Quantitative Analysis of Human-Model Agreement in Visual Saliency Modeling: A Comparative Study
Visual attention is a process that enables biological and machine vision systems to select the most relevant regions from a scene. Relevance is determined by two components: 1) top-down factors driven by task and 2) bottom-up factors that highlight image regions that are different from their surroun...
Uložené v:
| Vydané v: | IEEE transactions on image processing Ročník 22; číslo 1; s. 55 - 69 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY
IEEE
01.01.2013
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Visual attention is a process that enables biological and machine vision systems to select the most relevant regions from a scene. Relevance is determined by two components: 1) top-down factors driven by task and 2) bottom-up factors that highlight image regions that are different from their surroundings. The latter are often referred to as "visual saliency." Modeling bottom-up visual saliency has been the subject of numerous research efforts during the past 20 years, with many successful applications in computer vision and robotics. Available models have been tested with different datasets (e.g., synthetic psychological search arrays, natural images or videos) using different evaluation scores (e.g., search slopes, comparison to human eye tracking) and parameter settings. This has made direct comparison of models difficult. Here, we perform an exhaustive comparison of 35 state-of-the-art saliency models over 54 challenging synthetic patterns, three natural image datasets, and two video datasets, using three evaluation scores. We find that although model rankings vary, some models consistently perform better. Analysis of datasets reveals that existing datasets are highly center-biased, which influences some of the evaluation scores. Computational complexity analysis shows that some models are very fast, yet yield competitive eye movement prediction accuracy. Different models often have common easy/difficult stimuli. Furthermore, several concerns in visual saliency modeling, eye movement datasets, and evaluation scores are discussed and insights for future work are provided. Our study allows one to assess the state-of-the-art, helps to organizing this rapidly growing field, and sets a unified comparison framework for gauging future efforts, similar to the PASCAL VOC challenge in the object recognition and detection domains. |
|---|---|
| AbstractList | Visual attention is a process that enables biological and machine vision systems to select the most relevant regions from a scene. Relevance is determined by two components: 1) top-down factors driven by task and 2) bottom-up factors that highlight image regions that are different from their surroundings. The latter are often referred to as "visual saliency." Modeling bottom-up visual saliency has been the subject of numerous research efforts during the past 20 years, with many successful applications in computer vision and robotics. Available models have been tested with different datasets (e.g., synthetic psychological search arrays, natural images or videos) using different evaluation scores (e.g., search slopes, comparison to human eye tracking) and parameter settings. This has made direct comparison of models difficult. Here, we perform an exhaustive comparison of 35 state-of-the-art saliency models over 54 challenging synthetic patterns, three natural image datasets, and two video datasets, using three evaluation scores. We find that although model rankings vary, some models consistently perform better. Analysis of datasets reveals that existing datasets are highly center-biased, which influences some of the evaluation scores. Computational complexity analysis shows that some models are very fast, yet yield competitive eye movement prediction accuracy. Different models often have common easy/difficult stimuli. Furthermore, several concerns in visual saliency modeling, eye movement datasets, and evaluation scores are discussed and insights for future work are provided. Our study allows one to assess the state-of-the-art, helps to organizing this rapidly growing field, and sets a unified comparison framework for gauging future efforts, similar to the PASCAL VOC challenge in the object recognition and detection domains. Visual attention is a process that enables biological and machine vision systems to select the most relevant regions from a scene. Relevance is determined by two components: 1) top-down factors driven by task and 2) bottom-up factors that highlight image regions that are different from their surroundings. The latter are often referred to as "visual saliency." Modeling bottom-up visual saliency has been the subject of numerous research efforts during the past 20 years, with many successful applications in computer vision and robotics. Available models have been tested with different datasets (e.g., synthetic psychological search arrays, natural images or videos) using different evaluation scores (e.g., search slopes, comparison to human eye tracking) and parameter settings. This has made direct comparison of models difficult. Here, we perform an exhaustive comparison of 35 state-of-the-art saliency models over 54 challenging synthetic patterns, three natural image datasets, and two video datasets, using three evaluation scores. We find that although model rankings vary, some models consistently perform better. Analysis of datasets reveals that existing datasets are highly center-biased, which influences some of the evaluation scores. Computational complexity analysis shows that some models are very fast, yet yield competitive eye movement prediction accuracy. Different models often have common easy/difficult stimuli. Furthermore, several concerns in visual saliency modeling, eye movement datasets, and evaluation scores are discussed and insights for future work are provided. Our study allows one to assess the state-of-the-art, helps to organizing this rapidly growing field, and sets a unified comparison framework for gauging future efforts, similar to the PASCAL VOC challenge in the object recognition and detection domains.Visual attention is a process that enables biological and machine vision systems to select the most relevant regions from a scene. Relevance is determined by two components: 1) top-down factors driven by task and 2) bottom-up factors that highlight image regions that are different from their surroundings. The latter are often referred to as "visual saliency." Modeling bottom-up visual saliency has been the subject of numerous research efforts during the past 20 years, with many successful applications in computer vision and robotics. Available models have been tested with different datasets (e.g., synthetic psychological search arrays, natural images or videos) using different evaluation scores (e.g., search slopes, comparison to human eye tracking) and parameter settings. This has made direct comparison of models difficult. Here, we perform an exhaustive comparison of 35 state-of-the-art saliency models over 54 challenging synthetic patterns, three natural image datasets, and two video datasets, using three evaluation scores. We find that although model rankings vary, some models consistently perform better. Analysis of datasets reveals that existing datasets are highly center-biased, which influences some of the evaluation scores. Computational complexity analysis shows that some models are very fast, yet yield competitive eye movement prediction accuracy. Different models often have common easy/difficult stimuli. Furthermore, several concerns in visual saliency modeling, eye movement datasets, and evaluation scores are discussed and insights for future work are provided. Our study allows one to assess the state-of-the-art, helps to organizing this rapidly growing field, and sets a unified comparison framework for gauging future efforts, similar to the PASCAL VOC challenge in the object recognition and detection domains. |
| Author | Itti, L. Borji, Ali Sihite, D. N. |
| Author_xml | – sequence: 1 givenname: Ali surname: Borji fullname: Borji, Ali email: aliborji@gmail.com organization: Dept. of Comput. Sci., Univ. of Southern California, Los Angeles, CA, USA – sequence: 2 givenname: D. N. surname: Sihite fullname: Sihite, D. N. email: sihite@usc.edu organization: Dept. of Comput. Sci., Univ. of Southern California, Los Angeles, CA, USA – sequence: 3 givenname: L. surname: Itti fullname: Itti, L. email: itti@usc.edu organization: Dept. of Comput. Sci., Univ. of Southern California, Los Angeles, CA, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26853905$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22868572$$D View this record in MEDLINE/PubMed |
| BookMark | eNqN0c1rFDEYBvAgLfZD74IgARG8zJq8-Zp4Wxa1hYpKq9fhnZlMSZnJbJMZYf970921hR5KTwnJ70ngfU7IQRiDI-QNZwvOmf10df5zAYzDAoAzA-YFOeZW8oIxCQd5z5QpDJf2iJykdMMYl4rrl-QIoNSlMnBMql8zhslPOPm_ji4D9pvkEx07ejYPGIrvY-t6uryOzg0uTNQH-senGXt6ib13odnQLfHh-jNd0tU4rDHuHruc5nbzihx22Cf3er-ekt9fv1ytzoqLH9_OV8uLopFGT4VzDl2tW4YKmGg7RCPzBaJusa473SqZT2ptBcMGoWzQGoslWAuq5rITp-Tj7t11HG9nl6Zq8KlxfY_BjXOqOJRCK7BCP4MaoUswUmT6_hG9GeeYh7RVICXTzGT1bq_menBttY5-wLip_k85gw97gKnBvosYGp8eXFbCMpUd27kmjilF190Tzqq7wqtceHVXeLUvPEf0o0izLXMMU0TfPxV8uwv6PPv7fzQoAUqKf0o4tdM |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1016_j_image_2015_02_002 crossref_primary_10_1016_j_visres_2014_06_016 crossref_primary_10_1007_s12559_019_09662_y crossref_primary_10_1007_s11042_025_20613_8 crossref_primary_10_3389_fpsyg_2020_01877 crossref_primary_10_3390_s21030970 crossref_primary_10_1016_j_neucom_2014_08_062 crossref_primary_10_1108_IJCST_12_2015_0134 crossref_primary_10_1109_TSMC_2013_2279715 crossref_primary_10_1007_s10339_016_0781_6 crossref_primary_10_1002_rob_21608 crossref_primary_10_1016_j_neucom_2016_08_066 crossref_primary_10_1016_j_procs_2015_02_068 crossref_primary_10_1109_TITS_2024_3510116 crossref_primary_10_1109_TMM_2018_2829605 crossref_primary_10_1016_j_ins_2017_08_040 crossref_primary_10_1016_j_neuron_2020_01_016 crossref_primary_10_1016_j_displa_2023_102531 crossref_primary_10_1080_1206212X_2019_1634328 crossref_primary_10_3758_s13428_024_02535_9 crossref_primary_10_1038_s41598_021_97879_z crossref_primary_10_1080_02564602_2016_1231023 crossref_primary_10_3758_s13414_018_1607_7 crossref_primary_10_1016_j_visres_2020_07_005 crossref_primary_10_1007_s10514_018_9752_3 crossref_primary_10_1523_JNEUROSCI_0164_22_2022 crossref_primary_10_1007_s41095_019_0149_9 crossref_primary_10_1145_3470970 crossref_primary_10_3390_jimaging8040090 crossref_primary_10_1016_j_imavis_2013_08_004 crossref_primary_10_1017_S0140525X16000108 crossref_primary_10_1109_TCSVT_2016_2595324 crossref_primary_10_1109_TCSVT_2023_3278410 crossref_primary_10_1152_jn_01044_2015 crossref_primary_10_1109_TIP_2018_2885229 crossref_primary_10_1109_TITS_2023_3323468 crossref_primary_10_1016_j_visres_2018_10_006 crossref_primary_10_1109_TIP_2021_3050303 crossref_primary_10_1016_j_jvcir_2018_01_014 crossref_primary_10_1007_s11042_016_4118_3 crossref_primary_10_1007_s12559_016_9406_8 crossref_primary_10_1109_ACCESS_2022_3200486 crossref_primary_10_1177_0959651817721404 crossref_primary_10_1177_17470218221101334 crossref_primary_10_7554_eLife_87197 crossref_primary_10_1016_j_neucom_2015_05_033 crossref_primary_10_1109_TGRS_2025_3564459 crossref_primary_10_1007_s00500_017_2931_x crossref_primary_10_7554_eLife_52984 crossref_primary_10_1109_TIP_2014_2346028 crossref_primary_10_3390_vision3020019 crossref_primary_10_1016_j_visres_2015_01_010 crossref_primary_10_3389_fncom_2020_541581 crossref_primary_10_1109_TPAMI_2020_3002168 crossref_primary_10_1109_TPAMI_2014_2345401 crossref_primary_10_3389_fncom_2014_00109 crossref_primary_10_1145_3131275 crossref_primary_10_1109_TIE_2014_2314066 crossref_primary_10_1109_TIP_2019_2940477 crossref_primary_10_3390_buildings14072114 crossref_primary_10_3758_s13414_015_1010_6 crossref_primary_10_1007_s11042_015_2803_2 crossref_primary_10_1002_col_22421 crossref_primary_10_1016_j_sigpro_2013_12_010 crossref_primary_10_1109_TPAMI_2020_2995909 crossref_primary_10_1109_TMM_2017_2757759 crossref_primary_10_3389_fpsyg_2023_1197567 crossref_primary_10_1177_26331055211065497 crossref_primary_10_1109_TCYB_2015_2404432 crossref_primary_10_1016_j_jvcir_2020_102931 crossref_primary_10_1177_15291006211051956 crossref_primary_10_1007_s10851_019_00882_3 crossref_primary_10_1007_s10514_019_09882_z crossref_primary_10_1109_TIP_2015_2438546 crossref_primary_10_1016_j_visres_2020_08_001 crossref_primary_10_1109_TPAMI_2025_3583968 crossref_primary_10_1109_TCSVT_2017_2650910 crossref_primary_10_1016_j_conb_2015_03_018 crossref_primary_10_1038_s41598_018_31894_5 crossref_primary_10_1007_s12559_014_9246_3 crossref_primary_10_1016_j_cviu_2017_11_011 crossref_primary_10_1016_j_patrec_2013_04_009 crossref_primary_10_1109_TIP_2018_2817047 crossref_primary_10_1007_s11042_015_3054_y crossref_primary_10_1016_j_neunet_2021_03_003 crossref_primary_10_1007_s11042_016_4124_5 crossref_primary_10_1080_15230406_2019_1697965 crossref_primary_10_3390_rs10040652 crossref_primary_10_1007_s11263_021_01478_4 crossref_primary_10_1186_s13229_023_00537_6 crossref_primary_10_1109_TIP_2016_2577498 crossref_primary_10_1109_TNNLS_2015_2480683 crossref_primary_10_12688_f1000research_28396_2 crossref_primary_10_12688_f1000research_28396_1 crossref_primary_10_1016_j_image_2016_03_003 crossref_primary_10_3389_fnins_2024_1412527 crossref_primary_10_1016_j_image_2015_05_010 crossref_primary_10_1587_transinf_2016EDP7413 crossref_primary_10_1007_s10115_018_1243_5 crossref_primary_10_1016_j_neucom_2017_03_054 crossref_primary_10_1109_TIM_2021_3108538 crossref_primary_10_1109_TIP_2016_2522380 crossref_primary_10_1016_j_neucom_2014_07_055 crossref_primary_10_7717_peerj_2946 crossref_primary_10_1109_TFUZZ_2019_2911494 crossref_primary_10_1121_10_0006750 crossref_primary_10_3389_fnhum_2017_00491 crossref_primary_10_1007_s11042_020_08644_9 crossref_primary_10_1109_TIP_2020_3036749 crossref_primary_10_1109_TPAMI_2019_2935715 crossref_primary_10_1109_TMM_2018_2851389 crossref_primary_10_1016_j_engappai_2025_110721 crossref_primary_10_1109_TNNLS_2015_2512898 crossref_primary_10_1016_j_enbuild_2025_116040 crossref_primary_10_1109_TIP_2017_2681424 crossref_primary_10_1109_TIM_2024_3350145 crossref_primary_10_1109_TIP_2020_3016464 crossref_primary_10_1038_s41598_022_11723_6 crossref_primary_10_1038_s41562_017_0208_0 crossref_primary_10_3758_s13414_019_01849_7 crossref_primary_10_1080_17470218_2013_844843 crossref_primary_10_1007_s41095_020_0169_5 crossref_primary_10_1109_TIP_2014_2383320 crossref_primary_10_1163_22134913_00002024 crossref_primary_10_1016_j_visres_2015_04_017 crossref_primary_10_3390_app12010309 crossref_primary_10_1109_TIP_2015_2487833 crossref_primary_10_1109_TIP_2019_2945857 crossref_primary_10_1016_j_actpsy_2015_03_003 crossref_primary_10_1007_s10816_016_9310_2 crossref_primary_10_3390_s16122003 crossref_primary_10_1523_JNEUROSCI_3550_13_2014 crossref_primary_10_1121_1_4979055 crossref_primary_10_1007_s11704_017_6613_8 crossref_primary_10_3389_fpsyg_2017_01718 crossref_primary_10_1016_j_compmedimag_2015_02_007 crossref_primary_10_1109_TCSVT_2018_2823769 crossref_primary_10_1111_ejn_12641 crossref_primary_10_1016_j_neucom_2015_04_055 crossref_primary_10_1109_TIP_2025_3567842 crossref_primary_10_1109_TPAMI_2016_2562626 crossref_primary_10_7554_eLife_87197_3 crossref_primary_10_1155_2022_8369368 crossref_primary_10_1109_TIP_2018_2834826 crossref_primary_10_1016_j_dsp_2020_102708 crossref_primary_10_1016_j_engappai_2023_107185 crossref_primary_10_1109_ACCESS_2023_3283344 crossref_primary_10_1016_j_eswa_2025_127652 crossref_primary_10_1109_TMM_2017_2693022 crossref_primary_10_3389_fncom_2016_00124 crossref_primary_10_1109_TIP_2017_2722238 crossref_primary_10_1038_s41598_018_23618_6 crossref_primary_10_3389_fpsyg_2021_590986 crossref_primary_10_1109_TIP_2015_2425544 crossref_primary_10_1146_annurev_vision_120822_072528 crossref_primary_10_1016_j_visres_2017_02_003 crossref_primary_10_1007_s10489_023_04861_5 crossref_primary_10_1177_14780771211025142 crossref_primary_10_1016_j_image_2017_12_003 crossref_primary_10_1109_TPAMI_2018_2815601 crossref_primary_10_1016_j_neucom_2020_06_131 crossref_primary_10_1007_s11042_020_09874_7 crossref_primary_10_3390_biomimetics10040192 crossref_primary_10_1016_j_imavis_2013_06_006 crossref_primary_10_1109_ACCESS_2019_2910572 crossref_primary_10_1371_journal_pone_0138053 crossref_primary_10_1016_j_jvcir_2015_04_010 crossref_primary_10_1007_s11042_022_13125_2 crossref_primary_10_1007_s11042_024_19796_3 crossref_primary_10_1109_ACCESS_2018_2800294 crossref_primary_10_1109_ACCESS_2021_3102465 crossref_primary_10_1109_TNNLS_2015_2461603 crossref_primary_10_1016_j_eswa_2021_116425 crossref_primary_10_3758_s13428_022_01949_7 crossref_primary_10_1038_s41598_020_73494_2 crossref_primary_10_1109_TITS_2019_2915540 crossref_primary_10_1145_3576857 crossref_primary_10_1016_j_visres_2015_03_029 crossref_primary_10_1109_TMM_2018_2867742 crossref_primary_10_1007_s00371_021_02340_x crossref_primary_10_1109_TPAMI_2019_2963387 crossref_primary_10_1016_j_visres_2014_12_026 crossref_primary_10_1016_j_neucom_2016_05_047 crossref_primary_10_3758_s13428_021_01562_0 crossref_primary_10_1155_2016_7437860 crossref_primary_10_1007_s11554_018_00848_5 crossref_primary_10_1016_j_image_2015_04_007 crossref_primary_10_1109_TCYB_2014_2356200 crossref_primary_10_1109_TIP_2017_2767288 crossref_primary_10_1016_j_image_2019_04_007 crossref_primary_10_1016_j_jvcir_2016_06_013 crossref_primary_10_1016_j_patcog_2020_107757 crossref_primary_10_1016_j_neucom_2023_126775 crossref_primary_10_1109_TCDS_2017_2696439 crossref_primary_10_1016_j_displa_2025_103137 crossref_primary_10_1093_iwcomp_iwaa013 crossref_primary_10_1016_j_visres_2023_108304 crossref_primary_10_3917_anpsy1_211_0101 crossref_primary_10_1109_TIV_2023_3298481 crossref_primary_10_1038_s41598_019_39661_w crossref_primary_10_1109_TIP_2015_2395713 crossref_primary_10_3389_fncom_2014_00096 crossref_primary_10_3390_rs13071302 crossref_primary_10_1109_LSP_2016_2558489 crossref_primary_10_1093_cercor_bht179 crossref_primary_10_1109_TPAMI_2019_2920636 crossref_primary_10_1109_TBC_2019_2954063 crossref_primary_10_1109_TCSVT_2013_2280096 crossref_primary_10_3389_fpsyg_2019_02915 crossref_primary_10_1007_s12559_016_9430_8 crossref_primary_10_1007_s41095_018_0120_1 crossref_primary_10_1016_j_cobeha_2016_06_009 crossref_primary_10_1073_pnas_1510393112 crossref_primary_10_1016_j_sigpro_2017_11_015 crossref_primary_10_1007_s11042_015_2802_3 crossref_primary_10_3390_s22145169 crossref_primary_10_1007_s12524_019_00944_4 crossref_primary_10_1002_tee_22874 crossref_primary_10_1109_TMM_2017_2777665 crossref_primary_10_1016_j_image_2015_07_012 crossref_primary_10_1016_j_image_2015_07_013 crossref_primary_10_1109_TMM_2021_3139743 crossref_primary_10_1155_2018_2676409 crossref_primary_10_1007_s12559_019_09671_x crossref_primary_10_1007_s10472_022_09807_0 crossref_primary_10_1109_TCYB_2013_2292054 crossref_primary_10_1016_j_bbr_2015_01_013 crossref_primary_10_1016_j_neucom_2016_08_130 crossref_primary_10_1109_TPAMI_2013_158 crossref_primary_10_1016_j_cag_2023_10_012 crossref_primary_10_1016_j_robot_2016_11_013 crossref_primary_10_3390_vision3030033 crossref_primary_10_4304_jmm_9_7_941_947 crossref_primary_10_1145_2996463 crossref_primary_10_1016_j_image_2015_08_004 crossref_primary_10_1016_j_visres_2013_07_016 crossref_primary_10_1109_TCSVT_2018_2870954 crossref_primary_10_1049_iet_cvi_2019_0624 crossref_primary_10_1007_s11042_024_19368_5 crossref_primary_10_1111_nyas_12606 crossref_primary_10_1016_j_patcog_2017_04_031 crossref_primary_10_1109_TCDS_2020_3002765 crossref_primary_10_1109_TIP_2015_2416632 crossref_primary_10_1109_TMM_2022_3189251 crossref_primary_10_3390_s20143919 crossref_primary_10_1038_s41598_021_87715_9 crossref_primary_10_3390_app15179299 crossref_primary_10_1007_s13319_017_0121_3 crossref_primary_10_1016_j_image_2015_07_002 crossref_primary_10_1007_s11045_016_0456_6 crossref_primary_10_1016_j_jvcir_2018_10_008 crossref_primary_10_1016_j_jobe_2024_110678 crossref_primary_10_1016_j_ufug_2019_126365 crossref_primary_10_1108_JCM_04_2019_3190 crossref_primary_10_1016_j_imavis_2025_105413 crossref_primary_10_1109_TMM_2017_2689327 crossref_primary_10_1111_cgf_13308 crossref_primary_10_1016_j_image_2019_05_001 crossref_primary_10_1109_TPAMI_2020_2964533 crossref_primary_10_1109_TBC_2016_2617291 crossref_primary_10_3390_electronics8121462 crossref_primary_10_3390_sym8080079 crossref_primary_10_3390_app10155143 crossref_primary_10_1016_j_isprsjprs_2017_11_019 crossref_primary_10_1016_j_actpsy_2019_102889 crossref_primary_10_3390_en10050668 crossref_primary_10_1007_s11042_015_2692_4 crossref_primary_10_1007_s11263_021_01490_8 crossref_primary_10_1145_3661312 crossref_primary_10_1109_TMM_2016_2522639 crossref_primary_10_3390_vision3040056 crossref_primary_10_1109_TCYB_2015_2400821 crossref_primary_10_3389_fnhum_2014_00327 crossref_primary_10_1016_j_jocs_2017_07_007 crossref_primary_10_1145_3337066 crossref_primary_10_1109_TIP_2017_2651410 crossref_primary_10_3390_s17040862 crossref_primary_10_1016_j_engappai_2025_111664 crossref_primary_10_1007_s11042_015_2875_z crossref_primary_10_3389_fnins_2024_1333894 crossref_primary_10_1016_j_neuroscience_2021_09_014 crossref_primary_10_1007_s11042_019_08297_3 |
| Cites_doi | 10.1068/p2952 10.1109/34.730558 10.1109/CVPR.2006.54 10.1167/8.7.32 10.1109/ICCV.2009.5459289 10.1016/S0042-6989(99)00163-7 10.1364/JOSAA.20.001407 10.1016/j.cviu.2004.10.009 10.1016/j.visres.2005.03.019 10.1109/34.667881 10.1038/35058500 10.1109/34.990146 10.1109/TRO.2009.2022424 10.1167/9.5.7 10.1109/CVPR.2011.5995506 10.1167/9.11.25 10.1162/jocn.1995.7.1.66 10.1167/9.12.15 10.1109/TIP.2004.834657 10.1109/ICCV.2009.5459467 10.1109/TPAMI.2006.86 10.1109/ICCV.2009.5459462 10.1117/12.512618 10.1016/j.imavis.2011.11.007 10.1016/j.neunet.2006.10.001 10.1167/11.5.5 10.1016/S1364-6613(00)01817-9 10.1038/nrn1411 10.1007/s11263-009-0215-3 10.1007/s11263-010-0354-6 10.1109/TPAMI.2009.53 10.1007/11682110 10.1167/8.14.18 10.1145/566570.566650 10.1088/1741-2560/7/1/016006 10.1167/9.12.10 10.1167/11.3.9 10.1109/34.877520 10.1016/j.imavis.2009.10.006 10.1007/s11263-007-0090-8 10.1109/ROBOT.2009.5152357 10.1109/TPAMI.2011.146 10.1167/9.7.4 10.1109/TPAMI.2012.89 10.1109/CVPR.2007.383267 10.1016/S0042-6989(01)00250-4 10.1038/369742a0 10.1167/7.14.4 10.1167/6.4.7 10.1162/0899766054026639 10.1109/ROMAN.2009.5326240 10.1016/j.visres.2010.05.034 10.1145/1870076.1870080 10.1088/0954-898X/10/4/304 10.1109/TIP.2009.2030969 10.1007/BF01418978 10.1109/CVPR.2007.383337 10.1016/j.visres.2007.06.015 10.1007/s00138-009-0192-0 10.1016/j.tics.2005.02.009 10.1007/s00221-006-0804-0 10.1109/TPAMI.2004.29 10.1109/ICIP.2003.1246946 10.1109/TMM.2005.854410 10.1162/jocn.1997.9.1.27 10.1016/j.visres.2010.01.002 10.1109/CVPR.2011.5995423 10.1109/ICIP.2010.5652280 10.1146/annurev.neuro.24.1.1193 10.1146/annurev.psych.50.1.243 10.1109/TCIAIG.2009.2024532 10.1145/1658349.1658355 10.1109/ROBOT.2010.5509638 10.1016/0010-0285(80)90005-5 10.1167/11.4.14 |
| ContentType | Journal Article |
| Copyright | 2014 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013 |
| Copyright_xml | – notice: 2014 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
| DOI | 10.1109/TIP.2012.2210727 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Government |
| EISSN | 1941-0042 |
| EndPage | 69 |
| ExternalDocumentID | 2874203331 22868572 26853905 10_1109_TIP_2012_2210727 6253254 |
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Comparative Study Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION IQODW RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
| ID | FETCH-LOGICAL-c476t-eeeaeb6d0a5203dfaa74476aa6dabbf6d54a74b6930aca28ca979a829925b14f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 459 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000312892000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Wed Oct 01 13:24:01 EDT 2025 Sun Sep 28 00:46:16 EDT 2025 Mon Jun 30 10:22:34 EDT 2025 Mon Jul 21 05:56:17 EDT 2025 Mon Jul 21 09:12:20 EDT 2025 Tue Nov 18 22:26:23 EST 2025 Sat Nov 29 03:20:49 EST 2025 Tue Aug 26 16:46:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Computer vision State of the art Target tracking model comparison Artificial vision Vision system Pattern recognition Object recognition Computational complexity Modeling Eye movement Robotics Accuracy eye movement prediction Bottom-up attention Quality control Object detection Open market Visual saliency Visual attention Target detection Comparative study Quantitative analysis Image evaluation |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/USG.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c476t-eeeaeb6d0a5203dfaa74476aa6dabbf6d54a74b6930aca28ca979a829925b14f3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
| PMID | 22868572 |
| PQID | 1272440607 |
| PQPubID | 85429 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TIP_2012_2210727 pubmed_primary_22868572 pascalfrancis_primary_26853905 crossref_citationtrail_10_1109_TIP_2012_2210727 proquest_miscellaneous_1283652936 proquest_journals_1272440607 proquest_miscellaneous_1273682743 ieee_primary_6253254 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-Jan. 2013-01-00 2013 2013-Jan 20130101 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – month: 01 year: 2013 text: 2013-Jan. |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2013 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref59 ref53 ref52 ref55 ref54 ref50 ref46 ref45 ref41 ref49 koch (ref92) 1985; 4 ref8 ref7 mancas (ref42) 2007 judd (ref79) 2011 ref9 kootstra (ref44) 2009 ref6 ref5 ref100 ref101 itti (ref34) 2003; 5200 ref35 han (ref87) 2007 ref30 ref33 ref39 ref38 (ref20) 2005 bian (ref51) 2009 ref24 ref23 ref26 ref25 jost (ref64) 2005; 100 ref21 ref28 ref27 ref29 harel (ref40) 2006; 19 (ref63) 0 ref12 ref15 ref14 ref97 (ref32) 2010 ref96 ref99 hou (ref75) 2012; 34 ref98 ref10 breazeal (ref16) 1999 ref17 ref19 green (ref68) 1966 ref18 gao (ref58) 2007 ref93 ref94 frintrop (ref4) 2006 (ref62) 2005 ref91 ref90 ref89 ref86 ref85 ref88 itti (ref36) 2006 heinke (ref22) 2004 tavakoli (ref56) 2011 ref81 ref84 li (ref48) 2009 ref83 bruce (ref37) 2005 zhang (ref95) 2009 ref80 ref78 nothdurft (ref76) 2005 ref74 ref77 mertsching (ref13) 1999 ref2 ref1 ref71 ref70 ref73 ref72 ramanathan (ref82) 2010 ref67 ref69 ref66 ref65 wang (ref11) 2006; 1 kanan (ref3) 2010 itti (ref31) 1998; 20 guo (ref47) 2010; 19 ref60 ref61 hou (ref43) 2008 |
| References_xml | – ident: ref101 doi: 10.1068/p2952 – volume: 20 start-page: 1254 year: 1998 ident: ref31 article-title: A model of saliency-based visual attention for rapid scene analysis publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.730558 – ident: ref5 doi: 10.1109/CVPR.2006.54 – ident: ref45 doi: 10.1167/8.7.32 – ident: ref99 doi: 10.1109/ICCV.2009.5459289 – ident: ref33 doi: 10.1016/S0042-6989(99)00163-7 – ident: ref35 doi: 10.1364/JOSAA.20.001407 – volume: 100 start-page: 107 year: 2005 ident: ref64 article-title: Assessing the contribution of color in visual attention publication-title: Comput Vis Image Understand doi: 10.1016/j.cviu.2004.10.009 – volume: 4 start-page: 219 year: 1985 ident: ref92 article-title: Shifts in selective visual attention: Toward the underlying neural circuitry publication-title: Human Neurobiol – ident: ref66 doi: 10.1016/j.visres.2005.03.019 – start-page: 1146 year: 1999 ident: ref16 article-title: A context-dependent attention system for a social robot publication-title: Proc Int Joint Conf Artif Intell – ident: ref86 doi: 10.1109/34.667881 – start-page: 666 year: 2011 ident: ref56 article-title: Fast and efficient saliency detection using sparse sampling and kernel density estimation publication-title: Proc 17th Scandin Conf Image Anal – ident: ref21 doi: 10.1038/35058500 – ident: ref2 doi: 10.1109/34.990146 – ident: ref15 doi: 10.1109/TRO.2009.2022424 – ident: ref96 doi: 10.1167/9.5.7 – ident: ref57 doi: 10.1109/CVPR.2011.5995506 – ident: ref91 doi: 10.1167/9.11.25 – ident: ref25 doi: 10.1162/jocn.1995.7.1.66 – ident: ref49 doi: 10.1167/9.12.15 – year: 2007 ident: ref42 publication-title: Computational Attention Modelisation and Application to Audio and Image Processing – year: 2010 ident: ref32 publication-title: iLab Neuromorphic Vision C++ Toolkit (iNVT) – ident: ref7 doi: 10.1109/TIP.2004.834657 – ident: ref10 doi: 10.1109/ICCV.2009.5459467 – ident: ref38 doi: 10.1109/TPAMI.2006.86 – start-page: 1 year: 2010 ident: ref3 article-title: Robust classification of objects, faces, and flowers using national image publication-title: Proc Comput Vis Pattern Recognit – ident: ref50 doi: 10.1109/ICCV.2009.5459462 – volume: 5200 start-page: 64 year: 2003 ident: ref34 article-title: Realistic avatar eye and head animation using a neurobiological model of visual attention publication-title: Proc SPIE doi: 10.1117/12.512618 – year: 2005 ident: ref37 publication-title: Advances in neural information processing systems – ident: ref54 doi: 10.1016/j.imavis.2011.11.007 – year: 0 ident: ref63 publication-title: DIEM Dataset – ident: ref1 doi: 10.1016/j.neunet.2006.10.001 – ident: ref90 doi: 10.1167/11.5.5 – ident: ref85 doi: 10.1016/S1364-6613(00)01817-9 – start-page: 246 year: 2009 ident: ref48 article-title: Visual saliency based on conditional entropy publication-title: Proc Asian Conf Comput Vis – ident: ref60 doi: 10.1038/nrn1411 – ident: ref46 doi: 10.1007/s11263-009-0215-3 – ident: ref55 doi: 10.1007/s11263-010-0354-6 – ident: ref52 doi: 10.1109/TPAMI.2009.53 – year: 2006 ident: ref4 publication-title: VOCUS A visual attention system for object detection and goal-directed search doi: 10.1007/11682110 – ident: ref30 doi: 10.1167/8.14.18 – ident: ref9 doi: 10.1145/566570.566650 – volume: 1 start-page: 347 year: 2006 ident: ref11 article-title: Picture collage publication-title: Proc Comput Vis Pattern Recognit – year: 2011 ident: ref79 publication-title: Understanding and predicting where people look – ident: ref19 doi: 10.1088/1741-2560/7/1/016006 – start-page: 361 year: 2007 ident: ref87 article-title: High speed visual saliency computation on GPU publication-title: Proc Int Conf Image Process – ident: ref69 doi: 10.1167/9.12.10 – ident: ref61 doi: 10.1167/11.3.9 – ident: ref74 doi: 10.1109/34.877520 – ident: ref14 doi: 10.1016/j.imavis.2009.10.006 – ident: ref98 doi: 10.1007/s11263-007-0090-8 – ident: ref88 doi: 10.1109/ROBOT.2009.5152357 – volume: 34 start-page: 194 year: 2012 ident: ref75 article-title: Image signature: Highlighting sparse salient regions publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2011.146 – ident: ref72 doi: 10.1167/9.7.4 – year: 2009 ident: ref51 publication-title: Advances in Neuro-Information Processing – ident: ref24 doi: 10.1109/TPAMI.2012.89 – ident: ref41 doi: 10.1109/CVPR.2007.383267 – ident: ref67 doi: 10.1016/S0042-6989(01)00250-4 – ident: ref26 doi: 10.1038/369742a0 – year: 1966 ident: ref68 publication-title: Signal Detection Theory and Psychophysics – year: 2009 ident: ref44 article-title: Prediction of human eye fixations using symmetry publication-title: Proc 31st Annu Conf Cognit Sci Soc – ident: ref71 doi: 10.1167/7.14.4 – ident: ref65 doi: 10.1167/6.4.7 – ident: ref83 doi: 10.1162/0899766054026639 – start-page: 1 year: 2007 ident: ref58 article-title: The discriminant center-surround hypothesis for bottom-up saliency publication-title: Proc Neural Inf Process Syst – ident: ref18 doi: 10.1109/ROMAN.2009.5326240 – year: 2008 ident: ref43 publication-title: Advances in neural information processing systems – ident: ref77 doi: 10.1016/j.visres.2010.05.034 – year: 2006 ident: ref36 publication-title: Advances in neural information processing systems – start-page: 273 year: 2004 ident: ref22 publication-title: Connectionist Models in Psychology – ident: ref17 doi: 10.1145/1870076.1870080 – ident: ref100 doi: 10.1088/0954-898X/10/4/304 – volume: 19 start-page: 185 year: 2010 ident: ref47 article-title: A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2009.2030969 – ident: ref93 doi: 10.1007/BF01418978 – ident: ref27 doi: 10.1109/CVPR.2007.383337 – ident: ref39 doi: 10.1016/j.visres.2007.06.015 – ident: ref80 doi: 10.1007/s00138-009-0192-0 – ident: ref28 doi: 10.1016/j.tics.2005.02.009 – year: 2005 ident: ref76 publication-title: Neurobiology of Attention – year: 2005 ident: ref62 publication-title: CRCNSCollaborative Research in Computational NeuroscienceData Sharing – start-page: 543 year: 1999 ident: ref13 publication-title: Handbook of Computer Vision and Applications – ident: ref78 doi: 10.1007/s00221-006-0804-0 – ident: ref97 doi: 10.1109/TPAMI.2004.29 – start-page: 2944 year: 2009 ident: ref95 article-title: SUNDAy: Saliency using natural statistics for dynamic analysis of scenes publication-title: Proc 31st Annu Cognit Sci Soc – ident: ref94 doi: 10.1109/ICIP.2003.1246946 – ident: ref8 doi: 10.1109/TMM.2005.854410 – ident: ref73 doi: 10.1162/jocn.1997.9.1.27 – volume: 19 start-page: 545 year: 2006 ident: ref40 publication-title: Advances in neural information processing systems – ident: ref70 doi: 10.1016/j.visres.2010.01.002 – ident: ref89 doi: 10.1109/CVPR.2011.5995423 – ident: ref53 doi: 10.1109/ICIP.2010.5652280 – ident: ref84 doi: 10.1146/annurev.neuro.24.1.1193 – ident: ref29 doi: 10.1146/annurev.psych.50.1.243 – ident: ref12 doi: 10.1109/TCIAIG.2009.2024532 – start-page: 30 year: 2010 ident: ref82 article-title: An eye fixation database for saliency detection in images publication-title: Proc Eur Conf Comput Vis – ident: ref23 doi: 10.1145/1658349.1658355 – year: 2005 ident: ref20 publication-title: The PASCAL Visual Object Classes – ident: ref6 doi: 10.1109/ROBOT.2010.5509638 – ident: ref59 doi: 10.1016/0010-0285(80)90005-5 – ident: ref81 doi: 10.1167/11.4.14 |
| SSID | ssj0014516 |
| Score | 2.595842 |
| Snippet | Visual attention is a process that enables biological and machine vision systems to select the most relevant regions from a scene. Relevance is determined by... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 55 |
| SubjectTerms | Analytical models Applied sciences Area Under Curve Arrays Artificial intelligence Attention - physiology Bottom-up attention Computational Biology Computational modeling Computer science; control theory; systems Databases, Factual Detection, estimation, filtering, equalization, prediction Exact sciences and technology eye movement prediction Eye movements Eye Movements - physiology Government Humans Image processing Image Processing, Computer-Assisted - methods Information, signal and communications theory Mathematical models model comparison Models, Statistical Organizing Pattern recognition Pattern recognition. Digital image processing. Computational geometry Photic Stimulation Predictive models Searching Signal and communications theory Signal processing Signal, noise State of the art Studies Telecommunications and information theory Videos Vision systems Visual visual attention visual saliency Visualization |
| Title | Quantitative Analysis of Human-Model Agreement in Visual Saliency Modeling: A Comparative Study |
| URI | https://ieeexplore.ieee.org/document/6253254 https://www.ncbi.nlm.nih.gov/pubmed/22868572 https://www.proquest.com/docview/1272440607 https://www.proquest.com/docview/1273682743 https://www.proquest.com/docview/1283652936 |
| Volume | 22 |
| WOSCitedRecordID | wos000312892000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RS-QwEB5UfPAeTl3vvJ7ekgNfDq5um7ZJ6puIcgeHeJzKvpUkTWBBumK3gv_-Jmm2e4IK91aa2TTdmel8ySTzARwJqTHoMhvjZzGJc4WuqGxu4tIKIzCiSu1J-25_8ctLMZ2WV2vwfTgLY4zxm8_Msbv0ufx6rju3VDZBrJ7hhGYd1jnn_VmtIWPgCGd9ZrPgMUfYv0xJJuXk-ueV28NFjynObzBeuwLAVDBRcPosGnl6Fbc5Urb4_9ie2OJ15Okj0MX2_419B94HpElOe9PYhTXTjGA7oE4SfLodwbt_ShKOYGtFvrsH1e9ONv4UGn4TybJ-CZlb4tf-Y0ekhk_AKbtfZCSzhtzO2g6f-gfhvTvUSbwI9nxCTsnZqtI4cfsXnz7AzcX59dmPODAyxDrnbBHjW0mjWJ3IgiZZbaXkOTZIyWqplGV1keMd5egVpZZUaFnyUgoMebRQaW6zj7DRzBvzCQjizhShV57m2AU1TDFbYsDOjFSpYVpFMFlqptKhXLljzbir_LQlKStUa-XUWgW1RvBt-MV9X6rjDdk9p6JBLmgngvEz5Q_tFK0lK5MigsOlNVTB2dsqpRxBUsIS7Pbr0Ixu6nIvsjHzzstkTFDEa2_JiIwViL9YBPu9pa0GEAz288sDP4At6nk63NrQIWwsHjrzBTb142LWPozRX6Zi7P3lLzzSDt0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6NgcT2wKCDLWwMI_GCRNbEcRxnb9PEtIlSDVGmvVl2YkuVUIqWZhL_nrPjpkyCSbxF8dVxene5zz77PoD3QlUYdLmN8bOYxEyjK2rLTFxaYQRGVFV50r7rSTGdipub8moDPg5nYYwxfvOZOXaXPpdfL6rOLZWNEatnOKF5BI9zxmjan9YacgaOctbnNvMiLhD4r5KSSTmeXV65XVz0mOIMByO2KwFMBRd5Qe_FI0-w4rZHqhb_IdtTW_wbe_oYdL7zf6N_Ds8C1iSnvXG8gA3TjGAn4E4SvLodwfYfRQlHsLWm390F-bVTjT-Hhl9FsqpgQhaW-NX_2FGp4RNw0u6XGcm8IdfztsOnfkOA7451Ei-CPZ-QU3K2rjVO3A7GXy_h-_mn2dlFHDgZ4ooVfBnjWymjeZ2onCZZbZUqGDYoxWulteV1zvCOdgSLqlJUVKosSiUw6NFcp8xmr2CzWTRmHwgizxTBF0sZdkEN19yWGLIzo3RqeKUjGK80I6tQsNzxZvyQfuKSlBLVKp1aZVBrBB-GX_zsi3U8ILvrVDTIBe1EcHRP-UM7RWvJyiSP4HBlDTK4eytTWiBMSniC3b4bmtFRXfZFNWbReZmMC4qI7SEZkfEcERiPYK-3tPUAgsG-_vvA38LTi9mXiZxcTj8fwBb1rB1upegQNpe3nXkDT6q75by9PfJe8xsPYRE8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Analysis+of+Human-Model+Agreement+in+Visual+Saliency+Modeling%3A+A+Comparative+Study&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=BORJI%2C+Ali&rft.au=SIHITE%2C+Dicky+N&rft.au=ITTI%2C+Laurent&rft.date=2013&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1057-7149&rft.volume=22&rft.issue=1-2&rft.spage=55&rft.epage=69&rft_id=info:doi/10.1109%2Ftip.2012.2210727&rft.externalDBID=n%2Fa&rft.externalDocID=26853905 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |