Research on Optimization of Process Parameters of Traditional Chinese Medicine Based on Data Mining Technology
Data mining technology and methods are used to effectively optimize manufacturing process parameters due to the complexity and uniqueness of the process parameters. The data-mining-based optimization method for traditional Chinese medicine (TCM) process parameters is presented, along with a list of...
Gespeichert in:
| Veröffentlicht in: | Computational intelligence and neuroscience Jg. 2022; S. 1 - 9 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Hindawi
02.03.2022
John Wiley & Sons, Inc |
| Schlagworte: | |
| ISSN: | 1687-5265, 1687-5273, 1687-5273 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Data mining technology and methods are used to effectively optimize manufacturing process parameters due to the complexity and uniqueness of the process parameters. The data-mining-based optimization method for traditional Chinese medicine (TCM) process parameters is presented, along with a list of process parameters that have shown to be effective in actual production. The influencing factors of process parameters are analyzed and modeled using an attribute weight analysis and classification analysis algorithm. The optimization scheme of process parameters that meet the requirements is selected, and an example is given for verification, by selecting data records that fall within a certain error range and incorporating the rules of association knowledge discovery. The support vector classification algorithm has a higher accuracy, despite the algorithm's results being understandable. The support vector regression algorithm developed a reliable process optimization model. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Xin Ning |
| ISSN: | 1687-5265 1687-5273 1687-5273 |
| DOI: | 10.1155/2022/2278416 |