Reward-Mediated, Model-Free Reinforcement-Learning Mechanisms in Pavlovian and Instrumental Tasks Are Related
Model-free and model-based computations are argued to distinctly update action values that guide decision-making processes. It is not known, however, if these model-free and model-based reinforcement learning mechanisms recruited in operationally based instrumental tasks parallel those engaged by pa...
Saved in:
| Published in: | The Journal of neuroscience Vol. 43; no. 3; p. 458 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
18.01.2023
|
| Subjects: | |
| ISSN: | 1529-2401, 1529-2401 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Model-free and model-based computations are argued to distinctly update action values that guide decision-making processes. It is not known, however, if these model-free and model-based reinforcement learning mechanisms recruited in operationally based instrumental tasks parallel those engaged by pavlovian-based behavioral procedures. Recently, computational work has suggested that individual differences in the attribution of incentive salience to reward predictive cues, that is, sign- and goal-tracking behaviors, are also governed by variations in model-free and model-based value representations that guide behavior. Moreover, it is not appreciated if these systems that are characterized computationally using model-free and model-based algorithms are conserved across tasks for individual animals. In the current study, we used a within-subject design to assess sign-tracking and goal-tracking behaviors using a pavlovian conditioned approach task and then characterized behavior using an instrumental multistage decision-making (MSDM) task in male rats. We hypothesized that both pavlovian and instrumental learning processes may be driven by common reinforcement-learning mechanisms. Our data confirm that sign-tracking behavior was associated with greater reward-mediated, model-free reinforcement learning and that it was also linked to model-free reinforcement learning in the MSDM task. Computational analyses revealed that pavlovian model-free updating was correlated with model-free reinforcement learning in the MSDM task. These data provide key insights into the computational mechanisms mediating associative learning that could have important implications for normal and abnormal states.
Model-free and model-based computations that guide instrumental decision-making processes may also be recruited in pavlovian-based behavioral procedures. Here, we used a within-subject design to test the hypothesis that both pavlovian and instrumental learning processes were driven by common reinforcement-learning mechanisms. Sign-tracking and goal-tracking behaviors were assessed in rats using a pavlovian conditioned approach task, and then instrumental behavior was characterized using an MSDM task. We report that sign-tracking behavior was associated with greater model-free, but not model-based, learning in the MSDM task. These data suggest that pavlovian and instrumental behaviors may be driven by conserved reinforcement-learning mechanisms. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1529-2401 1529-2401 |
| DOI: | 10.1523/JNEUROSCI.1113-22.2022 |