Enzyme‐Responsive Polymer Nanoparticles via Ring‐Opening Metathesis Polymerization‐Induced Self‐Assembly
Open‐to‐air aqueous‐phase ring‐opening metathesis polymerization‐induced self‐assembly (ROMPISA) is reported for forming well‐defined peptide polymer nanoparticles at room temperature and with high solids concentrations (10 w/w%). For these materials, ROMPISA is shown to provide control over molecul...
Gespeichert in:
| Veröffentlicht in: | Macromolecular rapid communications. Jg. 40; H. 2; S. e1800467 - n/a |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
01.01.2019
|
| Schlagworte: | |
| ISSN: | 1022-1336, 1521-3927, 1521-3927 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Open‐to‐air aqueous‐phase ring‐opening metathesis polymerization‐induced self‐assembly (ROMPISA) is reported for forming well‐defined peptide polymer nanoparticles at room temperature and with high solids concentrations (10 w/w%). For these materials, ROMPISA is shown to provide control over molecular weight with high conversion while open‐to‐air. Moreover, these peptide polymer nanoparticles can spontaneously rearrange into larger aggregate scaffolds in the presence of the proteolytic enzyme, thermolysin. This work demonstrates the robust nature of ROMPISA, highlighted here for the preparation of stimuli‐responsive nanostructures in one pot, in air.
Peptide‐functionalized polymer nanoparticles, both spherical micelles and framboidal vesicles, are formed via ring‐opening metathesis polymerization‐induced self‐assembly. When incubated with protease, the peptides are cleaved and the particles undergo an in situ reorganization into large macromolecular aggregates. |
|---|---|
| AbstractList | Open‐to‐air aqueous‐phase ring‐opening metathesis polymerization‐induced self‐assembly (ROMPISA) is reported for forming well‐defined peptide polymer nanoparticles at room temperature and with high solids concentrations (10 w/w%). For these materials, ROMPISA is shown to provide control over molecular weight with high conversion while open‐to‐air. Moreover, these peptide polymer nanoparticles can spontaneously rearrange into larger aggregate scaffolds in the presence of the proteolytic enzyme, thermolysin. This work demonstrates the robust nature of ROMPISA, highlighted here for the preparation of stimuli‐responsive nanostructures in one pot, in air. Open-to-air aqueous-phase ring-opening metathesis polymerization-induced self-assembly (ROMPISA) is reported for forming well-defined peptide polymer nanoparticles at room temperature and with high solids concentrations (10 w/w%). For these materials, ROMPISA is shown to provide control over molecular weight with high conversion while open-to-air. Moreover, these peptide polymer nanoparticles can spontaneously rearrange into larger aggregate scaffolds in the presence of the proteolytic enzyme, thermolysin. This work demonstrates the robust nature of ROMPISA, highlighted here for the preparation of stimuli-responsive nanostructures in one pot, in air.Open-to-air aqueous-phase ring-opening metathesis polymerization-induced self-assembly (ROMPISA) is reported for forming well-defined peptide polymer nanoparticles at room temperature and with high solids concentrations (10 w/w%). For these materials, ROMPISA is shown to provide control over molecular weight with high conversion while open-to-air. Moreover, these peptide polymer nanoparticles can spontaneously rearrange into larger aggregate scaffolds in the presence of the proteolytic enzyme, thermolysin. This work demonstrates the robust nature of ROMPISA, highlighted here for the preparation of stimuli-responsive nanostructures in one pot, in air. Open‐to‐air aqueous‐phase ring‐opening metathesis polymerization‐induced self‐assembly (ROMPISA) is reported for forming well‐defined peptide polymer nanoparticles at room temperature and with high solids concentrations (10 w/w%). For these materials, ROMPISA is shown to provide control over molecular weight with high conversion while open‐to‐air. Moreover, these peptide polymer nanoparticles can spontaneously rearrange into larger aggregate scaffolds in the presence of the proteolytic enzyme, thermolysin. This work demonstrates the robust nature of ROMPISA, highlighted here for the preparation of stimuli‐responsive nanostructures in one pot, in air. Peptide‐functionalized polymer nanoparticles, both spherical micelles and framboidal vesicles, are formed via ring‐opening metathesis polymerization‐induced self‐assembly. When incubated with protease, the peptides are cleaved and the particles undergo an in situ reorganization into large macromolecular aggregates. |
| Author | Carlini, Andrea S. Gianneschi, Nathan C. Thompson, Matthew P. Touve, Mollie A. Wright, Daniel B. |
| Author_xml | – sequence: 1 givenname: Daniel B. surname: Wright fullname: Wright, Daniel B. organization: Northwestern University – sequence: 2 givenname: Matthew P. surname: Thompson fullname: Thompson, Matthew P. organization: Northwestern University – sequence: 3 givenname: Mollie A. surname: Touve fullname: Touve, Mollie A. organization: Northwestern University – sequence: 4 givenname: Andrea S. surname: Carlini fullname: Carlini, Andrea S. organization: University of California – sequence: 5 givenname: Nathan C. surname: Gianneschi fullname: Gianneschi, Nathan C. email: nathan.gianneschi@northwestern.edu organization: Northwestern University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30176076$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1u1DAURi1URP_YskSR2LDJcG0ndrwcjVpaqaVo2q4tx7kDrhIn2EnRdMUj9Bl5EjxMB6RKiJWvrXOurO87JHu-90jIGwozCsA-dCbYGQNaARRCviAHtGQ054rJvTQDYznlXOyTwxjvAKAqgL0i-xyoFCDFARlO_MO6w58_HpcYh95Hd4_Z575NbyH7ZHw_mDA622LM7p3Jls5_SezVgD5N2SWOZvyK0cWd4x7M6HqfmHPfTBab7BrbVbrOY8SubtfH5OXKtBFfP51H5Pb05GZxll9cfTxfzC9yW0ghc1NWDRSGs9JKQytbArdSAjS8VgaFsKWqqa1lXTfADKc1gqgUtYJy1piS8iPyfrt3CP23CeOoOxcttq3x2E9RM1AKuFLVBn33DL3rp-DT7zSjogJJgUOi3j5RU91ho4fgUvhrvcsyAcUWsKGPMeBKWzf-TmMMxrWagt5UpjeV6T-VJW32TNtt_qegtsJ31-L6P7S-nC8Xf91fqGet1w |
| CitedBy_id | crossref_primary_10_1002_asia_202401949 crossref_primary_10_1002_macp_202400472 crossref_primary_10_1002_anbr_202100087 crossref_primary_10_1016_j_eurpolymj_2022_111234 crossref_primary_10_1002_anie_202315849 crossref_primary_10_1002_ange_201813434 crossref_primary_10_1021_jacs_2c13049 crossref_primary_10_1039_D0PY00368A crossref_primary_10_1039_D0PY00455C crossref_primary_10_1002_anie_201813434 crossref_primary_10_1039_D0BM01406K crossref_primary_10_1039_D3ME00063J crossref_primary_10_3390_polym13162603 crossref_primary_10_1002_ange_202305945 crossref_primary_10_1007_s10118_020_2345_6 crossref_primary_10_3390_polym16101408 crossref_primary_10_1002_pol_20220614 crossref_primary_10_1002_macp_202100349 crossref_primary_10_1016_j_eurpolymj_2024_113666 crossref_primary_10_1002_smll_202207457 crossref_primary_10_1002_ange_202315849 crossref_primary_10_1021_jacs_4c08206 crossref_primary_10_1016_j_progpolymsci_2019_101186 crossref_primary_10_1002_marc_201800885 crossref_primary_10_1002_marc_201900493 crossref_primary_10_1007_s10118_023_3041_0 crossref_primary_10_1016_j_jcis_2020_09_073 crossref_primary_10_1080_15583724_2020_1723022 crossref_primary_10_1002_anie_202305945 crossref_primary_10_1007_s10965_025_04494_x |
| Cites_doi | 10.1021/ja407514z 10.1021/ma035467j 10.1016/j.jconrel.2016.05.044 10.1039/c3py00526g 10.1533/9780857097026.1.166 10.1021/acs.macromol.6b02754 10.1021/acscentsci.8b00148 10.1039/C6PY00696E 10.1021/acs.biomac.6b00997 10.1126/science.1082193 10.1002/advs.201700137 10.1039/C6PY02135B 10.1021/acs.biomac.6b01887 10.1002/adma.201300823 10.1039/C3PY01338C 10.1039/C6QM00380J 10.1021/ma9026806 10.1039/c3sc50305d 10.1016/j.copbio.2012.11.013 10.1021/acsmacrolett.5b00748 10.1021/ja511423m 10.1021/acsmacrolett.8b00091 10.1039/C5PY01577D 10.1021/acsmacrolett.7b00408 10.1039/C7PY00407A 10.1039/C5SC03417E 10.1039/c2cs35115c 10.1002/adma.201501803 10.1021/ma502163j 10.1039/b925666k 10.1021/acs.macromol.5b02602 10.1039/C5PY01795E 10.1002/marc.201600508 10.1021/ma300816m 10.1039/C3PY01306E 10.1039/C5SC02346G 10.1021/ja410593n 10.1002/adma.201502003 10.1021/ja408182p 10.1021/ja5088216 |
| ContentType | Journal Article |
| Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
| DOI | 10.1002/marc.201800467 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3927 |
| EndPage | n/a |
| ExternalDocumentID | 30176076 10_1002_marc_201800467 MARC201800467 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Defense Science and Engineering Graduate (NDSEG) Fellowship funderid: 32 CFR 168a – fundername: Air Force Office of Scientific Research funderid: FA‐9550‐16‐1‐0150 – fundername: MRSEC funderid: NSF DMR‐1720139 – fundername: Soft and Hybrid Nanotechnology Experimental funderid: NSF ECCS‐1542205 – fundername: National Defense Science and Engineering Graduate (NDSEG) Fellowship grantid: 32 CFR 168a – fundername: Soft and Hybrid Nanotechnology Experimental grantid: NSF ECCS-1542205 – fundername: MRSEC grantid: NSF DMR-1720139 – fundername: Air Force Office of Scientific Research grantid: FA-9550-16-1-0150 |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
| ID | FETCH-LOGICAL-c4767-a58d04a325c7a18c503c7700d3b9ae66c59b1cb7bbd02a31be06891c6132da513 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459028600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1022-1336 1521-3927 |
| IngestDate | Thu Oct 02 05:46:37 EDT 2025 Fri Jul 25 10:29:36 EDT 2025 Wed Feb 19 02:32:55 EST 2025 Sat Nov 29 05:33:18 EST 2025 Tue Nov 18 22:38:38 EST 2025 Wed Jan 22 16:48:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | block copolymers self-assembly peptides ROMPISA |
| Language | English |
| License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4767-a58d04a325c7a18c503c7700d3b9ae66c59b1cb7bbd02a31be06891c6132da513 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 30176076 |
| PQID | 2168071030 |
| PQPubID | 1016394 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_2099039981 proquest_journals_2168071030 pubmed_primary_30176076 crossref_citationtrail_10_1002_marc_201800467 crossref_primary_10_1002_marc_201800467 wiley_primary_10_1002_marc_201800467_MARC201800467 |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Macromolecular rapid communications. |
| PublicationTitleAlternate | Macromol Rapid Commun |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 6 2017; 8 2017; 1 2015; 6 2013; 4 2013; 25 2015; 4 2017; 4 2013; 24 2016; 17 2016; 38 2014; 136 2018; 7 2017; 50 2010; 43 2015; 48 2016; 7 2014; 5 2015; 27 2018; 4 2015; 137 2004; 37 2018 2013; 135 2017; 18 2014 2016; 235 2003; 300 2016; 49 2012; 45 2010; 6 2012; 41 e_1_2_4_40_1 e_1_2_4_41_1 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_22_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_1_1 Foster J. C. (e_1_2_4_27_1) 2018 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 Torres‐Rocha O. L. (e_1_2_4_28_1) 2018 e_1_2_4_38_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_39_1 e_1_2_4_19_1 |
| References_xml | – volume: 7 start-page: 401 year: 2018 publication-title: ACS Macro Lett. – volume: 49 start-page: 1985 year: 2016 publication-title: Macromolecules – volume: 4 start-page: 3929 year: 2013 publication-title: Polym. Chem. – volume: 6 start-page: 3111 year: 2010 publication-title: Soft Matter – volume: 5 start-page: 350 year: 2014 publication-title: Polym. Chem. – volume: 300 start-page: 460 year: 2003 publication-title: Science – year: 2018 publication-title: Macromol. Rapid Commun. – volume: 136 start-page: 1023 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 14056 year: 2013 publication-title: J. Am. Chem. Soc. – year: 2018 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 1700137 year: 2017 publication-title: Adv. Sci. – volume: 7 start-page: 851 year: 2016 publication-title: Polym. Chem. – volume: 4 start-page: 543 year: 2018 publication-title: ACS Cent. Sci. – volume: 136 start-page: 15422 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 5969 year: 2012 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 2081 year: 2013 publication-title: Chem. Sci. – volume: 5 start-page: 1954 year: 2014 publication-title: Polym. Chem. – volume: 4 start-page: 1249 year: 2015 publication-title: ACS Macro Lett. – volume: 45 start-page: 5081 year: 2012 publication-title: Macromolecules – volume: 235 start-page: 34 year: 2016 publication-title: J. Control. Release – volume: 1 start-page: 1200 year: 2017 publication-title: Mat. Chem. Front. – volume: 7 start-page: 989 year: 2016 publication-title: Chem. Sci. – volume: 50 start-page: 935 year: 2017 publication-title: Macromolecules – volume: 7 start-page: 3864 year: 2016 publication-title: Polym. Chem. – volume: 18 start-page: 1210 year: 2017 publication-title: Biomacromolecules – volume: 24 start-page: 639 year: 2013 publication-title: Curr. Opin. Biotechnol. – volume: 43 start-page: 3577 year: 2010 publication-title: Macromolecules – volume: 7 start-page: 384 year: 2016 publication-title: Polym. Chem. – volume: 8 start-page: 2860 year: 2017 publication-title: Polym. Chem. – volume: 27 start-page: 4611 year: 2015 publication-title: Adv. Mater. – volume: 27 start-page: 5547 year: 2015 publication-title: Adv. Mater. – volume: 8 start-page: 1315 year: 2017 publication-title: Polym. Chem. – volume: 25 start-page: 3599 year: 2013 publication-title: Adv. Mater. – volume: 135 start-page: 18710 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 1929 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 3268 year: 2016 publication-title: Biomacromolecules – volume: 6 start-page: 925 year: 2017 publication-title: ACS Macro Lett. – volume: 6 start-page: 6179 year: 2015 publication-title: Chem. Sci. – volume: 38 start-page: 1600508 year: 2016 publication-title: Macromol. Rapid Commun. – volume: 37 start-page: 1511 year: 2004 publication-title: Macromolecules – start-page: 166 year: 2014 – volume: 48 start-page: 1152 year: 2015 publication-title: Macromolecules – ident: e_1_2_4_33_1 doi: 10.1021/ja407514z – ident: e_1_2_4_6_1 doi: 10.1021/ma035467j – ident: e_1_2_4_3_1 doi: 10.1016/j.jconrel.2016.05.044 – ident: e_1_2_4_30_1 doi: 10.1039/c3py00526g – ident: e_1_2_4_34_1 doi: 10.1533/9780857097026.1.166 – ident: e_1_2_4_23_1 doi: 10.1021/acs.macromol.6b02754 – ident: e_1_2_4_15_1 doi: 10.1021/acscentsci.8b00148 – ident: e_1_2_4_22_1 doi: 10.1039/C6PY00696E – ident: e_1_2_4_35_1 doi: 10.1021/acs.biomac.6b00997 – ident: e_1_2_4_5_1 doi: 10.1126/science.1082193 – ident: e_1_2_4_14_1 doi: 10.1002/advs.201700137 – ident: e_1_2_4_10_1 doi: 10.1039/C6PY02135B – ident: e_1_2_4_24_1 doi: 10.1021/acs.biomac.6b01887 – ident: e_1_2_4_38_1 doi: 10.1002/adma.201300823 – ident: e_1_2_4_31_1 doi: 10.1039/C3PY01338C – ident: e_1_2_4_25_1 doi: 10.1039/C6QM00380J – ident: e_1_2_4_7_1 doi: 10.1021/ma9026806 – ident: e_1_2_4_18_1 doi: 10.1039/c3sc50305d – ident: e_1_2_4_1_1 doi: 10.1016/j.copbio.2012.11.013 – ident: e_1_2_4_11_1 doi: 10.1021/acsmacrolett.5b00748 – ident: e_1_2_4_20_1 doi: 10.1021/ja511423m – ident: e_1_2_4_16_1 doi: 10.1021/acsmacrolett.8b00091 – ident: e_1_2_4_21_1 doi: 10.1039/C5PY01577D – ident: e_1_2_4_13_1 doi: 10.1021/acsmacrolett.7b00408 – ident: e_1_2_4_26_1 doi: 10.1039/C7PY00407A – ident: e_1_2_4_32_1 doi: 10.1039/C5SC03417E – ident: e_1_2_4_39_1 doi: 10.1039/c2cs35115c – ident: e_1_2_4_2_1 doi: 10.1002/adma.201501803 – ident: e_1_2_4_42_1 doi: 10.1021/ma502163j – ident: e_1_2_4_4_1 doi: 10.1039/b925666k – ident: e_1_2_4_17_1 doi: 10.1021/acs.macromol.5b02602 – ident: e_1_2_4_8_1 doi: 10.1039/C5PY01795E – ident: e_1_2_4_12_1 doi: 10.1002/marc.201600508 – ident: e_1_2_4_41_1 doi: 10.1021/ma300816m – year: 2018 ident: e_1_2_4_28_1 publication-title: Macromol. Rapid Commun. – ident: e_1_2_4_9_1 doi: 10.1039/C3PY01306E – ident: e_1_2_4_40_1 doi: 10.1039/C5SC02346G – ident: e_1_2_4_19_1 doi: 10.1021/ja410593n – year: 2018 ident: e_1_2_4_27_1 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_4_36_1 doi: 10.1002/adma.201502003 – ident: e_1_2_4_37_1 doi: 10.1021/ja408182p – ident: e_1_2_4_29_1 doi: 10.1021/ja5088216 |
| SSID | ssj0008402 |
| Score | 2.460259 |
| Snippet | Open‐to‐air aqueous‐phase ring‐opening metathesis polymerization‐induced self‐assembly (ROMPISA) is reported for forming well‐defined peptide polymer... Open-to-air aqueous-phase ring-opening metathesis polymerization-induced self-assembly (ROMPISA) is reported for forming well-defined peptide polymer... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e1800467 |
| SubjectTerms | Amino Acid Sequence Assembly block copolymers Chemistry Techniques, Synthetic - methods Enzymes Hydrophobic and Hydrophilic Interactions Metathesis Microscopy, Electron, Transmission Molecular Weight Nanoparticles Nanoparticles - chemistry Nanoparticles - ultrastructure Peptides Peptides - chemical synthesis Peptides - chemistry Peptides - metabolism Polymerization Polymers Polymers - chemical synthesis Polymers - chemistry Polymers - metabolism Protein Structure, Secondary Proteolysis ROMPISA self‐assembly Thermolysin Thermolysin - metabolism |
| Title | Enzyme‐Responsive Polymer Nanoparticles via Ring‐Opening Metathesis Polymerization‐Induced Self‐Assembly |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201800467 https://www.ncbi.nlm.nih.gov/pubmed/30176076 https://www.proquest.com/docview/2168071030 https://www.proquest.com/docview/2099039981 |
| Volume | 40 |
| WOSCitedRecordID | wos000459028600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3927 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008402 issn: 1022-1336 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6aTaG9JH2ldZoGFwo9mUh-6HEM2yw5JCFsG9ibGckyXdh4wzpZSE_9Cf2N-SUZrR_NEkqhvUn2yBaS5qUZfQL4lFgnU6NNxMusiFJudIRO8QgxcbIUaSlwhTN7Is_O1GSizx-c4m_wIfoNN88ZK3ntGRxNffAbNNRDPfjULOVdPLkBmzEt3mwAm1_Go4uTXhqTA9NEPMnpIn9MdMCNLD5Y_8K6Ynpkba4bryvtM9r-_36_gK3W8gwPm6XyEp646hU8G3YXvr2Gq6Pqx-2lu_v5a9wmzi5deD6f0bNFSFKY3Os2iy5cTjEck9IjWp-RQqXw1Octfnf1tO7atCc8icbfD2JdEX51s5KqPtB8aWa3b-BidPRteBy1FzJENpUkUDFTBUsxiTMrkSubscRKyViRGI1OCJtpw62RxhQsxoQbx4TS3JLJEBeY8WQHBtW8cu8gTKXF1CohS52Szei0EwYZkk7FEnWpA4i62chti1buL82Y5Q3Ocpz7ccz7cQzgc09_1eB0_JFyr5vcvOXXOo-5UN7YSlgAH_vXNP4-fIKVm98QjY8hkj2neABvm0XR_4rEpBRMigDi1dz_pQ_56eF42Nd2_6XRe3hOZd3sBu3B4Hpx4z7AU7u8ntaLfdiQE7Xf8sI9HmgODQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1da9sw8OjaQfeydd2Xu25zYbAnU8mW9fFYsoaOJaFkLfTNSLLMAqlTkjbQPe0n7Dful_QUyx6hlMHYmyWfbCHdp-50B_Axs04wo0xCq7xMGDUq0U7SROvMiYqziutVntmBGI3kxYU6DdGE_i5Mkx-iO3DzlLHi157A_YH04Z-soT7Xg4_Nkt7GE49giyEuIZJvfR73zwcdO0YLpnF5otWFBhlvMzeS9HD9C-uS6Z66ua69rsRP_9l_mPgOPA26Z3zUIMtz2HD1Lmz32pJvL-DquP5xe-l-__w1DqGzSxefzqbYN4-RD6OBHeLo4uVEx2MUewjrY1LwKR76yMXvbjFZtGPCHU-E8RVCrCvjb25aYdO7mi_N9PYlnPePz3onSSjJkFgmkKXqXJaE6SzNrdBU2pxkVghCyswo7Ti3uTLUGmFMSVKdUeMIl4paVBrSUuc0ewWb9ax2byBmwmpmJReVYqg1OuW40USjVNWVVpWKIGm3o7AhX7kvmzEtmkzLaeHXsejWMYJPHfxVk6njQcj9dneLQLGLIqVcenUrIxEcdK9x_b0DRddudoMw3ouIGp2kEbxusKL7FTJKwYngEaSrzf_LHIrh0bjXtfb-ZdAH2D45Gw6KwZfR17fwBPtVcza0D5vX8xv3Dh7b5fVkMX8fSOIO4MwRFQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-2dGx72feHu27zYLAnU8mW9fFY0oaNpSFkK_TNSLJMA6kTkjbQPe1P2N-4v6SnWHYJZQzG3iz5ZAtJd7rTnX4H8DGzTjCjTEKrvEwYNSrRTtJE68yJirOK6w3O7FCMRvL0VI1DNKG_C9PgQ3QHbp4zNvLaM7hblNX-DWqox3rwsVnS23jiLuwwn0mmBzuHk8HJsBPHaME0Lk-0utAg4y1yI0n3t7-wvTPdUje3tdfN9jN4_B86_gQeBd0zPmgWy1O44-pn8KDfpnx7Douj-sfVufv989ckhM6uXTyez7BuGaMcRgM7xNHF66mOJ7jtIa2PScGn-NhHLp651XTVtgl3PJHGZwixroy_uVmFRe9qPjezqxdwMjj63v-chJQMiWUCRarOZUmYztLcCk2lzUlmhSCkzIzSjnObK0OtEcaUJNUZNY5wqahFpSEtdU6zl9Cr57V7DTETVjMruagUQ63RKceNJhp3VV1pVakIknY6Chvwyn3ajFnRIC2nhR_HohvHCD519IsGqeOPlHvt7BaBY1dFSrn06lZGIvjQvcbx9w4UXbv5JdJ4LyJqdJJG8KpZFd2vUFAKTgSPIN1M_l_6UBwfTPpdafdfGr2H--PDQTH8Mvr6Bh5itWqOhvagd7G8dG_hnl1fTFfLd4EjrgFUOhCQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzyme%E2%80%90Responsive+Polymer+Nanoparticles+via+Ring%E2%80%90Opening+Metathesis+Polymerization%E2%80%90Induced+Self%E2%80%90Assembly&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Wright%2C+Daniel+B&rft.au=Thompson%2C+Matthew+P&rft.au=Touve%2C+Mollie+A&rft.au=Carlini%2C+Andrea+S&rft.date=2019-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=40&rft.issue=2&rft_id=info:doi/10.1002%2Fmarc.201800467&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |