Enzyme‐Responsive Polymer Nanoparticles via Ring‐Opening Metathesis Polymerization‐Induced Self‐Assembly

Open‐to‐air aqueous‐phase ring‐opening metathesis polymerization‐induced self‐assembly (ROMPISA) is reported for forming well‐defined peptide polymer nanoparticles at room temperature and with high solids concentrations (10 w/w%). For these materials, ROMPISA is shown to provide control over molecul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular rapid communications. Jg. 40; H. 2; S. e1800467 - n/a
Hauptverfasser: Wright, Daniel B., Thompson, Matthew P., Touve, Mollie A., Carlini, Andrea S., Gianneschi, Nathan C.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 01.01.2019
Schlagworte:
ISSN:1022-1336, 1521-3927, 1521-3927
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Open‐to‐air aqueous‐phase ring‐opening metathesis polymerization‐induced self‐assembly (ROMPISA) is reported for forming well‐defined peptide polymer nanoparticles at room temperature and with high solids concentrations (10 w/w%). For these materials, ROMPISA is shown to provide control over molecular weight with high conversion while open‐to‐air. Moreover, these peptide polymer nanoparticles can spontaneously rearrange into larger aggregate scaffolds in the presence of the proteolytic enzyme, thermolysin. This work demonstrates the robust nature of ROMPISA, highlighted here for the preparation of stimuli‐responsive nanostructures in one pot, in air. Peptide‐functionalized polymer nanoparticles, both spherical micelles and framboidal vesicles, are formed via ring‐opening metathesis polymerization‐induced self‐assembly. When incubated with protease, the peptides are cleaved and the particles undergo an in situ reorganization into large macromolecular aggregates.
AbstractList Open‐to‐air aqueous‐phase ring‐opening metathesis polymerization‐induced self‐assembly (ROMPISA) is reported for forming well‐defined peptide polymer nanoparticles at room temperature and with high solids concentrations (10 w/w%). For these materials, ROMPISA is shown to provide control over molecular weight with high conversion while open‐to‐air. Moreover, these peptide polymer nanoparticles can spontaneously rearrange into larger aggregate scaffolds in the presence of the proteolytic enzyme, thermolysin. This work demonstrates the robust nature of ROMPISA, highlighted here for the preparation of stimuli‐responsive nanostructures in one pot, in air.
Open-to-air aqueous-phase ring-opening metathesis polymerization-induced self-assembly (ROMPISA) is reported for forming well-defined peptide polymer nanoparticles at room temperature and with high solids concentrations (10 w/w%). For these materials, ROMPISA is shown to provide control over molecular weight with high conversion while open-to-air. Moreover, these peptide polymer nanoparticles can spontaneously rearrange into larger aggregate scaffolds in the presence of the proteolytic enzyme, thermolysin. This work demonstrates the robust nature of ROMPISA, highlighted here for the preparation of stimuli-responsive nanostructures in one pot, in air.Open-to-air aqueous-phase ring-opening metathesis polymerization-induced self-assembly (ROMPISA) is reported for forming well-defined peptide polymer nanoparticles at room temperature and with high solids concentrations (10 w/w%). For these materials, ROMPISA is shown to provide control over molecular weight with high conversion while open-to-air. Moreover, these peptide polymer nanoparticles can spontaneously rearrange into larger aggregate scaffolds in the presence of the proteolytic enzyme, thermolysin. This work demonstrates the robust nature of ROMPISA, highlighted here for the preparation of stimuli-responsive nanostructures in one pot, in air.
Open‐to‐air aqueous‐phase ring‐opening metathesis polymerization‐induced self‐assembly (ROMPISA) is reported for forming well‐defined peptide polymer nanoparticles at room temperature and with high solids concentrations (10 w/w%). For these materials, ROMPISA is shown to provide control over molecular weight with high conversion while open‐to‐air. Moreover, these peptide polymer nanoparticles can spontaneously rearrange into larger aggregate scaffolds in the presence of the proteolytic enzyme, thermolysin. This work demonstrates the robust nature of ROMPISA, highlighted here for the preparation of stimuli‐responsive nanostructures in one pot, in air. Peptide‐functionalized polymer nanoparticles, both spherical micelles and framboidal vesicles, are formed via ring‐opening metathesis polymerization‐induced self‐assembly. When incubated with protease, the peptides are cleaved and the particles undergo an in situ reorganization into large macromolecular aggregates.
Author Carlini, Andrea S.
Gianneschi, Nathan C.
Thompson, Matthew P.
Touve, Mollie A.
Wright, Daniel B.
Author_xml – sequence: 1
  givenname: Daniel B.
  surname: Wright
  fullname: Wright, Daniel B.
  organization: Northwestern University
– sequence: 2
  givenname: Matthew P.
  surname: Thompson
  fullname: Thompson, Matthew P.
  organization: Northwestern University
– sequence: 3
  givenname: Mollie A.
  surname: Touve
  fullname: Touve, Mollie A.
  organization: Northwestern University
– sequence: 4
  givenname: Andrea S.
  surname: Carlini
  fullname: Carlini, Andrea S.
  organization: University of California
– sequence: 5
  givenname: Nathan C.
  surname: Gianneschi
  fullname: Gianneschi, Nathan C.
  email: nathan.gianneschi@northwestern.edu
  organization: Northwestern University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30176076$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URP_YskSR2LDJcG0ndrwcjVpaqaVo2q4tx7kDrhIn2EnRdMUj9Bl5EjxMB6RKiJWvrXOurO87JHu-90jIGwozCsA-dCbYGQNaARRCviAHtGQ054rJvTQDYznlXOyTwxjvAKAqgL0i-xyoFCDFARlO_MO6w58_HpcYh95Hd4_Z575NbyH7ZHw_mDA622LM7p3Jls5_SezVgD5N2SWOZvyK0cWd4x7M6HqfmHPfTBab7BrbVbrOY8SubtfH5OXKtBFfP51H5Pb05GZxll9cfTxfzC9yW0ghc1NWDRSGs9JKQytbArdSAjS8VgaFsKWqqa1lXTfADKc1gqgUtYJy1piS8iPyfrt3CP23CeOoOxcttq3x2E9RM1AKuFLVBn33DL3rp-DT7zSjogJJgUOi3j5RU91ho4fgUvhrvcsyAcUWsKGPMeBKWzf-TmMMxrWagt5UpjeV6T-VJW32TNtt_qegtsJ31-L6P7S-nC8Xf91fqGet1w
CitedBy_id crossref_primary_10_1002_asia_202401949
crossref_primary_10_1002_macp_202400472
crossref_primary_10_1002_anbr_202100087
crossref_primary_10_1016_j_eurpolymj_2022_111234
crossref_primary_10_1002_anie_202315849
crossref_primary_10_1002_ange_201813434
crossref_primary_10_1021_jacs_2c13049
crossref_primary_10_1039_D0PY00368A
crossref_primary_10_1039_D0PY00455C
crossref_primary_10_1002_anie_201813434
crossref_primary_10_1039_D0BM01406K
crossref_primary_10_1039_D3ME00063J
crossref_primary_10_3390_polym13162603
crossref_primary_10_1002_ange_202305945
crossref_primary_10_1007_s10118_020_2345_6
crossref_primary_10_3390_polym16101408
crossref_primary_10_1002_pol_20220614
crossref_primary_10_1002_macp_202100349
crossref_primary_10_1016_j_eurpolymj_2024_113666
crossref_primary_10_1002_smll_202207457
crossref_primary_10_1002_ange_202315849
crossref_primary_10_1021_jacs_4c08206
crossref_primary_10_1016_j_progpolymsci_2019_101186
crossref_primary_10_1002_marc_201800885
crossref_primary_10_1002_marc_201900493
crossref_primary_10_1007_s10118_023_3041_0
crossref_primary_10_1016_j_jcis_2020_09_073
crossref_primary_10_1080_15583724_2020_1723022
crossref_primary_10_1002_anie_202305945
crossref_primary_10_1007_s10965_025_04494_x
Cites_doi 10.1021/ja407514z
10.1021/ma035467j
10.1016/j.jconrel.2016.05.044
10.1039/c3py00526g
10.1533/9780857097026.1.166
10.1021/acs.macromol.6b02754
10.1021/acscentsci.8b00148
10.1039/C6PY00696E
10.1021/acs.biomac.6b00997
10.1126/science.1082193
10.1002/advs.201700137
10.1039/C6PY02135B
10.1021/acs.biomac.6b01887
10.1002/adma.201300823
10.1039/C3PY01338C
10.1039/C6QM00380J
10.1021/ma9026806
10.1039/c3sc50305d
10.1016/j.copbio.2012.11.013
10.1021/acsmacrolett.5b00748
10.1021/ja511423m
10.1021/acsmacrolett.8b00091
10.1039/C5PY01577D
10.1021/acsmacrolett.7b00408
10.1039/C7PY00407A
10.1039/C5SC03417E
10.1039/c2cs35115c
10.1002/adma.201501803
10.1021/ma502163j
10.1039/b925666k
10.1021/acs.macromol.5b02602
10.1039/C5PY01795E
10.1002/marc.201600508
10.1021/ma300816m
10.1039/C3PY01306E
10.1039/C5SC02346G
10.1021/ja410593n
10.1002/adma.201502003
10.1021/ja408182p
10.1021/ja5088216
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
DOI 10.1002/marc.201800467
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage n/a
ExternalDocumentID 30176076
10_1002_marc_201800467
MARC201800467
Genre article
Journal Article
GrantInformation_xml – fundername: National Defense Science and Engineering Graduate (NDSEG) Fellowship
  funderid: 32 CFR 168a
– fundername: Air Force Office of Scientific Research
  funderid: FA‐9550‐16‐1‐0150
– fundername: MRSEC
  funderid: NSF DMR‐1720139
– fundername: Soft and Hybrid Nanotechnology Experimental
  funderid: NSF ECCS‐1542205
– fundername: National Defense Science and Engineering Graduate (NDSEG) Fellowship
  grantid: 32 CFR 168a
– fundername: Soft and Hybrid Nanotechnology Experimental
  grantid: NSF ECCS-1542205
– fundername: MRSEC
  grantid: NSF DMR-1720139
– fundername: Air Force Office of Scientific Research
  grantid: FA-9550-16-1-0150
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWB
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
ID FETCH-LOGICAL-c4767-a58d04a325c7a18c503c7700d3b9ae66c59b1cb7bbd02a31be06891c6132da513
IEDL.DBID DRFUL
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459028600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1022-1336
1521-3927
IngestDate Thu Oct 02 05:46:37 EDT 2025
Fri Jul 25 10:29:36 EDT 2025
Wed Feb 19 02:32:55 EST 2025
Sat Nov 29 05:33:18 EST 2025
Tue Nov 18 22:38:38 EST 2025
Wed Jan 22 16:48:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords block copolymers
self-assembly
peptides
ROMPISA
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4767-a58d04a325c7a18c503c7700d3b9ae66c59b1cb7bbd02a31be06891c6132da513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30176076
PQID 2168071030
PQPubID 1016394
PageCount 5
ParticipantIDs proquest_miscellaneous_2099039981
proquest_journals_2168071030
pubmed_primary_30176076
crossref_citationtrail_10_1002_marc_201800467
crossref_primary_10_1002_marc_201800467
wiley_primary_10_1002_marc_201800467_MARC201800467
PublicationCentury 2000
PublicationDate January 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol Rapid Commun
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
2017; 8
2017; 1
2015; 6
2013; 4
2013; 25
2015; 4
2017; 4
2013; 24
2016; 17
2016; 38
2014; 136
2018; 7
2017; 50
2010; 43
2015; 48
2016; 7
2014; 5
2015; 27
2018; 4
2015; 137
2004; 37
2018
2013; 135
2017; 18
2014
2016; 235
2003; 300
2016; 49
2012; 45
2010; 6
2012; 41
e_1_2_4_40_1
e_1_2_4_41_1
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_22_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_1_1
Foster J. C. (e_1_2_4_27_1) 2018
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
Torres‐Rocha O. L. (e_1_2_4_28_1) 2018
e_1_2_4_38_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_39_1
e_1_2_4_19_1
References_xml – volume: 7
  start-page: 401
  year: 2018
  publication-title: ACS Macro Lett.
– volume: 49
  start-page: 1985
  year: 2016
  publication-title: Macromolecules
– volume: 4
  start-page: 3929
  year: 2013
  publication-title: Polym. Chem.
– volume: 6
  start-page: 3111
  year: 2010
  publication-title: Soft Matter
– volume: 5
  start-page: 350
  year: 2014
  publication-title: Polym. Chem.
– volume: 300
  start-page: 460
  year: 2003
  publication-title: Science
– year: 2018
  publication-title: Macromol. Rapid Commun.
– volume: 136
  start-page: 1023
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 14056
  year: 2013
  publication-title: J. Am. Chem. Soc.
– year: 2018
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 1700137
  year: 2017
  publication-title: Adv. Sci.
– volume: 7
  start-page: 851
  year: 2016
  publication-title: Polym. Chem.
– volume: 4
  start-page: 543
  year: 2018
  publication-title: ACS Cent. Sci.
– volume: 136
  start-page: 15422
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 5969
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 2081
  year: 2013
  publication-title: Chem. Sci.
– volume: 5
  start-page: 1954
  year: 2014
  publication-title: Polym. Chem.
– volume: 4
  start-page: 1249
  year: 2015
  publication-title: ACS Macro Lett.
– volume: 45
  start-page: 5081
  year: 2012
  publication-title: Macromolecules
– volume: 235
  start-page: 34
  year: 2016
  publication-title: J. Control. Release
– volume: 1
  start-page: 1200
  year: 2017
  publication-title: Mat. Chem. Front.
– volume: 7
  start-page: 989
  year: 2016
  publication-title: Chem. Sci.
– volume: 50
  start-page: 935
  year: 2017
  publication-title: Macromolecules
– volume: 7
  start-page: 3864
  year: 2016
  publication-title: Polym. Chem.
– volume: 18
  start-page: 1210
  year: 2017
  publication-title: Biomacromolecules
– volume: 24
  start-page: 639
  year: 2013
  publication-title: Curr. Opin. Biotechnol.
– volume: 43
  start-page: 3577
  year: 2010
  publication-title: Macromolecules
– volume: 7
  start-page: 384
  year: 2016
  publication-title: Polym. Chem.
– volume: 8
  start-page: 2860
  year: 2017
  publication-title: Polym. Chem.
– volume: 27
  start-page: 4611
  year: 2015
  publication-title: Adv. Mater.
– volume: 27
  start-page: 5547
  year: 2015
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1315
  year: 2017
  publication-title: Polym. Chem.
– volume: 25
  start-page: 3599
  year: 2013
  publication-title: Adv. Mater.
– volume: 135
  start-page: 18710
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 1929
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 3268
  year: 2016
  publication-title: Biomacromolecules
– volume: 6
  start-page: 925
  year: 2017
  publication-title: ACS Macro Lett.
– volume: 6
  start-page: 6179
  year: 2015
  publication-title: Chem. Sci.
– volume: 38
  start-page: 1600508
  year: 2016
  publication-title: Macromol. Rapid Commun.
– volume: 37
  start-page: 1511
  year: 2004
  publication-title: Macromolecules
– start-page: 166
  year: 2014
– volume: 48
  start-page: 1152
  year: 2015
  publication-title: Macromolecules
– ident: e_1_2_4_33_1
  doi: 10.1021/ja407514z
– ident: e_1_2_4_6_1
  doi: 10.1021/ma035467j
– ident: e_1_2_4_3_1
  doi: 10.1016/j.jconrel.2016.05.044
– ident: e_1_2_4_30_1
  doi: 10.1039/c3py00526g
– ident: e_1_2_4_34_1
  doi: 10.1533/9780857097026.1.166
– ident: e_1_2_4_23_1
  doi: 10.1021/acs.macromol.6b02754
– ident: e_1_2_4_15_1
  doi: 10.1021/acscentsci.8b00148
– ident: e_1_2_4_22_1
  doi: 10.1039/C6PY00696E
– ident: e_1_2_4_35_1
  doi: 10.1021/acs.biomac.6b00997
– ident: e_1_2_4_5_1
  doi: 10.1126/science.1082193
– ident: e_1_2_4_14_1
  doi: 10.1002/advs.201700137
– ident: e_1_2_4_10_1
  doi: 10.1039/C6PY02135B
– ident: e_1_2_4_24_1
  doi: 10.1021/acs.biomac.6b01887
– ident: e_1_2_4_38_1
  doi: 10.1002/adma.201300823
– ident: e_1_2_4_31_1
  doi: 10.1039/C3PY01338C
– ident: e_1_2_4_25_1
  doi: 10.1039/C6QM00380J
– ident: e_1_2_4_7_1
  doi: 10.1021/ma9026806
– ident: e_1_2_4_18_1
  doi: 10.1039/c3sc50305d
– ident: e_1_2_4_1_1
  doi: 10.1016/j.copbio.2012.11.013
– ident: e_1_2_4_11_1
  doi: 10.1021/acsmacrolett.5b00748
– ident: e_1_2_4_20_1
  doi: 10.1021/ja511423m
– ident: e_1_2_4_16_1
  doi: 10.1021/acsmacrolett.8b00091
– ident: e_1_2_4_21_1
  doi: 10.1039/C5PY01577D
– ident: e_1_2_4_13_1
  doi: 10.1021/acsmacrolett.7b00408
– ident: e_1_2_4_26_1
  doi: 10.1039/C7PY00407A
– ident: e_1_2_4_32_1
  doi: 10.1039/C5SC03417E
– ident: e_1_2_4_39_1
  doi: 10.1039/c2cs35115c
– ident: e_1_2_4_2_1
  doi: 10.1002/adma.201501803
– ident: e_1_2_4_42_1
  doi: 10.1021/ma502163j
– ident: e_1_2_4_4_1
  doi: 10.1039/b925666k
– ident: e_1_2_4_17_1
  doi: 10.1021/acs.macromol.5b02602
– ident: e_1_2_4_8_1
  doi: 10.1039/C5PY01795E
– ident: e_1_2_4_12_1
  doi: 10.1002/marc.201600508
– ident: e_1_2_4_41_1
  doi: 10.1021/ma300816m
– year: 2018
  ident: e_1_2_4_28_1
  publication-title: Macromol. Rapid Commun.
– ident: e_1_2_4_9_1
  doi: 10.1039/C3PY01306E
– ident: e_1_2_4_40_1
  doi: 10.1039/C5SC02346G
– ident: e_1_2_4_19_1
  doi: 10.1021/ja410593n
– year: 2018
  ident: e_1_2_4_27_1
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_4_36_1
  doi: 10.1002/adma.201502003
– ident: e_1_2_4_37_1
  doi: 10.1021/ja408182p
– ident: e_1_2_4_29_1
  doi: 10.1021/ja5088216
SSID ssj0008402
Score 2.460259
Snippet Open‐to‐air aqueous‐phase ring‐opening metathesis polymerization‐induced self‐assembly (ROMPISA) is reported for forming well‐defined peptide polymer...
Open-to-air aqueous-phase ring-opening metathesis polymerization-induced self-assembly (ROMPISA) is reported for forming well-defined peptide polymer...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1800467
SubjectTerms Amino Acid Sequence
Assembly
block copolymers
Chemistry Techniques, Synthetic - methods
Enzymes
Hydrophobic and Hydrophilic Interactions
Metathesis
Microscopy, Electron, Transmission
Molecular Weight
Nanoparticles
Nanoparticles - chemistry
Nanoparticles - ultrastructure
Peptides
Peptides - chemical synthesis
Peptides - chemistry
Peptides - metabolism
Polymerization
Polymers
Polymers - chemical synthesis
Polymers - chemistry
Polymers - metabolism
Protein Structure, Secondary
Proteolysis
ROMPISA
self‐assembly
Thermolysin
Thermolysin - metabolism
Title Enzyme‐Responsive Polymer Nanoparticles via Ring‐Opening Metathesis Polymerization‐Induced Self‐Assembly
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201800467
https://www.ncbi.nlm.nih.gov/pubmed/30176076
https://www.proquest.com/docview/2168071030
https://www.proquest.com/docview/2099039981
Volume 40
WOSCitedRecordID wos000459028600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3927
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008402
  issn: 1022-1336
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6aTaG9JH2ldZoGFwo9mUh-6HEM2yw5JCFsG9ibGckyXdh4wzpZSE_9Cf2N-SUZrR_NEkqhvUn2yBaS5qUZfQL4lFgnU6NNxMusiFJudIRO8QgxcbIUaSlwhTN7Is_O1GSizx-c4m_wIfoNN88ZK3ntGRxNffAbNNRDPfjULOVdPLkBmzEt3mwAm1_Go4uTXhqTA9NEPMnpIn9MdMCNLD5Y_8K6Ynpkba4bryvtM9r-_36_gK3W8gwPm6XyEp646hU8G3YXvr2Gq6Pqx-2lu_v5a9wmzi5deD6f0bNFSFKY3Os2iy5cTjEck9IjWp-RQqXw1Octfnf1tO7atCc8icbfD2JdEX51s5KqPtB8aWa3b-BidPRteBy1FzJENpUkUDFTBUsxiTMrkSubscRKyViRGI1OCJtpw62RxhQsxoQbx4TS3JLJEBeY8WQHBtW8cu8gTKXF1CohS52Szei0EwYZkk7FEnWpA4i62chti1buL82Y5Q3Ocpz7ccz7cQzgc09_1eB0_JFyr5vcvOXXOo-5UN7YSlgAH_vXNP4-fIKVm98QjY8hkj2neABvm0XR_4rEpBRMigDi1dz_pQ_56eF42Nd2_6XRe3hOZd3sBu3B4Hpx4z7AU7u8ntaLfdiQE7Xf8sI9HmgODQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1da9sw8OjaQfeydd2Xu25zYbAnU8mW9fFYsoaOJaFkLfTNSLLMAqlTkjbQPe0n7Dful_QUyx6hlMHYmyWfbCHdp-50B_Axs04wo0xCq7xMGDUq0U7SROvMiYqziutVntmBGI3kxYU6DdGE_i5Mkx-iO3DzlLHi157A_YH04Z-soT7Xg4_Nkt7GE49giyEuIZJvfR73zwcdO0YLpnF5otWFBhlvMzeS9HD9C-uS6Z66ua69rsRP_9l_mPgOPA26Z3zUIMtz2HD1Lmz32pJvL-DquP5xe-l-__w1DqGzSxefzqbYN4-RD6OBHeLo4uVEx2MUewjrY1LwKR76yMXvbjFZtGPCHU-E8RVCrCvjb25aYdO7mi_N9PYlnPePz3onSSjJkFgmkKXqXJaE6SzNrdBU2pxkVghCyswo7Ti3uTLUGmFMSVKdUeMIl4paVBrSUuc0ewWb9ax2byBmwmpmJReVYqg1OuW40USjVNWVVpWKIGm3o7AhX7kvmzEtmkzLaeHXsejWMYJPHfxVk6njQcj9dneLQLGLIqVcenUrIxEcdK9x_b0DRddudoMw3ouIGp2kEbxusKL7FTJKwYngEaSrzf_LHIrh0bjXtfb-ZdAH2D45Gw6KwZfR17fwBPtVcza0D5vX8xv3Dh7b5fVkMX8fSOIO4MwRFQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-2dGx72feHu27zYLAnU8mW9fFY0oaNpSFkK_TNSLJMA6kTkjbQPe1P2N-4v6SnWHYJZQzG3iz5ZAtJd7rTnX4H8DGzTjCjTEKrvEwYNSrRTtJE68yJirOK6w3O7FCMRvL0VI1DNKG_C9PgQ3QHbp4zNvLaM7hblNX-DWqox3rwsVnS23jiLuwwn0mmBzuHk8HJsBPHaME0Lk-0utAg4y1yI0n3t7-wvTPdUje3tdfN9jN4_B86_gQeBd0zPmgWy1O44-pn8KDfpnx7Douj-sfVufv989ckhM6uXTyez7BuGaMcRgM7xNHF66mOJ7jtIa2PScGn-NhHLp651XTVtgl3PJHGZwixroy_uVmFRe9qPjezqxdwMjj63v-chJQMiWUCRarOZUmYztLcCk2lzUlmhSCkzIzSjnObK0OtEcaUJNUZNY5wqahFpSEtdU6zl9Cr57V7DTETVjMruagUQ63RKceNJhp3VV1pVakIknY6Chvwyn3ajFnRIC2nhR_HohvHCD519IsGqeOPlHvt7BaBY1dFSrn06lZGIvjQvcbx9w4UXbv5JdJ4LyJqdJJG8KpZFd2vUFAKTgSPIN1M_l_6UBwfTPpdafdfGr2H--PDQTH8Mvr6Bh5itWqOhvagd7G8dG_hnl1fTFfLd4EjrgFUOhCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzyme%E2%80%90Responsive+Polymer+Nanoparticles+via+Ring%E2%80%90Opening+Metathesis+Polymerization%E2%80%90Induced+Self%E2%80%90Assembly&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Wright%2C+Daniel+B&rft.au=Thompson%2C+Matthew+P&rft.au=Touve%2C+Mollie+A&rft.au=Carlini%2C+Andrea+S&rft.date=2019-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=40&rft.issue=2&rft_id=info:doi/10.1002%2Fmarc.201800467&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon