A Hydrogen‐Deficient Nickel–Cobalt Double Hydroxide for Photocatalytic Overall Water Splitting
Developing highly efficient and low‐cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel–cobalt double hydroxide can achieve overall water splitting by itself upon solar l...
Uložené v:
| Vydané v: | Angewandte Chemie International Edition Ročník 59; číslo 28; s. 11510 - 11515 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
Wiley Subscription Services, Inc
06.07.2020
|
| Vydanie: | International ed. in English |
| Predmet: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Developing highly efficient and low‐cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel–cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble‐metal co‐catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so‐called L‐NiCo nanosheets with a nonstoichiometric composition and O2−/Co3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O2− and Co3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H2 evolution rate of 1.7 μmol h−1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm.
A single‐phase photocatalyst, a hydrogen‐deficient nickel–cobalt double hydroxide, was generated by laser ablation. This photocatalyst can drive overall water splitting under solar light irradiation in the absence of sacrificial agents and noble metal co‐catalysts because of its unique composition and structure, with partially removed hydrogen atoms as well as O2− and Co3+ ions exposed on the surface. |
|---|---|
| AbstractList | Developing highly efficient and low‐cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel–cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble‐metal co‐catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so‐called L‐NiCo nanosheets with a nonstoichiometric composition and O2−/Co3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O2− and Co3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H2 evolution rate of 1.7 μmol h−1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm. Developing highly efficient and low‐cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel–cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble‐metal co‐catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so‐called L‐NiCo nanosheets with a nonstoichiometric composition and O2−/Co3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O2− and Co3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H2 evolution rate of 1.7 μmol h−1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm. A single‐phase photocatalyst, a hydrogen‐deficient nickel–cobalt double hydroxide, was generated by laser ablation. This photocatalyst can drive overall water splitting under solar light irradiation in the absence of sacrificial agents and noble metal co‐catalysts because of its unique composition and structure, with partially removed hydrogen atoms as well as O2− and Co3+ ions exposed on the surface. Developing highly efficient and low‐cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel–cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble‐metal co‐catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so‐called L‐NiCo nanosheets with a nonstoichiometric composition and O 2− /Co 3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O 2− and Co 3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H 2 evolution rate of 1.7 μmol h −1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm. Developing highly efficient and low-cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel-cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble-metal co-catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so-called L-NiCo nanosheets with a nonstoichiometric composition and O /Co ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O and Co ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H evolution rate of 1.7 μmol h under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm. Developing highly efficient and low-cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel-cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble-metal co-catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so-called L-NiCo nanosheets with a nonstoichiometric composition and O2- /Co3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O2- and Co3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H2 evolution rate of 1.7 μmol h-1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm.Developing highly efficient and low-cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel-cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble-metal co-catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so-called L-NiCo nanosheets with a nonstoichiometric composition and O2- /Co3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O2- and Co3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H2 evolution rate of 1.7 μmol h-1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm. |
| Author | Wang, Jia‐Qi Xi, Cong Cheng, Chuan‐Qi Xie, Ya‐Meng Zou, Cheng‐Qin Wang, Min Zhang, Rui Guo, Zhong‐Lu Chen, Yong‐Jun Du, Xi‐Wen Dong, Cun‐Ku Tang, Cheng‐Chun |
| Author_xml | – sequence: 1 givenname: Min surname: Wang fullname: Wang, Min organization: Hainan University – sequence: 2 givenname: Jia‐Qi surname: Wang fullname: Wang, Jia‐Qi organization: Tianjin University – sequence: 3 givenname: Cong surname: Xi fullname: Xi, Cong organization: Tianjin University – sequence: 4 givenname: Chuan‐Qi surname: Cheng fullname: Cheng, Chuan‐Qi organization: Tianjin University – sequence: 5 givenname: Cheng‐Qin surname: Zou fullname: Zou, Cheng‐Qin organization: Tianjin University – sequence: 6 givenname: Rui surname: Zhang fullname: Zhang, Rui organization: Tianjin University – sequence: 7 givenname: Ya‐Meng surname: Xie fullname: Xie, Ya‐Meng organization: Tianjin University – sequence: 8 givenname: Zhong‐Lu surname: Guo fullname: Guo, Zhong‐Lu organization: Hebei University of Technology – sequence: 9 givenname: Cheng‐Chun surname: Tang fullname: Tang, Cheng‐Chun organization: Hebei University of Technology – sequence: 10 givenname: Cun‐Ku surname: Dong fullname: Dong, Cun‐Ku email: ckdong@tju.edu.cn organization: Tianjin University – sequence: 11 givenname: Yong‐Jun surname: Chen fullname: Chen, Yong‐Jun email: yongchen@hainu.edu.cn organization: Hainan University – sequence: 12 givenname: Xi‐Wen orcidid: 0000-0002-2811-147X surname: Du fullname: Du, Xi‐Wen email: xwdu@tju.edu.cn organization: Tianjin University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32233052$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1rFEEQhhuJmC-vHmXAi5dZ-7t7jssmmkBIAjF4bHp6qmPH3um1p0fdW36C4D_ML3GWTRQC4qmK4nmKot59tNOnHhB6RfCMYEzf2T7AjGI69VLgZ2iPCEpqphTbmXrOWK20ILtofxhuJ0ZrLF-gXUYpY1jQPdTOq5N1l9MN9Pd3P4_ABxegL9V5cF8g3t_9WqTWxlIdpbGNsGV_hA4qn3J1-TmV5GyxcV2Cqy6-QbYxVp9sgVxdrWIoJfQ3h-i5t3GAlw_1AF2_P_64OKnPLj6cLuZnteNK4roVxEntlbdaYO0UNLKjoGTrhfMNp45qr52TTccE8wqwajnpqOBCq3YzPUBvt3tXOX0dYShmGQYHMdoe0jgYyrSgsuFETuibJ-htGnM_XWcoJ7oRigs-Ua8fqLFdQmdWOSxtXpvH700A3wIup2HI4I0LxZaQ-pJtiIZgswnJbEIyf0KatNkT7XHzP4VmK3wPEdb_oc38_PT4r_sbDNelmg |
| CitedBy_id | crossref_primary_10_1002_smll_202309750 crossref_primary_10_1016_j_jallcom_2025_182357 crossref_primary_10_1038_s41467_024_44725_1 crossref_primary_10_1002_aenm_202203506 crossref_primary_10_1002_adma_202209652 crossref_primary_10_1002_aenm_202102452 crossref_primary_10_1016_j_apsusc_2025_162638 crossref_primary_10_1016_j_jclepro_2021_127980 crossref_primary_10_1002_ange_202307808 crossref_primary_10_1021_acsami_5c07227 crossref_primary_10_1016_j_ijhydene_2024_12_154 crossref_primary_10_1088_1361_6463_ac6d27 crossref_primary_10_1038_s41467_023_37366_3 crossref_primary_10_1088_1674_4926_41_9_091709 crossref_primary_10_1007_s40843_025_3382_4 crossref_primary_10_1016_j_cej_2023_144569 crossref_primary_10_1016_j_apcatb_2021_120406 crossref_primary_10_1016_j_jwpe_2025_108023 crossref_primary_10_1038_s41598_023_43735_1 crossref_primary_10_1016_j_jclepro_2021_128594 crossref_primary_10_1016_S1872_2067_21_63939_6 crossref_primary_10_1039_D2QM00314G crossref_primary_10_1016_j_ijhydene_2020_12_221 crossref_primary_10_1016_j_mtchem_2023_101544 crossref_primary_10_1016_j_apsusc_2022_152899 crossref_primary_10_1002_anie_202307808 crossref_primary_10_1016_j_ecoenv_2024_115927 crossref_primary_10_1016_j_compositesb_2023_110601 crossref_primary_10_1016_j_cej_2021_134476 crossref_primary_10_1002_aenm_202100640 crossref_primary_10_1016_j_jcis_2022_03_090 crossref_primary_10_1002_adfm_202207438 crossref_primary_10_1016_j_jallcom_2024_177985 crossref_primary_10_1016_j_matchemphys_2022_126292 crossref_primary_10_1002_adfm_202301947 crossref_primary_10_1016_j_jcis_2023_07_151 crossref_primary_10_1002_aenm_202003268 crossref_primary_10_1016_j_apsusc_2021_152260 crossref_primary_10_1016_j_cej_2023_147939 crossref_primary_10_1016_j_jece_2024_112989 crossref_primary_10_1016_j_jmst_2024_05_019 crossref_primary_10_1039_D2NJ02628G crossref_primary_10_1016_j_jcis_2024_02_184 crossref_primary_10_1016_j_electacta_2022_140547 crossref_primary_10_1016_j_apsusc_2021_150554 crossref_primary_10_1016_j_jhazmat_2023_132995 crossref_primary_10_3390_catal11111394 crossref_primary_10_1016_j_fuel_2024_131119 crossref_primary_10_1016_j_apcatb_2024_124496 crossref_primary_10_1016_j_apcatb_2021_120154 crossref_primary_10_1016_j_ijhydene_2022_10_099 |
| Cites_doi | 10.1021/ja203296z 10.1021/acs.inorgchem.7b03213 10.1016/j.jallcom.2013.01.050 10.1002/anie.201807332 10.1126/science.aaa3145 10.1021/cs4002089 10.1016/S0021-9517(02)00104-5 10.1246/bcsj.77.1427 10.1126/science.1200448 10.1002/ange.201704358 10.1021/acsami.8b13371 10.1038/s41929-018-0134-1 10.1039/b902023c 10.1002/adma.201804653 10.1002/anie.201502226 10.1016/j.scib.2017.10.019 10.1021/ja1009025 10.1002/anie.201502686 10.1016/j.apcatb.2018.10.051 10.1039/C5SC04572J 10.1002/smtd.201800083 10.1007/s11244-005-3838-9 10.1039/C3CS60378D 10.1002/anie.201502836 10.1038/ncomms11819 10.1039/C8TA01846D 10.1002/ange.201502686 10.1021/acscatal.8b01567 10.1021/acscatal.8b01645 10.1039/C2CP42649H 10.1002/ange.201502836 10.1038/440295a 10.1021/jacs.8b07855 10.1002/smll.201804832 10.1039/C6TA07482K 10.1021/cr500562m 10.1126/science.aad1920 10.1039/C8EE01299G 10.1039/C4EE03271C 10.1016/j.jpowsour.2018.08.028 10.1016/j.jcat.2019.03.025 10.1039/C5EE01434D 10.1038/414625a 10.1021/jacs.7b12972 10.1016/j.apcata.2006.08.017 10.1039/C5TA03845F 10.1039/c3cc48026g 10.1016/j.nanoen.2019.03.010 10.1021/ja304030y 10.1002/anie.201704358 10.1016/j.apcatb.2017.12.064 10.1021/jp064893e 10.1038/nnano.2013.272 10.1039/a908800h 10.1002/ange.201807332 10.1002/ange.201502226 10.1038/ncomms1492 10.1039/C9TA01925A 10.1002/smll.201101660 10.1002/cctc.201500845 10.1039/C4SC00565A 10.1039/C6TA10728A 10.1016/j.apcatb.2018.09.021 10.1038/35104607 |
| ContentType | Journal Article |
| Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
| DOI | 10.1002/anie.202002650 |
| DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | 11515 |
| ExternalDocumentID | 32233052 10_1002_anie_202002650 ANIE202002650 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51871160, 51671141, 51471115 – fundername: National Natural Science Foundation of China grantid: 51871160, 51671141, 51471115 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI ABUFD AEYWJ AGHNM AGYGG CITATION O8X NPM 7TM K9. 7X8 |
| ID | FETCH-LOGICAL-c4760-b51c68f7fa8508c7e96d2e76bf5cf942c28f8cc69d353f7e07b41d254587b69d3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000531343200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Fri Jul 11 16:16:30 EDT 2025 Tue Oct 07 06:56:36 EDT 2025 Mon Jul 21 05:56:42 EDT 2025 Tue Nov 18 22:28:23 EST 2025 Sat Nov 29 02:35:51 EST 2025 Wed Jan 22 16:33:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 28 |
| Keywords | nickel laser ablation cobalt water splitting photocatalysis |
| Language | English |
| License | 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4760-b51c68f7fa8508c7e96d2e76bf5cf942c28f8cc69d353f7e07b41d254587b69d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2811-147X |
| PMID | 32233052 |
| PQID | 2418957454 |
| PQPubID | 946352 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_2385269416 proquest_journals_2418957454 pubmed_primary_32233052 crossref_citationtrail_10_1002_anie_202002650 crossref_primary_10_1002_anie_202002650 wiley_primary_10_1002_anie_202002650_ANIE202002650 |
| PublicationCentury | 2000 |
| PublicationDate | July 6, 2020 |
| PublicationDateYYYYMMDD | 2020-07-06 |
| PublicationDate_xml | – month: 07 year: 2020 text: July 6, 2020 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Angewandte Chemie International Edition |
| PublicationTitleAlternate | Angew Chem Int Ed Engl |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 5 2013; 3 2015; 347 2019; 12 2019; 15 2019; 59 2018; 400 2000; 2 2013; 560 2019; 243 2019; 241 2004; 77 2009; 11 2018; 6 2018; 8 2013; 15 2014; 5 2018; 2 2012; 134 2018; 1 2015 2015; 54 127 2006; 440 2018; 30 2014; 9 2014; 50 2016; 351 2001; 414 2005; 35 2017; 62 2019; 7 2018; 140 2003; 216 2011; 2 2015; 3 2018; 226 2006; 110 2017 2017; 56 129 2006; 314 2015; 8 2015; 7 2011; 133 2019 2019; 58 131 2011; 331 2014; 43 2016; 7 2015; 115 2010; 132 2019; 372 2018; 10 2012; 8 2018; 57 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_49_2 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_2 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_10_2 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_56_2 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_2 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
| References_xml | – volume: 2 start-page: 486 year: 2011 publication-title: Nat. Commun. – volume: 5 start-page: 3976 year: 2014 end-page: 3982 publication-title: Chem. Sci. – volume: 2 start-page: 1319 year: 2000 end-page: 1324 publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 2825 year: 2015 end-page: 2850 publication-title: Energy Environ. Sci. – volume: 331 start-page: 746 year: 2011 end-page: 750 publication-title: Science – volume: 110 start-page: 25266 year: 2006 end-page: 22527 publication-title: J. Phys. Chem. B – volume: 400 start-page: 190 year: 2018 end-page: 197 publication-title: J. Power Sources – volume: 3 start-page: 18521 year: 2015 end-page: 18527 publication-title: J. Mater. Chem. A – volume: 8 start-page: 8649 year: 2018 end-page: 8658 publication-title: ACS Catal. – volume: 2 year: 2018 publication-title: Small Methods – volume: 226 start-page: 412 year: 2018 end-page: 420 publication-title: Appl. Catal. B – volume: 134 start-page: 14275 year: 2012 end-page: 14278 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 7399 7507 year: 2015 2015 end-page: 7404 7512 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 start-page: 644 year: 2019 end-page: 650 publication-title: Nano Energy – volume: 241 start-page: 28 year: 2019 end-page: 40 publication-title: Appl. Catal. B – volume: 15 start-page: 3083 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 54 127 start-page: 8498 8618 year: 2015 2015 end-page: 8501 8621 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 8722 8846 year: 2015 2015 end-page: 8727 8851 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 243 start-page: 253 year: 2019 end-page: 261 publication-title: Appl. Catal. B – volume: 1 start-page: 756 year: 2018 publication-title: Nat. Catal. – volume: 56 129 start-page: 9312 9440 year: 2017 2017 end-page: 9317 9445 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 133 start-page: 11054 year: 2011 end-page: 11057 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 1251 year: 2018 end-page: 1254 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 5621 year: 2018 end-page: 5629 publication-title: ACS Catal. – volume: 7 start-page: 4163 year: 2015 end-page: 4172 publication-title: ChemCatChem – volume: 5 start-page: 842 year: 2017 end-page: 850 publication-title: J. Mater. Chem. A – volume: 7 start-page: 11170 year: 2019 end-page: 11176 publication-title: J. Mater. Chem. A – volume: 414 start-page: 338 year: 2001 publication-title: Nature – volume: 7 start-page: 3062 year: 2016 end-page: 3066 publication-title: Chem. Sci. – volume: 140 start-page: 12256 year: 2018 end-page: 12262 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 2732 year: 2017 end-page: 2738 publication-title: J. Mater. Chem. A – volume: 216 start-page: 505 year: 2003 end-page: 516 publication-title: J. Catal. – volume: 43 start-page: 7520 year: 2014 end-page: 7535 publication-title: Chem. Soc. Rev. – volume: 35 start-page: 305 year: 2005 end-page: 310 publication-title: Top. Catal. – volume: 115 start-page: 623 year: 2015 end-page: 636 publication-title: Chem. Rev. – volume: 58 131 start-page: 3032 3064 year: 2019 2019 end-page: 3036 3068 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 372 start-page: 299 year: 2019 end-page: 310 publication-title: J. Catal. – volume: 347 start-page: 970 year: 2015 end-page: 974 publication-title: Science – volume: 351 year: 2016 publication-title: Science – volume: 3 start-page: 1486 year: 2013 end-page: 1503 publication-title: ACS Catal. – volume: 560 start-page: 15 year: 2013 end-page: 19 publication-title: J. Alloys Compd. – volume: 8 start-page: 37 year: 2012 end-page: 42 publication-title: Small – volume: 57 start-page: 3840 year: 2018 end-page: 3854 publication-title: Inorg. Chem. – volume: 12 start-page: 631 year: 2019 end-page: 639 publication-title: Energy Environ. Sci. – volume: 77 start-page: 1427 year: 2004 end-page: 1442 publication-title: Bull. Chem. Soc. Jpn. – volume: 15 year: 2019 publication-title: Small – volume: 414 start-page: 625 year: 2001 publication-title: Nature – volume: 50 start-page: 2002 year: 2014 end-page: 2004 publication-title: Chem. Commun. – volume: 440 start-page: 295 year: 2006 publication-title: Nature – volume: 62 start-page: 1510 year: 2017 end-page: 1518 publication-title: Sci. Bull. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 6 start-page: 9057 year: 2018 end-page: 9063 publication-title: J. Mater. Chem. A – volume: 132 start-page: 5858 year: 2010 end-page: 5868 publication-title: J. Am. Chem. Soc. – volume: 314 start-page: 179 year: 2006 end-page: 183 publication-title: Appl. Catal. A – volume: 7 start-page: 11819 year: 2016 publication-title: Nat. Commun. – volume: 8 start-page: 731 year: 2015 end-page: 759 publication-title: Energy Environ. Sci. – volume: 10 start-page: 38066 year: 2018 end-page: 38072 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 69 year: 2014 publication-title: Nat. Nanotechnol. – volume: 11 start-page: 5369 year: 2009 end-page: 5376 publication-title: Phys. Chem. Chem. Phys. – ident: e_1_2_6_11_1 doi: 10.1021/ja203296z – ident: e_1_2_6_33_1 doi: 10.1021/acs.inorgchem.7b03213 – ident: e_1_2_6_37_1 doi: 10.1016/j.jallcom.2013.01.050 – ident: e_1_2_6_26_1 doi: 10.1002/anie.201807332 – ident: e_1_2_6_5_1 doi: 10.1126/science.aaa3145 – ident: e_1_2_6_8_1 doi: 10.1021/cs4002089 – ident: e_1_2_6_22_1 doi: 10.1016/S0021-9517(02)00104-5 – ident: e_1_2_6_24_1 doi: 10.1246/bcsj.77.1427 – ident: e_1_2_6_41_1 doi: 10.1126/science.1200448 – ident: e_1_2_6_40_2 doi: 10.1002/ange.201704358 – ident: e_1_2_6_18_1 doi: 10.1021/acsami.8b13371 – ident: e_1_2_6_39_1 doi: 10.1038/s41929-018-0134-1 – ident: e_1_2_6_44_1 doi: 10.1039/b902023c – ident: e_1_2_6_59_1 doi: 10.1002/adma.201804653 – ident: e_1_2_6_49_1 doi: 10.1002/anie.201502226 – ident: e_1_2_6_51_1 doi: 10.1016/j.scib.2017.10.019 – ident: e_1_2_6_21_1 doi: 10.1021/ja1009025 – ident: e_1_2_6_10_1 doi: 10.1002/anie.201502686 – ident: e_1_2_6_16_1 doi: 10.1016/j.apcatb.2018.10.051 – ident: e_1_2_6_43_1 doi: 10.1039/C5SC04572J – ident: e_1_2_6_53_1 doi: 10.1002/smtd.201800083 – ident: e_1_2_6_23_1 doi: 10.1007/s11244-005-3838-9 – ident: e_1_2_6_3_1 doi: 10.1039/C3CS60378D – ident: e_1_2_6_56_1 doi: 10.1002/anie.201502836 – ident: e_1_2_6_17_1 doi: 10.1038/ncomms11819 – ident: e_1_2_6_48_1 doi: 10.1039/C8TA01846D – ident: e_1_2_6_10_2 doi: 10.1002/ange.201502686 – ident: e_1_2_6_52_1 doi: 10.1021/acscatal.8b01567 – ident: e_1_2_6_7_1 doi: 10.1021/acscatal.8b01645 – ident: e_1_2_6_36_1 doi: 10.1039/C2CP42649H – ident: e_1_2_6_56_2 doi: 10.1002/ange.201502836 – ident: e_1_2_6_20_1 doi: 10.1038/440295a – ident: e_1_2_6_27_1 doi: 10.1021/jacs.8b07855 – ident: e_1_2_6_32_1 doi: 10.1002/smll.201804832 – ident: e_1_2_6_50_1 doi: 10.1039/C6TA07482K – ident: e_1_2_6_57_1 doi: 10.1021/cr500562m – ident: e_1_2_6_1_1 doi: 10.1126/science.aad1920 – ident: e_1_2_6_9_1 doi: 10.1039/C8EE01299G – ident: e_1_2_6_12_1 doi: 10.1039/C4EE03271C – ident: e_1_2_6_55_1 doi: 10.1016/j.jpowsour.2018.08.028 – ident: e_1_2_6_31_1 doi: 10.1016/j.jcat.2019.03.025 – ident: e_1_2_6_4_1 doi: 10.1039/C5EE01434D – ident: e_1_2_6_19_1 doi: 10.1038/414625a – ident: e_1_2_6_6_1 doi: 10.1021/jacs.7b12972 – ident: e_1_2_6_25_1 doi: 10.1016/j.apcata.2006.08.017 – ident: e_1_2_6_47_1 doi: 10.1039/C5TA03845F – ident: e_1_2_6_28_1 doi: 10.1039/c3cc48026g – ident: e_1_2_6_38_1 doi: 10.1016/j.nanoen.2019.03.010 – ident: e_1_2_6_34_1 doi: 10.1021/ja304030y – ident: e_1_2_6_40_1 doi: 10.1002/anie.201704358 – ident: e_1_2_6_13_1 doi: 10.1016/j.apcatb.2017.12.064 – ident: e_1_2_6_29_1 doi: 10.1021/jp064893e – ident: e_1_2_6_30_1 doi: 10.1038/nnano.2013.272 – ident: e_1_2_6_54_1 doi: 10.1039/a908800h – ident: e_1_2_6_26_2 doi: 10.1002/ange.201807332 – ident: e_1_2_6_49_2 doi: 10.1002/ange.201502226 – ident: e_1_2_6_42_1 doi: 10.1038/ncomms1492 – ident: e_1_2_6_15_1 doi: 10.1039/C9TA01925A – ident: e_1_2_6_46_1 doi: 10.1002/smll.201101660 – ident: e_1_2_6_35_1 doi: 10.1002/cctc.201500845 – ident: e_1_2_6_58_1 doi: 10.1039/C4SC00565A – ident: e_1_2_6_14_1 doi: 10.1039/C6TA10728A – ident: e_1_2_6_45_1 doi: 10.1016/j.apcatb.2018.09.021 – ident: e_1_2_6_2_1 doi: 10.1038/35104607 |
| SSID | ssj0028806 |
| Score | 2.57245 |
| Snippet | Developing highly efficient and low‐cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen... Developing highly efficient and low-cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 11510 |
| SubjectTerms | Ablation Catalysts Chemical evolution Clean energy Cobalt Composition Hydrogen Hydrogen evolution Hydrogen-based energy Intermetallic compounds Ions Irradiation laser ablation Light irradiation Nickel Photocatalysis Photocatalysts Solar energy Solar power Splitting Water splitting |
| Title | A Hydrogen‐Deficient Nickel–Cobalt Double Hydroxide for Photocatalytic Overall Water Splitting |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202002650 https://www.ncbi.nlm.nih.gov/pubmed/32233052 https://www.proquest.com/docview/2418957454 https://www.proquest.com/docview/2385269416 |
| Volume | 59 |
| WOSCitedRecordID | wos000531343200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFoleeD8CpTISEierieNHfFxtuypStVRAYW9R_BIVq021u63orT8BiX_YX8I4yQZWCCHBLY-JY43H9je25xuAV6GyaWWYpDIwTblknGphHdUuw_ncVFY14dEfj9RkUkyn-viXKP6WH6JfcIs9oxmvYwevzHLvJ2lojMBG_y4eMpDRad9iaLx8AFv778YnR73ThfbZRhjlOY2J6NfEjSnb2yxhc2L6DW1ugtdm9hnf_f9634M7HfIkw9ZU7sMNP38At0frhG8PwQzJ4aVb1GhS11ff9n3klsApiaCxfPGz66vvo8gdsiKIuc3Mt7JfT50niHvJ8ed6VTdrQZdYPnl7Ede6ZuQTQtkFeY9Itzlf_QhOxgcfRoe0S8FALVcypUZkVhZBhapAJGeV19Ixr6QJwgbNmWVFKKyV2uUiD8qnyvDMsbgbp0x8-hgG83runwJxIXjtROZsatGpzAonLJfoTTlj85ybBOha_6Xt-MljmoxZ2TIrszJqruw1l8DrXv6sZeb4o-TOujnLrocuS0QuhRaKC57Ay_41ajxumFRzX5-jTF6IJtJXJvCkNYP-VzgQ5jhWsgRY09p_qUM5nLw56O-e_ctHz2E7XjdnheUODFaLc_8CbtmL1elysQs31bTY7az_B9O3BS0 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7KppBe-m7qNE1VKPQkYst62Mdlk2VDt9vQJm1uxnqRkGUdNpvQ3PITCv2H-SUd2V6HpZRC6dHyWBbSjPTNaB4A73xp4lIzSaVnOeWScZoLY2luEzzPdWlUHR79dawmk-z4OD9ovQlDLEyTH6IzuAXJqPfrIODBIL1zlzU0hGCjghe8DGTQ2tc48pLowdru5-HRuNO6kEGbEKM0paES_TJzY8x2VntYPZl-g5ur6LU-foaP_sPAH8PDFnuSfsMsT-Cemz2F9cGy5Nsz0H0yurbzCpnq9ubHrgvZJfBQIsguZ256e_NzELKHLAiibj11De33U-sIIl9ycFItqtoadI39k09Xwdo1Jd8QzM7JF8S6tYf1czga7h0ORrQtwkANVzKmWiRGZl75MkMsZ5TLpWVOSe2F8TlnhmU-M0bmNhWpVy5WmieWhfs4pUPrC-jNqpl7CcR673IrEmtig2plkllhuER9ymqTplxHQJcLUJg2Q3kolDEtmtzKrAgzV3QzF8H7jv68yc3xR8qt5XoWrYxeFIhdslwoLngEb7vXOOPhyqScueoSaZCj6lhfGcFGwwfdr3ArTHG3ZBGwern_MoaiP9nf6542_-WjN7A-Ovw4Lsb7kw-v4EForz2H5Rb0FvNL9xrum6vF6cV8uxWCX1FLCDU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hFgEX3o9AASMhcbKaOH7Ex9VuV61YLSug0FsUv0TFalNttxW99Scg8Q_7Sxgn2aAVQkiIY5yJY9kznm_seQC8DpVNK8MklYFpyiXjVAvrqHYZ6nNTWdWER3-aqOm0ODrSs86bMMbCtPkh-gO3KBnNfh0F3J-4sPsra2gMwUYDL3oZyGi1b3OhJcrm9uj9-HDSW13IoG2IUZ7TWIl-nbkxZbubPWxqpt_g5iZ6bdTP-M5_GPhduN1hTzJomeUeXPOL-3BzuC759gDMgOxfuGWNTHV1-X3kY3YJVEoE2eWrn19d_hjG7CErgqjbzH1L--3YeYLIl8y-1Ku6OQ26wP7Ju_N42jUnnxHMLskHxLqNh_VDOBzvfRzu064IA7VcyZQakVlZBBWqArGcVV5Lx7ySJggbNGeWFaGwVmqXizwonyrDM8fifZwysfURbC3qhX8CxIXgtROZs6lFszIrnLBcoj3ljM1zbhKg6wUobZehPBbKmJdtbmVWxpkr-5lL4E1Pf9Lm5vgj5c56PctORk9LxC6FFooLnsCr_jXOeLwyqRa-PkOavBBNrK9M4HHLB_2vcCvMcbdkCbBmuf8yhnIwPdjrn57-y0cv4cZsNC4nB9O3z-BWbG4ch-UObK2WZ_45XLfnq-PT5YtOBn4Cz8sHsA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hydrogen%E2%80%90Deficient+Nickel%E2%80%93Cobalt+Double+Hydroxide+for+Photocatalytic+Overall+Water+Splitting&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Min&rft.au=Wang%2C+Jia%E2%80%90Qi&rft.au=Xi%2C+Cong&rft.au=Cheng%2C+Chuan%E2%80%90Qi&rft.date=2020-07-06&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=28&rft.spage=11510&rft.epage=11515&rft_id=info:doi/10.1002%2Fanie.202002650&rft.externalDBID=10.1002%252Fanie.202002650&rft.externalDocID=ANIE202002650 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |