Mixed Integer Nonlinear Programming model for the optimal design of fired heaters

In this paper, a mathematical optimization model for the optimal design of industrial furnaces/fired heaters is presented. Precisely, a detailed Mixed Integer Nonlinear Programming (MINLP) model including operational and geometric constraints is developed to get an efficient furnace design. Discrete...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering Vol. 29; no. 11; pp. 2194 - 2204
Main Authors: Mussati, Sergio, Manassaldi, Juan I., Benz, Sonia J., Scenna, Nicolas J.
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01.08.2009
Elsevier
Subjects:
ISSN:1359-4311
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a mathematical optimization model for the optimal design of industrial furnaces/fired heaters is presented. Precisely, a detailed Mixed Integer Nonlinear Programming (MINLP) model including operational and geometric constraints is developed to get an efficient furnace design. Discrete decisions connected with the geometric design such as number of tubes in convection and radiation sections, number of shield tubes, number of passes and number of tubes per pass are modelled by using integer variables. Continuous variables are used for process conditions (temperatures, flow-rates, pressure, velocities, pressure drops among others). The mathematical model and the solution procedure are implemented in General Algebraic Modelling System (GAMS), Brooke [A. Brooke, D. Kendrick, A. Meeraus, A. A. GAMS – A User’s Guide (Release 2.25), The Scientific Press, San Francisco, CA, 1992]. Based on a typical furnace configuration, several applications are successfully solved by applying the proposed MINLP model. In this paper, three case studies with increasing complexity are presented. In the first case study, the accuracy of results from the proposed model is compared satisfactorily with literature. In the second case study, the MINLP model is applied to optimize the fire heater’s efficiency. Finally, the total annual cost of the fired heater is minimized in the Case Study III. Also, a sensitive analysis of the unitary cost of fuel and capital investment is investigated. The developed model is characterized by its robustness and flexibility.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1359-4311
DOI:10.1016/j.applthermaleng.2008.11.001