A stochastic dual dynamic integer programming based approach for remanufacturing planning under uncertainty

We seek to optimize the production planning of a three-echelon remanufacturing system under uncertain input data. We consider a multi-stage stochastic integer programming approach and use scenario trees to represent the uncertain information structure. We introduce a new dynamic programming formulat...

Full description

Saved in:
Bibliographic Details
Published in:International journal of production research Vol. 61; no. 17; pp. 5992 - 6012
Main Authors: Quezada, Franco, Gicquel, Céline, Kedad-Sidhoum, Safia
Format: Journal Article
Language:English
Published: London Taylor & Francis 02.09.2023
Taylor & Francis LLC
Subjects:
ISSN:0020-7543, 1366-588X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We seek to optimize the production planning of a three-echelon remanufacturing system under uncertain input data. We consider a multi-stage stochastic integer programming approach and use scenario trees to represent the uncertain information structure. We introduce a new dynamic programming formulation that relies on a partial nested decomposition of the scenario tree. We then propose a new approximate stochastic dual dynamic integer programming algorithm based on this partial decomposition. Our numerical results show that the proposed solution approach is able to provide near-optimal solutions for large-size instances with a reasonable computational effort.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0020-7543
1366-588X
DOI:10.1080/00207543.2022.2120924