effector cells, namely, primary neutrophil and macrophage responses in vitro. The data demonstrate that surface nanotopography leads to enhanced matrix metalloproteinase‐9 production from primary neutrophils, and a decrease in pro‐inflammatory cytokine secretion from primary macrophages. Together, these results are the first to directly compare the immunomodulatory effects of the cooperative interplay between surface nanotopography and chemistry. Innate immune effector cells can differentially respond to the controlled surface nanotopography in the range of 16, 38, and 68 nm. Additional overcoating of these surfaces with amine, carboxyl, or methyl group rich chemistries demonstrates that surfaces with hydrophillic anionic overcoated 68 nm gold nanoparticles can modulate neutrophil and macrophage functionality.
AbstractList Synthetic materials employed for enhancing, replacing, or restoring biological functionality may be compromised by the host immune responses that they evoke. Surface modification has attracted substantial attention as a tool to modulate the host response to synthetic materials; however, how surface nanotopography combined with chemistry affects immune effector cell responses is still poorly understood. To address this open question, a unique set of model surfaces with controlled surface nanotopography in the range of 16, 38, and 68 nm has been generated. Tailored outermost surface chemistry that was amine, carboxyl, or methyl group rich has been provided. The combinations of these properties yield 12 surface types that are subject to functional assays assessing key immune effector cells, namely, primary neutrophil and macrophage responses in vitro. The data demonstrate that surface nanotopography leads to enhanced matrix metalloproteinase-9 production from primary neutrophils, and a decrease in pro-inflammatory cytokine secretion from primary macrophages. Together, these results are the first to directly compare the immunomodulatory effects of the cooperative interplay between surface nanotopography and chemistry. Innate immune effector cells can differentially respond to the controlled surface nanotopography in the range of 16, 38, and 68 nm. Additional overcoating of these surfaces with amine, carboxyl, or methyl group rich chemistries demonstrates that surfaces with hydrophillic anionic overcoated 68 nm gold nanoparticles can modulate neutrophil and macrophage functionality.
Synthetic materials employed for enhancing, replacing, or restoring biological functionality may be compromised by the host immune responses that they evoke. Surface modification has attracted substantial attention as a tool to modulate the host response to synthetic materials; however, how surface nanotopography combined with chemistry affects immune effector cell responses is still poorly understood. To address this open question, a unique set of model surfaces with controlled surface nanotopography in the range of 16, 38, and 68 nm has been generated. Tailored outermost surface chemistry that was amine, carboxyl, or methyl group rich has been provided. The combinations of these properties yield 12 surface types that are subject to functional assays assessing key immune effector cells, namely, primary neutrophil and macrophage responses in vitro. The data demonstrate that surface nanotopography leads to enhanced matrix metalloproteinase-9 production from primary neutrophils, and a decrease in pro-inflammatory cytokine secretion from primary macrophages. Together, these results are the first to directly compare the immunomodulatory effects of the cooperative interplay between surface nanotopography and chemistry.
Synthetic materials employed for enhancing, replacing, or restoring biological functionality may be compromised by the host immune responses that they evoke. Surface modification has attracted substantial attention as a tool to modulate the host response to synthetic materials; however, how surface nanotopography combined with chemistry affects immune effector cell responses is still poorly understood. To address this open question, a unique set of model surfaces with controlled surface nanotopography in the range of 16, 38, and 68 nm has been generated. Tailored outermost surface chemistry that was amine, carboxyl, or methyl group rich has been provided. The combinations of these properties yield 12 surface types that are subject to functional assays assessing key immune effector cells, namely, primary neutrophil and macrophage responses in vitro. The data demonstrate that surface nanotopography leads to enhanced matrix metalloproteinase-9 production from primary neutrophils, and a decrease in pro-inflammatory cytokine secretion from primary macrophages. Together, these results are the first to directly compare the immunomodulatory effects of the cooperative interplay between surface nanotopography and chemistry.Synthetic materials employed for enhancing, replacing, or restoring biological functionality may be compromised by the host immune responses that they evoke. Surface modification has attracted substantial attention as a tool to modulate the host response to synthetic materials; however, how surface nanotopography combined with chemistry affects immune effector cell responses is still poorly understood. To address this open question, a unique set of model surfaces with controlled surface nanotopography in the range of 16, 38, and 68 nm has been generated. Tailored outermost surface chemistry that was amine, carboxyl, or methyl group rich has been provided. The combinations of these properties yield 12 surface types that are subject to functional assays assessing key immune effector cells, namely, primary neutrophil and macrophage responses in vitro. The data demonstrate that surface nanotopography leads to enhanced matrix metalloproteinase-9 production from primary neutrophils, and a decrease in pro-inflammatory cytokine secretion from primary macrophages. Together, these results are the first to directly compare the immunomodulatory effects of the cooperative interplay between surface nanotopography and chemistry.
Synthetic materials employed for enhancing, replacing, or restoring biological functionality may be compromised by the host immune responses that they evoke. Surface modification has attracted substantial attention as a tool to modulate the host response to synthetic materials; however, how surface nanotopography combined with chemistry affects immune effector cell responses is still poorly understood. To address this open question, a unique set of model surfaces with controlled surface nanotopography in the range of 16, 38, and 68 nm has been generated. Tailored outermost surface chemistry that was amine, carboxyl, or methyl group rich has been provided. The combinations of these properties yield 12 surface types that are subject to functional assays assessing key immune effector cells, namely, primary neutrophil and macrophage responses in vitro. The data demonstrate that surface nanotopography leads to enhanced matrix metalloproteinase‐9 production from primary neutrophils, and a decrease in pro‐inflammatory cytokine secretion from primary macrophages. Together, these results are the first to directly compare the immunomodulatory effects of the cooperative interplay between surface nanotopography and chemistry. Innate immune effector cells can differentially respond to the controlled surface nanotopography in the range of 16, 38, and 68 nm. Additional overcoating of these surfaces with amine, carboxyl, or methyl group rich chemistries demonstrates that surfaces with hydrophillic anionic overcoated 68 nm gold nanoparticles can modulate neutrophil and macrophage functionality.
Author Mierczynska, Agnieszka
Bachhuka, Akash
Vasilev, Krasimir
Hayball, John D.
Diener, Kerrilyn R.
Christo, Susan N.
Author_xml – sequence: 1
  givenname: Susan N.
  surname: Christo
  fullname: Christo, Susan N.
  organization: Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, University of South Australia, SA, 5000, Adelaide, Australia
– sequence: 2
  givenname: Akash
  surname: Bachhuka
  fullname: Bachhuka, Akash
  organization: Mawson Institute, University of South Australia, SA, 5095, Adelaide, Australia
– sequence: 3
  givenname: Kerrilyn R.
  surname: Diener
  fullname: Diener, Kerrilyn R.
  organization: Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, University of South Australia, 5000, Adelaide, SA, Australia
– sequence: 4
  givenname: Agnieszka
  surname: Mierczynska
  fullname: Mierczynska, Agnieszka
  organization: Australian Wine Research Institute, SA, 5064, Adelaide, Australia
– sequence: 5
  givenname: John D.
  surname: Hayball
  fullname: Hayball, John D.
  email: John.Hayball@unisa.edu.au
  organization: Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, University of South Australia, 5000, Adelaide, SA, Australia
– sequence: 6
  givenname: Krasimir
  surname: Vasilev
  fullname: Vasilev, Krasimir
  email: John.Hayball@unisa.edu.au
  organization: Mawson Institute, University of South Australia, SA, 5095, Adelaide, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26845244$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1UREvplSOyxIVLFn_GzrHawhbULmi70KPlJJMmJRsHOxHsv8fbtCtUCRX74BnpeUcz4_clOuhcBwi9pmRGCWHvbVlvZoxQSYgW8hk6YjRjCUtldrCPBTlEJyHcknhSSVNNX6BDlkaeCXGE6nUNeOVawK7CV6OvbAF4aTs3uN7deNvXW2y7Es9r2DRh8FvsOvzVNxsbwyWMg3d93bR3zKUtdpm9ATyHth1b6_EKQu-6AOEVel7ZNsDJ_XuMvn38sJ6fJxdfFp_mpxdJIZSSiZBc6ZLHkfJcCULLItVQ5lywVGWWMyY4cG1pAZKUFeWc5TJjZaVLxYXVBT9G76a6vXc_RwiDiX0XsR3bgRuDoZrEqyUXT6NKq0zRuLT_QZnmgigW0beP0Fs3-i7OvKOoSjm7o97cU2O-gdL000rNw89EQExA3GkIHipTNIMdGtcN3jatocTsPGB2HjB7D0TZ7JHsofI_Bdkk-NW0sH2CNqdn55d_a5NJG50Bv_da63-YVHElzfVyYa7lerXIPn83V_wPeybQwA
CitedBy_id crossref_primary_10_1016_j_mtchem_2024_102341
crossref_primary_10_3390_ijms222111390
crossref_primary_10_3389_fbioe_2022_917655
crossref_primary_10_1002_adfm_201807453
crossref_primary_10_3390_ijms20030636
crossref_primary_10_1039_D0NR03886E
crossref_primary_10_1016_j_addr_2020_06_008
crossref_primary_10_1016_j_apsusc_2022_153518
crossref_primary_10_3390_polym12040828
crossref_primary_10_1016_j_bprint_2020_e00107
crossref_primary_10_1016_j_mtcomm_2024_109982
crossref_primary_10_1186_s13036_019_0173_4
crossref_primary_10_1038_s41565_018_0274_0
crossref_primary_10_1016_j_mtbio_2025_101710
crossref_primary_10_3390_ijms23073558
crossref_primary_10_1002_cnma_202200152
crossref_primary_10_3390_s20020492
crossref_primary_10_1088_1748_605X_ac5572
crossref_primary_10_1002_ange_202209499
crossref_primary_10_1002_admi_201700381
crossref_primary_10_1039_C7NR03131A
crossref_primary_10_1016_j_actbio_2019_06_057
crossref_primary_10_1016_j_actbio_2019_06_058
crossref_primary_10_1002_adma_202001668
crossref_primary_10_1039_C9MH00291J
crossref_primary_10_1088_1748_605X_ac5574
crossref_primary_10_1002_adhm_202100146
crossref_primary_10_1002_anie_202209499
crossref_primary_10_1039_D1NR06591B
crossref_primary_10_1186_s12951_022_01721_1
crossref_primary_10_3390_polym14020344
crossref_primary_10_1016_j_actbio_2021_05_042
crossref_primary_10_1016_j_addr_2023_115083
crossref_primary_10_1088_2057_1976_ac154f
crossref_primary_10_3390_jfb13030103
crossref_primary_10_3390_ma12010191
crossref_primary_10_1002_smsc_202300080
crossref_primary_10_1089_ten_tea_2016_0415
crossref_primary_10_1002_advs_202206150
crossref_primary_10_3390_mi12111336
crossref_primary_10_1002_wnan_1763
crossref_primary_10_3390_coatings9100654
crossref_primary_10_3390_nano12040682
crossref_primary_10_1002_advs_201700678
crossref_primary_10_1002_adfm_202007226
crossref_primary_10_1002_anbr_202100119
crossref_primary_10_1016_j_addr_2021_113871
crossref_primary_10_1002_adhm_202401253
crossref_primary_10_1016_j_apmt_2021_100969
crossref_primary_10_1016_j_colcom_2021_100464
crossref_primary_10_1038_s41598_023_49445_y
crossref_primary_10_3390_coatings15091026
crossref_primary_10_1002_adbi_201700093
crossref_primary_10_1016_j_biomaterials_2019_119642
crossref_primary_10_3389_fbioe_2022_844091
crossref_primary_10_1016_j_bioadv_2022_212759
crossref_primary_10_1002_smll_202204662
crossref_primary_10_1016_j_biomaterials_2025_123136
crossref_primary_10_1002_jbm_b_34921
crossref_primary_10_1016_j_carbpol_2018_10_039
crossref_primary_10_1016_j_cej_2020_127849
crossref_primary_10_1016_j_jmst_2020_10_054
crossref_primary_10_1021_acsami_5c11330
crossref_primary_10_1016_j_biopha_2022_113841
crossref_primary_10_1002_btm2_10063
crossref_primary_10_1038_s41368_020_0073_y
crossref_primary_10_1186_s12951_023_01912_4
crossref_primary_10_3389_fimmu_2023_1269960
crossref_primary_10_1002_adfm_202313157
crossref_primary_10_1016_j_ijbiomac_2023_123335
crossref_primary_10_1016_j_bioactmat_2022_05_036
crossref_primary_10_1177_22808000241266665
Cites_doi 10.2174/156802608783790901
10.1186/1556-276X-7-394
10.1002/1097-4636(20010615)55:4<661::AID-JBM1061>3.0.CO;2-F
10.1016/j.biomaterials.2011.05.078
10.1039/c2nr11455k
10.1016/j.biomaterials.2007.07.010
10.1016/j.smim.2007.11.004
10.1002/ppap.201000140
10.1002/ppap.201000030
10.1039/b904367e
10.1016/j.biomaterials.2006.07.004
10.1089/ten.tea.2012.0772
10.1016/j.biomaterials.2005.01.058
10.1016/j.biomaterials.2006.05.002
10.1016/j.biomaterials.2004.01.062
10.1002/jbm.a.31649
10.1371/journal.pone.0017314
10.1016/j.colsurfb.2013.04.010
10.1016/j.biomaterials.2014.08.025
10.1002/jbm.a.31220
10.1021/la7025973
10.1038/nrm1890
10.2334/josnusd.50.239
10.1177/193229680800200504
10.1016/j.colsurfb.2012.11.035
10.1016/j.biomaterials.2009.12.055
10.1039/C4BM00375F
10.1371/journal.pone.0012949
10.1016/j.biomaterials.2010.01.074
10.1016/j.jcis.2012.11.051
10.1016/j.biomaterials.2011.01.029
10.1016/j.matbio.2009.02.002
10.1159/000284367
10.3233/CH-2008-1090
10.1016/j.biomaterials.2014.08.047
10.1039/c2sm25221j
10.1002/jbm.a.30602
10.1089/ten.tea.2009.0141
10.1002/jbm.a.10537
10.1021/la035157u
10.1016/j.tsf.2012.04.087
10.2147/IJN.S51465
10.1039/df9511100055
10.1006/cyto.2002.1048
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
7QO
P64
DOI 10.1002/adhm.201500845
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Immunology Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Immunology Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Materials Research Database
AIDS and Cancer Research Abstracts
MEDLINE
MEDLINE - Academic
CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2192-2659
EndPage 965
ExternalDocumentID 4026853601
26845244
10_1002_adhm_201500845
ADHM201500845
ark_67375_WNG_W5TRG9JV_S
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NHMRC
  funderid: PG631931
– fundername: ARC
  funderid: DP15104212
GroupedDBID 05W
0R~
1OC
31~
33P
53G
8-0
8-1
AAESR
AAHQN
AAIHA
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
BSCLL
C45
D-A
D-B
DCZOG
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
EMOBN
G-S
GODZA
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXMAN
MXSTM
MY.
MY~
O9-
OVD
P2W
PQQKQ
ROL
SUPJJ
SV3
TEORI
WBKPD
WOHZO
WXSBR
ZZTAW
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
7QO
P64
ID FETCH-LOGICAL-c4775-45378d3150bb7401dc68edb342679a32243e38a1ce50df1332b592df8d734a8c3
IEDL.DBID DRFUL
ISICitedReferencesCount 93
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374693700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2192-2640
2192-2659
IngestDate Wed Oct 01 13:28:17 EDT 2025
Tue Oct 07 09:38:51 EDT 2025
Thu Sep 04 17:29:45 EDT 2025
Sat Nov 29 14:38:34 EST 2025
Mon Jul 21 05:53:45 EDT 2025
Thu Oct 09 00:40:18 EDT 2025
Tue Nov 18 21:48:59 EST 2025
Sun Sep 21 06:23:43 EDT 2025
Sun Sep 21 06:17:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords immunomodulation
macrophages
surface nanotopographies
neutrophils
surface chemistries
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4775-45378d3150bb7401dc68edb342679a32243e38a1ce50df1332b592df8d734a8c3
Notes istex:515C6E1697CD011C792B473F8771763E5E5F07C8
ARC - No. DP15104212
ark:/67375/WNG-W5TRG9JV-S
ArticleID:ADHM201500845
NHMRC - No. PG631931
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26845244
PQID 1781763272
PQPubID 2032434
PageCount 10
ParticipantIDs proquest_miscellaneous_1808088534
proquest_miscellaneous_1787971516
proquest_miscellaneous_1782834072
proquest_journals_1781763272
pubmed_primary_26845244
crossref_citationtrail_10_1002_adhm_201500845
crossref_primary_10_1002_adhm_201500845
wiley_primary_10_1002_adhm_201500845_ADHM201500845
istex_primary_ark_67375_WNG_W5TRG9JV_S
PublicationCentury 2000
PublicationDate April 20, 2016
PublicationDateYYYYMMDD 2016-04-20
PublicationDate_xml – month: 04
  year: 2016
  text: April 20, 2016
  day: 20
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced healthcare materials
PublicationTitleAlternate Adv. Healthcare Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References a) K. Vasilev, A. Michelmore, H. J. Griesser, R. D. Short, Chem. Commun. 2009, 3600
A. Mierczynska, A. Michelmore, A. Tripathi, R. V. Goreham, R. Sedev, K. Vasilev, Soft Matter 2012, 8, 8399.
J. M. Anderson, A. Rodriguez, D. T. Chang, Semin. Immunol. 2008, 20, 86.
J. N. Barbosa, P. Madureira, M. A. Barbosa, A. P. Aguas, J. Biomed. Mater. Res. A 2006, 76, 737.
M. Hulander, A. Lundgren, L. Faxalv, T. L. Lindahl, A. Palmquist, M. Berglin, H. Elwing, Colloids Surf. B Biointerf. 2013, 110,261.
W. G. Brodbeck, M. S. Shive, E. Colton, Y. Nakayama, T. Matsuda, J. M. Anderson, J. Biomed. Mater. Res. 2001, 55, 661.
W. G. Brodbeck, Y. Nakayama, T. Matsuda, E. Colton, N. P. Ziats, J. M. Anderson, Cytokine 2002, 18, 311.
J. M. Anderson, J. A. Jones, Biomaterials 2007, 28, 5114.
b) B. G. Keselowsky, D. M. Collard, A. J. Garcia, J. Biomed. Mater. Res. A 2003, 66, 247.
J. A. Jones, A. K. McNally, D. T. Chang, L. A. Qin, H. Meyerson, E. Colton, I. L. Kwon, T. Matsuda, J. M. Anderson, J. Biomed. Mater. Res. A 2008, 84, 158.
P. Rico, J. C. Rodriguez Hernandez, D. Moratal, G. Altankov, M. Monleon Pradas, M. Salmeron-Sanchez, Tissue Eng. Part A 2009, 15, 3271.
a) P. Thevenot, W. Hu, L. Tang, Curr. Top. Med. Chem. 2008, 8, 270
b) J. Fink, R. Fuhrmann, T. Scharnweber, R. P. Franke, Clin. Hemorheol. Microcirc. 2008, 39, 205.
a) S. Svensson, M. Forsberg, M. Hulander, F. Vazirisani, A. Palmquist, J. Lausmaa, P. Thomsen, M. Trobos, Int. J. Nanomedicine 2014, 9, 775
K. R. Kam, L. A. Walsh, S. M. Bock, J. D. Ollerenshaw, R. F. Ross, T. A. Desai, Tissue Eng. Part A 2014, 20, 130.
a) J. R. Gamboa, S. Mohandes, P. L. Tran, M. J. Slepian, J. Y. Yoon, Colloids Surf. B Biointerf. 2013, 104, 318
J. Turkevich, P. C. Stevenson, J. Hillier, Discuss. Faraday Soc. 1951, 11, 55.
b) T. D. Zaveri, N. V. Dolgova, B. H. Chu, J. Lee, J. Wong, T. P. Lele, F. Ren, B. G. Keselowsky, Biomaterials 2010, 31, 2999.
L. Mesure, G. De Visscher, I. Vranken, A. Lebacq, W. Flameng, PLoS One 2010, 5, e12949.
H. M. Rostam, S. Signgh, N. E. Vrana, M. R. Alexander, A. M. Ghaemmaghami, Biomater. Sci. 2015, 3, 424.
C. L. Gilchrist, D. S. Ruch, D. Little, F. Guilak, Biomaterials 2014, 35, 10015.
J. M. Lopacinska, C. Gradinaru, R. Wierzbicki, C. Kobler, M. S. Schmidt, M. T. Madsen, M. Skolimowski, M. Dufva, H. Flyvbjerg, K. Molhave, Nanoscale 2012, 4, 3739.
M. Hasenberg, A. Kohler, S. Bonifatius, K. Borucki, M. Riek-Burchardt, J. Achilles, L. Mann, K. Baumgart, B. Schraven, M. Gunzer, PLoS One 2011, 6, e17314.
V. Vogel, M. Sheetz, Nat. Rev. Mol. Cell Biol. 2006, 7, 265.
K. Vasilev, A. Michelmore, P. Martinek, J. Chan, V. Sah, H. J. Griesser, R. D. Short, Plasma Process. Polym. 2010, 7,824.
a) A. Michelmore, P. Martinek, V. Sah, R. D. Short, K. Vasilev, Plasma Process. Polym. 2011, 8, 367
B. Winnett, H. C. Tenenbaum, B. Ganss, A. Jokstad, Clin. Oral Implants Res. 2014, 00, 1-7.
S. Chen, J. A. Jones, Y. Xu, H. Y. Low, J. M. Anderson, K. W. Leong, Biomaterials 2010, 31, 3479.
T. Zhu, K. Vasilev, M. Kreiter, S. Mittler, W. Knoll, Langmuir 2003, 19, 9518.
S. Fox, A. E. Leitch, R. Duffin, C. Haslett, A. G. Rossi, J. Innate Immun. 2010, 2, 216.
D. G. Kalyvas, M. Tarenidou, J. Oral Sci. 2008, 50, 239.
B. G. Keselowsky, D. M. Collard, A. J. Garcia, Biomaterials 2004, 25, 5947.
W. K. Ward, J. Diabetes Sci. Technol. 2008, 2, 768.
b) K. Vasilev, A. Michelmore, P. Martinek, J. Chan, V. Sah, H. J. Griesser, R. D. Short, Plasma Process. Polym. 2010, 7, 824.
R. A. Gittens, T. McLachlan, R. Olivares-Navarrete, Y. Cai, S. Berner, R. Tannenbaum, Z. Schwartz, K. H. Sandhage, B. D. Boyan, Biomaterials 2011, 32, 3395.
b) K. S. Tan, L. Qian, R. Rosado, P. M. Flood, L. F. Cooper, Biomaterials 2006, 27, 5170.
D. T. Luttikhuizen, M. J. van Amerongen, P. C. de Feijter, A. H. Petersen, M. C. Harmsen, M. J. van Luyn, Biomaterials 2006, 27, 5763.
S. Kamath, D. Bhattacharyya, C. Padukudru, R. B. Timmons, L. Tang, J. Biomed. Mater. Res. A 2008, 86, 617.
A. Nair, L. Zou, D. Bhattacharyya, R. B. Timmons, L. Tang, Langmuir 2008, 24, 2015.
E. K. Yim, R. M. Reano, S. W. Pang, A. F. Yee, C. S. Chen, K. W. Leong, Biomaterials 2005, 26, 5405.
B. Cortese, M. O. Riehle, S. D'Amone, G. Gigli, J. Colloid Interface Sci 2013, 394, 582.
S. Franz, S. Rammelt, D. Scharnweber, J. C. Simon, Biomaterials 2011, 32, 6692.
b) R. V. Goreham, A. Mierczynska, M. Pierce, R. D. Short, S. Taheri, A. Bachhuka, A. Cavallaro, L. E. Smith, K. Vasilev, Thin Solid Films 2013, 528,106.
W. Tian, T. R. Kyriakides, Matrix Biol. 2009, 28, 148.
a) Q. L. Ma, L. Z. Zhao, R. R. Liu, B. Q. Jin, W. Song, Y. Wang, Y. S. Zhang, L. H. Chen, Y. M. Zhang, Biomaterials 2014, 35, 9853
M. Mohiuddin, H. A. Pan, Y. C. Hung, G. S. Huang, Nanoscale Res. Lett. 2012, 7, 394.
2010; 31
2002; 18
2015; 3
2006; 76
2008 2003; 8 66
2014 2010; 9 31
2004; 25
2006; 7
2013 2008; 104 39
2011; 32
2003; 19
2008; 50
2005; 26
2009 2010; 7
2008; 2
2011; 6
2014; 00
2011 2013; 8 528
2009; 28
2014; 20
2007; 28
2014 2006; 35 27
2006; 27
1951; 11
2014; 35
2008; 24
2013; 394
2013; 110
2008; 20
2008; 86
2001; 55
2012; 7
2010; 2
2008; 84
2010; 5
2012; 4
2010; 7
2009; 15
2012; 8
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_19_2
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_13_2
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_32_2
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_40_1
e_1_2_6_9_1
Winnett B. (e_1_2_6_5_1) 2014; 00
e_1_2_6_8_1
e_1_2_6_9_2
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_22_2
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_21_2
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: E. K. Yim, R. M. Reano, S. W. Pang, A. F. Yee, C. S. Chen, K. W. Leong, Biomaterials 2005, 26, 5405.
– reference: J. N. Barbosa, P. Madureira, M. A. Barbosa, A. P. Aguas, J. Biomed. Mater. Res. A 2006, 76, 737.
– reference: S. Chen, J. A. Jones, Y. Xu, H. Y. Low, J. M. Anderson, K. W. Leong, Biomaterials 2010, 31, 3479.
– reference: a) P. Thevenot, W. Hu, L. Tang, Curr. Top. Med. Chem. 2008, 8, 270;
– reference: b) K. S. Tan, L. Qian, R. Rosado, P. M. Flood, L. F. Cooper, Biomaterials 2006, 27, 5170.
– reference: R. A. Gittens, T. McLachlan, R. Olivares-Navarrete, Y. Cai, S. Berner, R. Tannenbaum, Z. Schwartz, K. H. Sandhage, B. D. Boyan, Biomaterials 2011, 32, 3395.
– reference: W. K. Ward, J. Diabetes Sci. Technol. 2008, 2, 768.
– reference: b) T. D. Zaveri, N. V. Dolgova, B. H. Chu, J. Lee, J. Wong, T. P. Lele, F. Ren, B. G. Keselowsky, Biomaterials 2010, 31, 2999.
– reference: J. M. Anderson, J. A. Jones, Biomaterials 2007, 28, 5114.
– reference: A. Mierczynska, A. Michelmore, A. Tripathi, R. V. Goreham, R. Sedev, K. Vasilev, Soft Matter 2012, 8, 8399.
– reference: a) J. R. Gamboa, S. Mohandes, P. L. Tran, M. J. Slepian, J. Y. Yoon, Colloids Surf. B Biointerf. 2013, 104, 318;
– reference: S. Fox, A. E. Leitch, R. Duffin, C. Haslett, A. G. Rossi, J. Innate Immun. 2010, 2, 216.
– reference: P. Rico, J. C. Rodriguez Hernandez, D. Moratal, G. Altankov, M. Monleon Pradas, M. Salmeron-Sanchez, Tissue Eng. Part A 2009, 15, 3271.
– reference: L. Mesure, G. De Visscher, I. Vranken, A. Lebacq, W. Flameng, PLoS One 2010, 5, e12949.
– reference: a) K. Vasilev, A. Michelmore, H. J. Griesser, R. D. Short, Chem. Commun. 2009, 3600;
– reference: W. G. Brodbeck, Y. Nakayama, T. Matsuda, E. Colton, N. P. Ziats, J. M. Anderson, Cytokine 2002, 18, 311.
– reference: J. Turkevich, P. C. Stevenson, J. Hillier, Discuss. Faraday Soc. 1951, 11, 55.
– reference: W. G. Brodbeck, M. S. Shive, E. Colton, Y. Nakayama, T. Matsuda, J. M. Anderson, J. Biomed. Mater. Res. 2001, 55, 661.
– reference: T. Zhu, K. Vasilev, M. Kreiter, S. Mittler, W. Knoll, Langmuir 2003, 19, 9518.
– reference: M. Mohiuddin, H. A. Pan, Y. C. Hung, G. S. Huang, Nanoscale Res. Lett. 2012, 7, 394.
– reference: V. Vogel, M. Sheetz, Nat. Rev. Mol. Cell Biol. 2006, 7, 265.
– reference: b) B. G. Keselowsky, D. M. Collard, A. J. Garcia, J. Biomed. Mater. Res. A 2003, 66, 247.
– reference: a) S. Svensson, M. Forsberg, M. Hulander, F. Vazirisani, A. Palmquist, J. Lausmaa, P. Thomsen, M. Trobos, Int. J. Nanomedicine 2014, 9, 775;
– reference: b) K. Vasilev, A. Michelmore, P. Martinek, J. Chan, V. Sah, H. J. Griesser, R. D. Short, Plasma Process. Polym. 2010, 7, 824.
– reference: K. R. Kam, L. A. Walsh, S. M. Bock, J. D. Ollerenshaw, R. F. Ross, T. A. Desai, Tissue Eng. Part A 2014, 20, 130.
– reference: D. G. Kalyvas, M. Tarenidou, J. Oral Sci. 2008, 50, 239.
– reference: K. Vasilev, A. Michelmore, P. Martinek, J. Chan, V. Sah, H. J. Griesser, R. D. Short, Plasma Process. Polym. 2010, 7,824.
– reference: B. Winnett, H. C. Tenenbaum, B. Ganss, A. Jokstad, Clin. Oral Implants Res. 2014, 00, 1-7.
– reference: D. T. Luttikhuizen, M. J. van Amerongen, P. C. de Feijter, A. H. Petersen, M. C. Harmsen, M. J. van Luyn, Biomaterials 2006, 27, 5763.
– reference: J. A. Jones, A. K. McNally, D. T. Chang, L. A. Qin, H. Meyerson, E. Colton, I. L. Kwon, T. Matsuda, J. M. Anderson, J. Biomed. Mater. Res. A 2008, 84, 158.
– reference: a) A. Michelmore, P. Martinek, V. Sah, R. D. Short, K. Vasilev, Plasma Process. Polym. 2011, 8, 367;
– reference: b) J. Fink, R. Fuhrmann, T. Scharnweber, R. P. Franke, Clin. Hemorheol. Microcirc. 2008, 39, 205.
– reference: A. Nair, L. Zou, D. Bhattacharyya, R. B. Timmons, L. Tang, Langmuir 2008, 24, 2015.
– reference: B. G. Keselowsky, D. M. Collard, A. J. Garcia, Biomaterials 2004, 25, 5947.
– reference: B. Cortese, M. O. Riehle, S. D'Amone, G. Gigli, J. Colloid Interface Sci 2013, 394, 582.
– reference: J. M. Anderson, A. Rodriguez, D. T. Chang, Semin. Immunol. 2008, 20, 86.
– reference: H. M. Rostam, S. Signgh, N. E. Vrana, M. R. Alexander, A. M. Ghaemmaghami, Biomater. Sci. 2015, 3, 424.
– reference: b) R. V. Goreham, A. Mierczynska, M. Pierce, R. D. Short, S. Taheri, A. Bachhuka, A. Cavallaro, L. E. Smith, K. Vasilev, Thin Solid Films 2013, 528,106.
– reference: W. Tian, T. R. Kyriakides, Matrix Biol. 2009, 28, 148.
– reference: J. M. Lopacinska, C. Gradinaru, R. Wierzbicki, C. Kobler, M. S. Schmidt, M. T. Madsen, M. Skolimowski, M. Dufva, H. Flyvbjerg, K. Molhave, Nanoscale 2012, 4, 3739.
– reference: S. Franz, S. Rammelt, D. Scharnweber, J. C. Simon, Biomaterials 2011, 32, 6692.
– reference: S. Kamath, D. Bhattacharyya, C. Padukudru, R. B. Timmons, L. Tang, J. Biomed. Mater. Res. A 2008, 86, 617.
– reference: M. Hulander, A. Lundgren, L. Faxalv, T. L. Lindahl, A. Palmquist, M. Berglin, H. Elwing, Colloids Surf. B Biointerf. 2013, 110,261.
– reference: M. Hasenberg, A. Kohler, S. Bonifatius, K. Borucki, M. Riek-Burchardt, J. Achilles, L. Mann, K. Baumgart, B. Schraven, M. Gunzer, PLoS One 2011, 6, e17314.
– reference: a) Q. L. Ma, L. Z. Zhao, R. R. Liu, B. Q. Jin, W. Song, Y. Wang, Y. S. Zhang, L. H. Chen, Y. M. Zhang, Biomaterials 2014, 35, 9853;
– reference: C. L. Gilchrist, D. S. Ruch, D. Little, F. Guilak, Biomaterials 2014, 35, 10015.
– volume: 26
  start-page: 5405
  year: 2005
  publication-title: Biomaterials
– volume: 7
  start-page: 3600 824
  year: 2009 2010
  publication-title: Chem. Commun. Plasma Process. Polym.
– volume: 32
  start-page: 6692
  year: 2011
  publication-title: Biomaterials
– volume: 15
  start-page: 3271
  year: 2009
  publication-title: Tissue Eng. Part A
– volume: 7
  start-page: 394
  year: 2012
  publication-title: Nanoscale Res. Lett.
– volume: 4
  start-page: 3739
  year: 2012
  publication-title: Nanoscale
– volume: 35
  start-page: 10015
  year: 2014
  publication-title: Biomaterials
– volume: 18
  start-page: 311
  year: 2002
  publication-title: Cytokine
– volume: 25
  start-page: 5947
  year: 2004
  publication-title: Biomaterials
– volume: 20
  start-page: 86
  year: 2008
  publication-title: Semin. Immunol.
– volume: 50
  start-page: 239
  year: 2008
  publication-title: J. Oral Sci.
– volume: 2
  start-page: 216
  year: 2010
  publication-title: J. Innate Immun.
– volume: 00
  start-page: 1
  year: 2014
  end-page: 7
  publication-title: Clin. Oral Implants Res.
– volume: 6
  start-page: e17314
  year: 2011
  publication-title: PLoS One
– volume: 86
  start-page: 617
  year: 2008
  publication-title: J. Biomed. Mater. Res. A
– volume: 110
  start-page: 261
  year: 2013
  publication-title: Colloids Surf. B Biointerf.
– volume: 8 528
  start-page: 367 106
  year: 2011 2013
  publication-title: Plasma Process. Polym. Thin Solid Films
– volume: 35 27
  start-page: 9853 5170
  year: 2014 2006
  publication-title: Biomaterials Biomaterials
– volume: 27
  start-page: 5763
  year: 2006
  publication-title: Biomaterials
– volume: 24
  start-page: 2015
  year: 2008
  publication-title: Langmuir
– volume: 11
  start-page: 55
  year: 1951
  publication-title: Discuss. Faraday Soc.
– volume: 5
  start-page: e12949
  year: 2010
  publication-title: PLoS One
– volume: 28
  start-page: 148
  year: 2009
  publication-title: Matrix Biol.
– volume: 8 66
  start-page: 270 247
  year: 2008 2003
  publication-title: Curr. Top. Med. Chem. J. Biomed. Mater. Res. A
– volume: 76
  start-page: 737
  year: 2006
  publication-title: J. Biomed. Mater. Res. A
– volume: 31
  start-page: 3479
  year: 2010
  publication-title: Biomaterials
– volume: 28
  start-page: 5114
  year: 2007
  publication-title: Biomaterials
– volume: 3
  start-page: 424
  year: 2015
  publication-title: Biomater. Sci.
– volume: 32
  start-page: 3395
  year: 2011
  publication-title: Biomaterials
– volume: 394
  start-page: 582
  year: 2013
  publication-title: J. Colloid Interface Sci
– volume: 84
  start-page: 158
  year: 2008
  publication-title: J. Biomed. Mater. Res. A
– volume: 55
  start-page: 661
  year: 2001
  publication-title: J. Biomed. Mater. Res.
– volume: 20
  start-page: 130
  year: 2014
  publication-title: Tissue Eng. Part A
– volume: 2
  start-page: 768
  year: 2008
  publication-title: J. Diabetes Sci. Technol.
– volume: 7
  start-page: 824
  year: 2010
  publication-title: Plasma Process. Polym.
– volume: 19
  start-page: 9518
  year: 2003
  publication-title: Langmuir
– volume: 7
  start-page: 265
  year: 2006
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 104 39
  start-page: 318 205
  year: 2013 2008
  publication-title: Colloids Surf. B Biointerf. Clin. Hemorheol. Microcirc.
– volume: 9 31
  start-page: 775 2999
  year: 2014 2010
  publication-title: Int. J. Nanomedicine Biomaterials
– volume: 8
  start-page: 8399
  year: 2012
  publication-title: Soft Matter
– ident: e_1_2_6_32_1
  doi: 10.2174/156802608783790901
– ident: e_1_2_6_18_1
  doi: 10.1186/1556-276X-7-394
– ident: e_1_2_6_29_1
  doi: 10.1002/1097-4636(20010615)55:4<661::AID-JBM1061>3.0.CO;2-F
– ident: e_1_2_6_2_1
  doi: 10.1016/j.biomaterials.2011.05.078
– ident: e_1_2_6_15_1
  doi: 10.1039/c2nr11455k
– ident: e_1_2_6_30_1
  doi: 10.1016/j.biomaterials.2007.07.010
– ident: e_1_2_6_1_1
  doi: 10.1016/j.smim.2007.11.004
– ident: e_1_2_6_21_1
  doi: 10.1002/ppap.201000140
– ident: e_1_2_6_22_2
  doi: 10.1002/ppap.201000030
– ident: e_1_2_6_22_1
  doi: 10.1039/b904367e
– ident: e_1_2_6_24_1
  doi: 10.1016/j.biomaterials.2006.07.004
– ident: e_1_2_6_36_1
  doi: 10.1089/ten.tea.2012.0772
– ident: e_1_2_6_14_1
  doi: 10.1016/j.biomaterials.2005.01.058
– ident: e_1_2_6_13_2
  doi: 10.1016/j.biomaterials.2006.05.002
– ident: e_1_2_6_33_1
  doi: 10.1016/j.biomaterials.2004.01.062
– ident: e_1_2_6_6_1
  doi: 10.1002/jbm.a.31649
– ident: e_1_2_6_40_1
  doi: 10.1371/journal.pone.0017314
– ident: e_1_2_6_10_1
  doi: 10.1016/j.colsurfb.2013.04.010
– volume: 00
  start-page: 1
  year: 2014
  ident: e_1_2_6_5_1
  publication-title: Clin. Oral Implants Res.
– ident: e_1_2_6_13_1
  doi: 10.1016/j.biomaterials.2014.08.025
– ident: e_1_2_6_25_1
  doi: 10.1002/jbm.a.31220
– ident: e_1_2_6_28_1
  doi: 10.1021/la7025973
– ident: e_1_2_6_11_1
  doi: 10.1038/nrm1890
– ident: e_1_2_6_4_1
  doi: 10.2334/josnusd.50.239
– ident: e_1_2_6_3_1
  doi: 10.1177/193229680800200504
– ident: e_1_2_6_9_1
  doi: 10.1016/j.colsurfb.2012.11.035
– ident: e_1_2_6_39_1
  doi: 10.1002/ppap.201000030
– ident: e_1_2_6_19_2
  doi: 10.1016/j.biomaterials.2009.12.055
– ident: e_1_2_6_8_1
  doi: 10.1039/C4BM00375F
– ident: e_1_2_6_7_1
  doi: 10.1371/journal.pone.0012949
– ident: e_1_2_6_17_1
  doi: 10.1016/j.biomaterials.2010.01.074
– ident: e_1_2_6_35_1
  doi: 10.1016/j.jcis.2012.11.051
– ident: e_1_2_6_16_1
  doi: 10.1016/j.biomaterials.2011.01.029
– ident: e_1_2_6_26_1
  doi: 10.1016/j.matbio.2009.02.002
– ident: e_1_2_6_23_1
  doi: 10.1159/000284367
– ident: e_1_2_6_9_2
  doi: 10.3233/CH-2008-1090
– ident: e_1_2_6_12_1
  doi: 10.1016/j.biomaterials.2014.08.047
– ident: e_1_2_6_20_1
  doi: 10.1039/c2sm25221j
– ident: e_1_2_6_27_1
  doi: 10.1002/jbm.a.30602
– ident: e_1_2_6_34_1
  doi: 10.1089/ten.tea.2009.0141
– ident: e_1_2_6_32_2
  doi: 10.1002/jbm.a.10537
– ident: e_1_2_6_38_1
  doi: 10.1021/la035157u
– ident: e_1_2_6_21_2
  doi: 10.1016/j.tsf.2012.04.087
– ident: e_1_2_6_19_1
  doi: 10.2147/IJN.S51465
– ident: e_1_2_6_37_1
  doi: 10.1039/df9511100055
– ident: e_1_2_6_31_1
  doi: 10.1006/cyto.2002.1048
SSID ssj0000651681
Score 2.3961792
Snippet Synthetic materials employed for enhancing, replacing, or restoring biological functionality may be compromised by the host immune responses that they evoke....
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 956
SubjectTerms Acids - pharmacology
Amines
Animals
Cell Line
Cells, Cultured
Control surfaces
Cytokines - secretion
Effectors
immunomodulation
Inflammation Mediators - metabolism
Lead (metal)
Macrophages
Macrophages - drug effects
Matrix Metalloproteinase 9 - biosynthesis
Mice, Inbred C57BL
Microscopy, Atomic Force
Nanoparticles
Nanoparticles - chemistry
Nanostructure
Nanotechnology - methods
Neutrophil Activation
Neutrophils
Neutrophils - cytology
Photoelectron Spectroscopy
surface chemistries
Surface chemistry
surface nanotopographies
Surface Properties
Synthetic products
T cell receptors
Title The Role of Surface Nanotopography and Chemistry on Primary Neutrophil and Macrophage Cellular Responses
URI https://api.istex.fr/ark:/67375/WNG-W5TRG9JV-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.201500845
https://www.ncbi.nlm.nih.gov/pubmed/26845244
https://www.proquest.com/docview/1781763272
https://www.proquest.com/docview/1782834072
https://www.proquest.com/docview/1787971516
https://www.proquest.com/docview/1808088534
Volume 5
WOSCitedRecordID wos000374693700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 2192-2659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651681
  issn: 2192-2640
  databaseCode: DRFUL
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RhgMceBcMpVokBKeo9vqx62OVklaIRlXa0tysfVmpsOzISRA_nxnbMY0ERYKLZctja3dm57G7s98AvBeBjnP0M0N0BQSqjReZaDvESFaa1FmCnmyKTYjJRM5m6fmtU_wtPkS_4Eaa0dhrUnCll4e_QEOVndNJcgxofBnFOzCgk1U4_RocT8dXX_p1FnSxQdLUKkXd5JTQ5W-wG31-uP2TLd80IDb_-F3guR3HNo5o_Pj_u_AEHnVBKDtqR81TuOfKZ_DwFjThc5jj-GHTqnCsytnFus6VcQxNcbWqFh3KNVOlZaNNwThWley8ha5gE7de1dViflM0NGeK6oTN0XKxkSsKSnxl0zY31y1fwNX40-XodNhVZRiaSIi4kae0ITZaayrnZ00indUhunqRKrQPUehCqQLjYt_mOAXmOk65zaUVYaSkCfdgt6xK9wqY9IUyhICvjR-ZQOsIfaoVMrc8tVwlHgw38shMB1lOlTOKrAVb5hlxMOs56MHHnn7R9viPlB8a8fZkqv5GKW4izq4nJ9l1fDk9ST9_zS482N_IP-u0e5kFQgZol7ngHrzrXyO3abNFla5aNzQYuRH83J00IhUYcyV30BDwp0RNijx42Y6_vtGE1BNjfOYBb4bZXzqdHR2fnvVPr__lozfwAO8T2k7j_j7sruq1ewv3zffVzbI-gB0xkwedBv4Etgwstw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEB5BggQ8cBYwFFgkBE9R7fWx68cqJS2QRFWa0r6t1rtrpSKyoxyIn8-M7RgiQZEQL5Zsj6095vi8O_4G4K0IsjjHONPDUECk2niQSWZ7iGSlSZ0l6smq2IQYj-XlZXraZBPSvzA1P0S74EaWUflrMnBakD74yRqq7Yx-JUdE48sovgndKAmF7ED3aDI4H7YLLRhjg6QqVorGySmjy9-SN_r8YPclO8GpS-P8_XfIcxfIVpFocP8_9OEB3GtgKDus9eYh3HDFI7j7CznhY5ihBrFJOXeszNnZZplr4xg643JdLhqea6YLy_rbknGsLNhpTV7Bxm6zXpaL2dW8khlpqhQ2Q9_F-m4-p9RXNqmzc91qD84HH6b9k15Tl6FnIiHiakalDbHRWUYF_axJpLNZiMFepBo9RBS6UOrAuNi3OX4E8yxOuc2lFWGkpQmfQKcoC_cMmPSFNsSBnxk_MkGWRRhVrZC55anlOvGgt50QZRrScqqdMVc13TJXNIKqHUEP3rfyi7rHf5R8V81vK6aXXynJTcTqYnysLuLp5Dj99EWdebC_VQDV2PdKBUIG6Jm54B68aW_jaNN2iy5cualkELsRAd21MiIViLqSa2SI-lOiLUUePK0VsG00cfXEiNA84JWe_aXT6vDoZNSePf-Xh17D7ZPpaKiGH8efX8AdvJ7Q5hr396GzXm7cS7hlvq2vVstXjSH-AKPKL78
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD6CFiF44DpGYICREDxFS5yLnceppRuwRVW3sb1Zju2o06KkSlvEz-c4SQOVYEiIl0hJTiJfzuWLffIdgHfMz6Ic44yLocCSauOBx5l2EclylRhtqSebYhMsTfnlZTLtsgntvzAtP0S_4GYto_HX1sDNQuf7P1lDpZ7bX8kR0Xg8jG7DMIySKBzAcDybnB_3Cy0YY_24KVaKxkltRpe3IW_06P72S7aC09CO8_ffIc9tINtEosnD_9CHR_Cgg6HkoNWbx3DLlE_g_i_khE9hjhpEZlVhSJWT03WdS2UIOuNqVS06nmsiS01Gm5JxpCrJtCWvIKlZr-pqMb8qGpkTaSuFzdF3kZEpCpv6SmZtdq5Z7sD55OPZ6Mjt6jK4KmQsamaU6wAbnWW2oJ9WMTc6CzDYs0SihwgDE3DpKxN5OsePYJpFCdU51ywIJVfBMxiUVWmeA-Eek8py4GfKC5WfZSFGVc14rmmiqYwdcDcTIlRHWm5rZxSipVumwo6g6EfQgQ-9_KLt8R8l3zfz24vJ-tomubFIXKSH4iI6mx0mn7-KUwf2NgogOvteCp9xHz0zZdSBt_1tHG273SJLU60bGcRuloDuRhmWMERd8Q0ylvqToy2FDuy2Ctg32nL1RIjQHKCNnv2l0-JgfHTSn734l4fewN3peCKOP6VfXsI9vBzbvTXq7cFgVa_NK7ijvq2ulvXrzg5_AOZ2Lzo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Surface+Nanotopography+and+Chemistry+on+Primary+Neutrophil+and+Macrophage+Cellular+Responses&rft.jtitle=Advanced+healthcare+materials&rft.au=Christo%2C+Susan+N.&rft.au=Bachhuka%2C+Akash&rft.au=Diener%2C+Kerrilyn+R.&rft.au=Mierczynska%2C+Agnieszka&rft.date=2016-04-20&rft.issn=2192-2640&rft.eissn=2192-2659&rft.volume=5&rft.issue=8&rft.spage=956&rft.epage=965&rft_id=info:doi/10.1002%2Fadhm.201500845&rft.externalDBID=10.1002%252Fadhm.201500845&rft.externalDocID=ADHM201500845
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon