Optimizing blocking flow shop scheduling problem with total completion time criterion

The blocking flow shop scheduling problem has found many applications in manufacturing systems. There are a few exact methods for solving this problem with different criteria. In this paper, efforts will be made to optimize the total completion time criterion for this problem. We present two mixed b...

Full description

Saved in:
Bibliographic Details
Published in:Computers & operations research Vol. 40; no. 7; pp. 1874 - 1883
Main Authors: Moslehi, Ghasem, Khorasanian, Danial
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01.07.2013
Elsevier
Pergamon Press Inc
Subjects:
ISSN:0305-0548, 1873-765X, 0305-0548
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The blocking flow shop scheduling problem has found many applications in manufacturing systems. There are a few exact methods for solving this problem with different criteria. In this paper, efforts will be made to optimize the total completion time criterion for this problem. We present two mixed binary integer programming models, one of which is based on the departure times of jobs from machines, and the other is based on the idle and blocking times of jobs. An initial upper bound generator and some lower bounds and dominance rules are also developed to be used in a branch and bound algorithm. The algorithm solves 17 instances of the Taillard's benchmark problem set in less than 20min.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0305-0548
1873-765X
0305-0548
DOI:10.1016/j.cor.2013.02.003