A Hydrogen‐Deficient Nickel–Cobalt Double Hydroxide for Photocatalytic Overall Water Splitting

Developing highly efficient and low‐cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel–cobalt double hydroxide can achieve overall water splitting by itself upon solar l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition Jg. 59; H. 28; S. 11510 - 11515
Hauptverfasser: Wang, Min, Wang, Jia‐Qi, Xi, Cong, Cheng, Chuan‐Qi, Zou, Cheng‐Qin, Zhang, Rui, Xie, Ya‐Meng, Guo, Zhong‐Lu, Tang, Cheng‐Chun, Dong, Cun‐Ku, Chen, Yong‐Jun, Du, Xi‐Wen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 06.07.2020
Ausgabe:International ed. in English
Schlagworte:
ISSN:1433-7851, 1521-3773, 1521-3773
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Developing highly efficient and low‐cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel–cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble‐metal co‐catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so‐called L‐NiCo nanosheets with a nonstoichiometric composition and O2−/Co3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O2− and Co3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H2 evolution rate of 1.7 μmol h−1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm. A single‐phase photocatalyst, a hydrogen‐deficient nickel–cobalt double hydroxide, was generated by laser ablation. This photocatalyst can drive overall water splitting under solar light irradiation in the absence of sacrificial agents and noble metal co‐catalysts because of its unique composition and structure, with partially removed hydrogen atoms as well as O2− and Co3+ ions exposed on the surface.
AbstractList Developing highly efficient and low‐cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel–cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble‐metal co‐catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so‐called L‐NiCo nanosheets with a nonstoichiometric composition and O2−/Co3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O2− and Co3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H2 evolution rate of 1.7 μmol h−1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm. A single‐phase photocatalyst, a hydrogen‐deficient nickel–cobalt double hydroxide, was generated by laser ablation. This photocatalyst can drive overall water splitting under solar light irradiation in the absence of sacrificial agents and noble metal co‐catalysts because of its unique composition and structure, with partially removed hydrogen atoms as well as O2− and Co3+ ions exposed on the surface.
Developing highly efficient and low-cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel-cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble-metal co-catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so-called L-NiCo nanosheets with a nonstoichiometric composition and O /Co ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O and Co ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H evolution rate of 1.7 μmol h under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm.
Developing highly efficient and low‐cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel–cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble‐metal co‐catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so‐called L‐NiCo nanosheets with a nonstoichiometric composition and O 2− /Co 3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O 2− and Co 3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H 2 evolution rate of 1.7 μmol h −1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm.
Developing highly efficient and low-cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel-cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble-metal co-catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so-called L-NiCo nanosheets with a nonstoichiometric composition and O2- /Co3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O2- and Co3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H2 evolution rate of 1.7 μmol h-1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm.Developing highly efficient and low-cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel-cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble-metal co-catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so-called L-NiCo nanosheets with a nonstoichiometric composition and O2- /Co3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O2- and Co3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H2 evolution rate of 1.7 μmol h-1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm.
Developing highly efficient and low‐cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel–cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble‐metal co‐catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so‐called L‐NiCo nanosheets with a nonstoichiometric composition and O2−/Co3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O2− and Co3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H2 evolution rate of 1.7 μmol h−1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm.
Author Wang, Jia‐Qi
Xi, Cong
Cheng, Chuan‐Qi
Xie, Ya‐Meng
Zou, Cheng‐Qin
Wang, Min
Zhang, Rui
Guo, Zhong‐Lu
Chen, Yong‐Jun
Du, Xi‐Wen
Dong, Cun‐Ku
Tang, Cheng‐Chun
Author_xml – sequence: 1
  givenname: Min
  surname: Wang
  fullname: Wang, Min
  organization: Hainan University
– sequence: 2
  givenname: Jia‐Qi
  surname: Wang
  fullname: Wang, Jia‐Qi
  organization: Tianjin University
– sequence: 3
  givenname: Cong
  surname: Xi
  fullname: Xi, Cong
  organization: Tianjin University
– sequence: 4
  givenname: Chuan‐Qi
  surname: Cheng
  fullname: Cheng, Chuan‐Qi
  organization: Tianjin University
– sequence: 5
  givenname: Cheng‐Qin
  surname: Zou
  fullname: Zou, Cheng‐Qin
  organization: Tianjin University
– sequence: 6
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  organization: Tianjin University
– sequence: 7
  givenname: Ya‐Meng
  surname: Xie
  fullname: Xie, Ya‐Meng
  organization: Tianjin University
– sequence: 8
  givenname: Zhong‐Lu
  surname: Guo
  fullname: Guo, Zhong‐Lu
  organization: Hebei University of Technology
– sequence: 9
  givenname: Cheng‐Chun
  surname: Tang
  fullname: Tang, Cheng‐Chun
  organization: Hebei University of Technology
– sequence: 10
  givenname: Cun‐Ku
  surname: Dong
  fullname: Dong, Cun‐Ku
  email: ckdong@tju.edu.cn
  organization: Tianjin University
– sequence: 11
  givenname: Yong‐Jun
  surname: Chen
  fullname: Chen, Yong‐Jun
  email: yongchen@hainu.edu.cn
  organization: Hainan University
– sequence: 12
  givenname: Xi‐Wen
  orcidid: 0000-0002-2811-147X
  surname: Du
  fullname: Du, Xi‐Wen
  email: xwdu@tju.edu.cn
  organization: Tianjin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32233052$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFEEQhhuJmC-vHmXAi5dZ-7t7jssmmkBIAjF4bHp6qmPH3um1p0fdW36C4D_ML3GWTRQC4qmK4nmKot59tNOnHhB6RfCMYEzf2T7AjGI69VLgZ2iPCEpqphTbmXrOWK20ILtofxhuJ0ZrLF-gXUYpY1jQPdTOq5N1l9MN9Pd3P4_ABxegL9V5cF8g3t_9WqTWxlIdpbGNsGV_hA4qn3J1-TmV5GyxcV2Cqy6-QbYxVp9sgVxdrWIoJfQ3h-i5t3GAlw_1AF2_P_64OKnPLj6cLuZnteNK4roVxEntlbdaYO0UNLKjoGTrhfMNp45qr52TTccE8wqwajnpqOBCq3YzPUBvt3tXOX0dYShmGQYHMdoe0jgYyrSgsuFETuibJ-htGnM_XWcoJ7oRigs-Ua8fqLFdQmdWOSxtXpvH700A3wIup2HI4I0LxZaQ-pJtiIZgswnJbEIyf0KatNkT7XHzP4VmK3wPEdb_oc38_PT4r_sbDNelmg
CitedBy_id crossref_primary_10_1002_smll_202309750
crossref_primary_10_1016_j_jallcom_2025_182357
crossref_primary_10_1038_s41467_024_44725_1
crossref_primary_10_1002_aenm_202203506
crossref_primary_10_1002_adma_202209652
crossref_primary_10_1002_aenm_202102452
crossref_primary_10_1016_j_apsusc_2025_162638
crossref_primary_10_1016_j_jclepro_2021_127980
crossref_primary_10_1002_ange_202307808
crossref_primary_10_1021_acsami_5c07227
crossref_primary_10_1016_j_ijhydene_2024_12_154
crossref_primary_10_1088_1361_6463_ac6d27
crossref_primary_10_1038_s41467_023_37366_3
crossref_primary_10_1088_1674_4926_41_9_091709
crossref_primary_10_1007_s40843_025_3382_4
crossref_primary_10_1016_j_cej_2023_144569
crossref_primary_10_1016_j_apcatb_2021_120406
crossref_primary_10_1016_j_jwpe_2025_108023
crossref_primary_10_1038_s41598_023_43735_1
crossref_primary_10_1016_j_jclepro_2021_128594
crossref_primary_10_1016_S1872_2067_21_63939_6
crossref_primary_10_1039_D2QM00314G
crossref_primary_10_1016_j_ijhydene_2020_12_221
crossref_primary_10_1016_j_mtchem_2023_101544
crossref_primary_10_1016_j_apsusc_2022_152899
crossref_primary_10_1002_anie_202307808
crossref_primary_10_1016_j_ecoenv_2024_115927
crossref_primary_10_1016_j_compositesb_2023_110601
crossref_primary_10_1016_j_cej_2021_134476
crossref_primary_10_1002_aenm_202100640
crossref_primary_10_1016_j_jcis_2022_03_090
crossref_primary_10_1002_adfm_202207438
crossref_primary_10_1016_j_jallcom_2024_177985
crossref_primary_10_1016_j_matchemphys_2022_126292
crossref_primary_10_1002_adfm_202301947
crossref_primary_10_1016_j_jcis_2023_07_151
crossref_primary_10_1002_aenm_202003268
crossref_primary_10_1016_j_apsusc_2021_152260
crossref_primary_10_1016_j_cej_2023_147939
crossref_primary_10_1016_j_jece_2024_112989
crossref_primary_10_1016_j_jmst_2024_05_019
crossref_primary_10_1039_D2NJ02628G
crossref_primary_10_1016_j_jcis_2024_02_184
crossref_primary_10_1016_j_electacta_2022_140547
crossref_primary_10_1016_j_apsusc_2021_150554
crossref_primary_10_1016_j_jhazmat_2023_132995
crossref_primary_10_3390_catal11111394
crossref_primary_10_1016_j_fuel_2024_131119
crossref_primary_10_1016_j_apcatb_2024_124496
crossref_primary_10_1016_j_apcatb_2021_120154
crossref_primary_10_1016_j_ijhydene_2022_10_099
Cites_doi 10.1021/ja203296z
10.1021/acs.inorgchem.7b03213
10.1016/j.jallcom.2013.01.050
10.1002/anie.201807332
10.1126/science.aaa3145
10.1021/cs4002089
10.1016/S0021-9517(02)00104-5
10.1246/bcsj.77.1427
10.1126/science.1200448
10.1002/ange.201704358
10.1021/acsami.8b13371
10.1038/s41929-018-0134-1
10.1039/b902023c
10.1002/adma.201804653
10.1002/anie.201502226
10.1016/j.scib.2017.10.019
10.1021/ja1009025
10.1002/anie.201502686
10.1016/j.apcatb.2018.10.051
10.1039/C5SC04572J
10.1002/smtd.201800083
10.1007/s11244-005-3838-9
10.1039/C3CS60378D
10.1002/anie.201502836
10.1038/ncomms11819
10.1039/C8TA01846D
10.1002/ange.201502686
10.1021/acscatal.8b01567
10.1021/acscatal.8b01645
10.1039/C2CP42649H
10.1002/ange.201502836
10.1038/440295a
10.1021/jacs.8b07855
10.1002/smll.201804832
10.1039/C6TA07482K
10.1021/cr500562m
10.1126/science.aad1920
10.1039/C8EE01299G
10.1039/C4EE03271C
10.1016/j.jpowsour.2018.08.028
10.1016/j.jcat.2019.03.025
10.1039/C5EE01434D
10.1038/414625a
10.1021/jacs.7b12972
10.1016/j.apcata.2006.08.017
10.1039/C5TA03845F
10.1039/c3cc48026g
10.1016/j.nanoen.2019.03.010
10.1021/ja304030y
10.1002/anie.201704358
10.1016/j.apcatb.2017.12.064
10.1021/jp064893e
10.1038/nnano.2013.272
10.1039/a908800h
10.1002/ange.201807332
10.1002/ange.201502226
10.1038/ncomms1492
10.1039/C9TA01925A
10.1002/smll.201101660
10.1002/cctc.201500845
10.1039/C4SC00565A
10.1039/C6TA10728A
10.1016/j.apcatb.2018.09.021
10.1038/35104607
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202002650
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 11515
ExternalDocumentID 32233052
10_1002_anie_202002650
ANIE202002650
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51871160, 51671141, 51471115
– fundername: National Natural Science Foundation of China
  grantid: 51871160, 51671141, 51471115
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
CITATION
O8X
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4760-b51c68f7fa8508c7e96d2e76bf5cf942c28f8cc69d353f7e07b41d254587b69d3
IEDL.DBID DRFUL
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000531343200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 16:16:30 EDT 2025
Tue Oct 07 06:56:36 EDT 2025
Mon Jul 21 05:56:42 EDT 2025
Tue Nov 18 22:28:23 EST 2025
Sat Nov 29 02:35:51 EST 2025
Wed Jan 22 16:33:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords nickel
laser ablation
cobalt
water splitting
photocatalysis
Language English
License 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4760-b51c68f7fa8508c7e96d2e76bf5cf942c28f8cc69d353f7e07b41d254587b69d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2811-147X
PMID 32233052
PQID 2418957454
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2385269416
proquest_journals_2418957454
pubmed_primary_32233052
crossref_citationtrail_10_1002_anie_202002650
crossref_primary_10_1002_anie_202002650
wiley_primary_10_1002_anie_202002650_ANIE202002650
PublicationCentury 2000
PublicationDate July 6, 2020
PublicationDateYYYYMMDD 2020-07-06
PublicationDate_xml – month: 07
  year: 2020
  text: July 6, 2020
  day: 06
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2013; 3
2015; 347
2019; 12
2019; 15
2019; 59
2018; 400
2000; 2
2013; 560
2019; 243
2019; 241
2004; 77
2009; 11
2018; 6
2018; 8
2013; 15
2014; 5
2018; 2
2012; 134
2018; 1
2015 2015; 54 127
2006; 440
2018; 30
2014; 9
2014; 50
2016; 351
2001; 414
2005; 35
2017; 62
2019; 7
2018; 140
2003; 216
2011; 2
2015; 3
2018; 226
2006; 110
2017 2017; 56 129
2006; 314
2015; 8
2015; 7
2011; 133
2019 2019; 58 131
2011; 331
2014; 43
2016; 7
2015; 115
2010; 132
2019; 372
2018; 10
2012; 8
2018; 57
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_49_2
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_2
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_10_2
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_56_2
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_2
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 2
  start-page: 486
  year: 2011
  publication-title: Nat. Commun.
– volume: 5
  start-page: 3976
  year: 2014
  end-page: 3982
  publication-title: Chem. Sci.
– volume: 2
  start-page: 1319
  year: 2000
  end-page: 1324
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 2825
  year: 2015
  end-page: 2850
  publication-title: Energy Environ. Sci.
– volume: 331
  start-page: 746
  year: 2011
  end-page: 750
  publication-title: Science
– volume: 110
  start-page: 25266
  year: 2006
  end-page: 22527
  publication-title: J. Phys. Chem. B
– volume: 400
  start-page: 190
  year: 2018
  end-page: 197
  publication-title: J. Power Sources
– volume: 3
  start-page: 18521
  year: 2015
  end-page: 18527
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 8649
  year: 2018
  end-page: 8658
  publication-title: ACS Catal.
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 226
  start-page: 412
  year: 2018
  end-page: 420
  publication-title: Appl. Catal. B
– volume: 134
  start-page: 14275
  year: 2012
  end-page: 14278
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 7399 7507
  year: 2015 2015
  end-page: 7404 7512
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59
  start-page: 644
  year: 2019
  end-page: 650
  publication-title: Nano Energy
– volume: 241
  start-page: 28
  year: 2019
  end-page: 40
  publication-title: Appl. Catal. B
– volume: 15
  start-page: 3083
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 54 127
  start-page: 8498 8618
  year: 2015 2015
  end-page: 8501 8621
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 8722 8846
  year: 2015 2015
  end-page: 8727 8851
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 243
  start-page: 253
  year: 2019
  end-page: 261
  publication-title: Appl. Catal. B
– volume: 1
  start-page: 756
  year: 2018
  publication-title: Nat. Catal.
– volume: 56 129
  start-page: 9312 9440
  year: 2017 2017
  end-page: 9317 9445
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 133
  start-page: 11054
  year: 2011
  end-page: 11057
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 1251
  year: 2018
  end-page: 1254
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 5621
  year: 2018
  end-page: 5629
  publication-title: ACS Catal.
– volume: 7
  start-page: 4163
  year: 2015
  end-page: 4172
  publication-title: ChemCatChem
– volume: 5
  start-page: 842
  year: 2017
  end-page: 850
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 11170
  year: 2019
  end-page: 11176
  publication-title: J. Mater. Chem. A
– volume: 414
  start-page: 338
  year: 2001
  publication-title: Nature
– volume: 7
  start-page: 3062
  year: 2016
  end-page: 3066
  publication-title: Chem. Sci.
– volume: 140
  start-page: 12256
  year: 2018
  end-page: 12262
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 2732
  year: 2017
  end-page: 2738
  publication-title: J. Mater. Chem. A
– volume: 216
  start-page: 505
  year: 2003
  end-page: 516
  publication-title: J. Catal.
– volume: 43
  start-page: 7520
  year: 2014
  end-page: 7535
  publication-title: Chem. Soc. Rev.
– volume: 35
  start-page: 305
  year: 2005
  end-page: 310
  publication-title: Top. Catal.
– volume: 115
  start-page: 623
  year: 2015
  end-page: 636
  publication-title: Chem. Rev.
– volume: 58 131
  start-page: 3032 3064
  year: 2019 2019
  end-page: 3036 3068
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 372
  start-page: 299
  year: 2019
  end-page: 310
  publication-title: J. Catal.
– volume: 347
  start-page: 970
  year: 2015
  end-page: 974
  publication-title: Science
– volume: 351
  year: 2016
  publication-title: Science
– volume: 3
  start-page: 1486
  year: 2013
  end-page: 1503
  publication-title: ACS Catal.
– volume: 560
  start-page: 15
  year: 2013
  end-page: 19
  publication-title: J. Alloys Compd.
– volume: 8
  start-page: 37
  year: 2012
  end-page: 42
  publication-title: Small
– volume: 57
  start-page: 3840
  year: 2018
  end-page: 3854
  publication-title: Inorg. Chem.
– volume: 12
  start-page: 631
  year: 2019
  end-page: 639
  publication-title: Energy Environ. Sci.
– volume: 77
  start-page: 1427
  year: 2004
  end-page: 1442
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 414
  start-page: 625
  year: 2001
  publication-title: Nature
– volume: 50
  start-page: 2002
  year: 2014
  end-page: 2004
  publication-title: Chem. Commun.
– volume: 440
  start-page: 295
  year: 2006
  publication-title: Nature
– volume: 62
  start-page: 1510
  year: 2017
  end-page: 1518
  publication-title: Sci. Bull.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  start-page: 9057
  year: 2018
  end-page: 9063
  publication-title: J. Mater. Chem. A
– volume: 132
  start-page: 5858
  year: 2010
  end-page: 5868
  publication-title: J. Am. Chem. Soc.
– volume: 314
  start-page: 179
  year: 2006
  end-page: 183
  publication-title: Appl. Catal. A
– volume: 7
  start-page: 11819
  year: 2016
  publication-title: Nat. Commun.
– volume: 8
  start-page: 731
  year: 2015
  end-page: 759
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 38066
  year: 2018
  end-page: 38072
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 69
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 11
  start-page: 5369
  year: 2009
  end-page: 5376
  publication-title: Phys. Chem. Chem. Phys.
– ident: e_1_2_6_11_1
  doi: 10.1021/ja203296z
– ident: e_1_2_6_33_1
  doi: 10.1021/acs.inorgchem.7b03213
– ident: e_1_2_6_37_1
  doi: 10.1016/j.jallcom.2013.01.050
– ident: e_1_2_6_26_1
  doi: 10.1002/anie.201807332
– ident: e_1_2_6_5_1
  doi: 10.1126/science.aaa3145
– ident: e_1_2_6_8_1
  doi: 10.1021/cs4002089
– ident: e_1_2_6_22_1
  doi: 10.1016/S0021-9517(02)00104-5
– ident: e_1_2_6_24_1
  doi: 10.1246/bcsj.77.1427
– ident: e_1_2_6_41_1
  doi: 10.1126/science.1200448
– ident: e_1_2_6_40_2
  doi: 10.1002/ange.201704358
– ident: e_1_2_6_18_1
  doi: 10.1021/acsami.8b13371
– ident: e_1_2_6_39_1
  doi: 10.1038/s41929-018-0134-1
– ident: e_1_2_6_44_1
  doi: 10.1039/b902023c
– ident: e_1_2_6_59_1
  doi: 10.1002/adma.201804653
– ident: e_1_2_6_49_1
  doi: 10.1002/anie.201502226
– ident: e_1_2_6_51_1
  doi: 10.1016/j.scib.2017.10.019
– ident: e_1_2_6_21_1
  doi: 10.1021/ja1009025
– ident: e_1_2_6_10_1
  doi: 10.1002/anie.201502686
– ident: e_1_2_6_16_1
  doi: 10.1016/j.apcatb.2018.10.051
– ident: e_1_2_6_43_1
  doi: 10.1039/C5SC04572J
– ident: e_1_2_6_53_1
  doi: 10.1002/smtd.201800083
– ident: e_1_2_6_23_1
  doi: 10.1007/s11244-005-3838-9
– ident: e_1_2_6_3_1
  doi: 10.1039/C3CS60378D
– ident: e_1_2_6_56_1
  doi: 10.1002/anie.201502836
– ident: e_1_2_6_17_1
  doi: 10.1038/ncomms11819
– ident: e_1_2_6_48_1
  doi: 10.1039/C8TA01846D
– ident: e_1_2_6_10_2
  doi: 10.1002/ange.201502686
– ident: e_1_2_6_52_1
  doi: 10.1021/acscatal.8b01567
– ident: e_1_2_6_7_1
  doi: 10.1021/acscatal.8b01645
– ident: e_1_2_6_36_1
  doi: 10.1039/C2CP42649H
– ident: e_1_2_6_56_2
  doi: 10.1002/ange.201502836
– ident: e_1_2_6_20_1
  doi: 10.1038/440295a
– ident: e_1_2_6_27_1
  doi: 10.1021/jacs.8b07855
– ident: e_1_2_6_32_1
  doi: 10.1002/smll.201804832
– ident: e_1_2_6_50_1
  doi: 10.1039/C6TA07482K
– ident: e_1_2_6_57_1
  doi: 10.1021/cr500562m
– ident: e_1_2_6_1_1
  doi: 10.1126/science.aad1920
– ident: e_1_2_6_9_1
  doi: 10.1039/C8EE01299G
– ident: e_1_2_6_12_1
  doi: 10.1039/C4EE03271C
– ident: e_1_2_6_55_1
  doi: 10.1016/j.jpowsour.2018.08.028
– ident: e_1_2_6_31_1
  doi: 10.1016/j.jcat.2019.03.025
– ident: e_1_2_6_4_1
  doi: 10.1039/C5EE01434D
– ident: e_1_2_6_19_1
  doi: 10.1038/414625a
– ident: e_1_2_6_6_1
  doi: 10.1021/jacs.7b12972
– ident: e_1_2_6_25_1
  doi: 10.1016/j.apcata.2006.08.017
– ident: e_1_2_6_47_1
  doi: 10.1039/C5TA03845F
– ident: e_1_2_6_28_1
  doi: 10.1039/c3cc48026g
– ident: e_1_2_6_38_1
  doi: 10.1016/j.nanoen.2019.03.010
– ident: e_1_2_6_34_1
  doi: 10.1021/ja304030y
– ident: e_1_2_6_40_1
  doi: 10.1002/anie.201704358
– ident: e_1_2_6_13_1
  doi: 10.1016/j.apcatb.2017.12.064
– ident: e_1_2_6_29_1
  doi: 10.1021/jp064893e
– ident: e_1_2_6_30_1
  doi: 10.1038/nnano.2013.272
– ident: e_1_2_6_54_1
  doi: 10.1039/a908800h
– ident: e_1_2_6_26_2
  doi: 10.1002/ange.201807332
– ident: e_1_2_6_49_2
  doi: 10.1002/ange.201502226
– ident: e_1_2_6_42_1
  doi: 10.1038/ncomms1492
– ident: e_1_2_6_15_1
  doi: 10.1039/C9TA01925A
– ident: e_1_2_6_46_1
  doi: 10.1002/smll.201101660
– ident: e_1_2_6_35_1
  doi: 10.1002/cctc.201500845
– ident: e_1_2_6_58_1
  doi: 10.1039/C4SC00565A
– ident: e_1_2_6_14_1
  doi: 10.1039/C6TA10728A
– ident: e_1_2_6_45_1
  doi: 10.1016/j.apcatb.2018.09.021
– ident: e_1_2_6_2_1
  doi: 10.1038/35104607
SSID ssj0028806
Score 2.5725274
Snippet Developing highly efficient and low‐cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen...
Developing highly efficient and low-cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11510
SubjectTerms Ablation
Catalysts
Chemical evolution
Clean energy
Cobalt
Composition
Hydrogen
Hydrogen evolution
Hydrogen-based energy
Intermetallic compounds
Ions
Irradiation
laser ablation
Light irradiation
Nickel
Photocatalysis
Photocatalysts
Solar energy
Solar power
Splitting
Water splitting
Title A Hydrogen‐Deficient Nickel–Cobalt Double Hydroxide for Photocatalytic Overall Water Splitting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202002650
https://www.ncbi.nlm.nih.gov/pubmed/32233052
https://www.proquest.com/docview/2418957454
https://www.proquest.com/docview/2385269416
Volume 59
WOSCitedRecordID wos000531343200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEC50VtCL70d0XVoQPIXN9CPdOQ6zO6wg46Iuzi2kX7g4TGRmdnFv-xME_-H-EquSTHQQEfQS8uh0mkp191fVXV8BvCQKOa-CSr3AgxSZTwuTVelQKssLcnzEqkk2oadTM5sVx79E8bf8EL3DjXpGM15TB6_sav8naShFYKN9R5sMcjLadzgqrxzAzsG7ycmb3uhC_WwjjIRIKRH9hrgx4_vbNWxPTL-hzW3w2sw-kzv_3-67cLtDnmzUqso9uBYW9-HmeJPw7QHYETu68MsaVerq8ttBIG4JnJIYKsvnML-6_D4m7pA1Q8xt56Et-_XUB4a4lx1_qtd14wu6wPrZ23Pydc3ZR4SyS_YekW6zv_ohnEwOP4yP0i4FQ-qkzrPUqqHLTdSxMojknA5F7nnQuY3KxUJyx000zuWFF0pEHTJt5dBzWo3Tlu4-gsGiXoQnwKSNhC2HQvtKaumqqK3mUtvKWTRTdALpRv6l6_jJKU3GvGyZlXlJkit7ySXwqi__pWXm-GPJ3c3vLLseuioRuZhCaalkAi_6xyhxWjCpFqE-wzLCqCbSN0_gcasG_adwIBQ4VvIEePO3_9KGcjR9fdhfPf2Xl57BLTpv9grnuzBYL8_Cc7jhztenq-UeXNczs9dp_w892wQ0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fS9xAEB_KKdiXqv1nWrVbKPQpmNvsZpPH4_Q46fUqrVLfQvYfFY9LOU-pb34Eod_QT-JMkoscUgqlL4FsNsmyO7P7m9md3wB8IAo5K50MbYwXEUc2zNKoCLtCap6R48MXVbIJNR6np6fZUXOakGJhan6I1uFGmlHN16Tg5JDee2ANpRBsNPDolEFCVvuKQFmSHVjZ_zo4GbVWFwpoHWIUxyFlol8wN0Z8b_kLyyvTI7i5jF6r5Wew_h8avgHPGuzJerWwbMITN30Oa_1FyrcXoHtseG1nJQrV3c3tviN2CVyUGIrLuZvc3fzuE3vInCHq1hNX1_11Zh1D5MuOfpTzsvIGXeP32Zcr8nZN2HcEszP2DbFudcL6JZwMDo77w7BJwhAaoZIo1LJrktQrX6SI5YxyWWK5U4n20vhMcMNTnxqTZDaWsVcuUlp0Laf9OKWp9BV0puXUbQET2hO67MbKFkIJU3ilFRdKF0ajoaICCBcDkJuGoZwSZUzymluZ59RzedtzAXxs6_-suTn-WHN7MZ55o6MXOWKXNJNKSBHA-_Yx9jhtmRRTV15iHZSoKtY3CeB1LQftr3AqjHG25AHwarj_0oa8Nz48aO_e_MtL72BtePx5lI8Ox5_ewlMqr04OJ9vQmc8u3Q6smqv52cVst1GCe7RgBzw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-kFfXF-t3UqisIPoXmNvuRPB53PVos56EW-xayX7R4XMr1Wtq3_glC_8P-Jc4kuZRDRBBfAtlMkmV3Zvc3uzu_AfhAFHJOehm7FC8iTVycZ0kZ94Q0PKeFj1DWySb0eJwdHeWT9jQhxcI0_BDdghtZRj1ek4H7Uxd27lhDKQQbHTw6ZaDIa18XMldom-vDL6PDg87rQgVtQozSNKZM9EvmxoTvrH5hdWb6DW6uotd6-hlt_IeKP4HHLfZk_UZZnsI9P3sGDwfLlG_PwfTZ3pWbV6hUt9c_h57YJXBSYqguP_z09vpmQOwhC4ao20x9I3t54jxD5Msmx9WiqleDrvD77PMFrXZN2XcEs3P2FbFufcL6BRyOdr8N9uI2CUNshVZJbGTPqizoUGaI5az2uXLca2WCtCEX3PIsZNaq3KUyDdon2oie47Qfpw2VvoS1WTXzm8CECYQue6l2pdDClkEbzYU2pTXoqOgI4mUHFLZlKKdEGdOi4VbmBbVc0bVcBB87-dOGm-OPktvL_ixaGz0rELtkudRCigjed4-xxWnLpJz56hxl0kzWsb4qgleNHnS_wqEwxdGSR8Dr7v5LHYr-eH-3u9v6l5fewYPJcFQc7I8_vYZHVFwfHFbbsLaYn_s3cN9eLE7O5m9bG_gFM-gGtw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hydrogen%E2%80%90Deficient+Nickel%E2%80%93Cobalt+Double+Hydroxide+for+Photocatalytic+Overall+Water+Splitting&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Min&rft.au=Wang%2C+Jia%E2%80%90Qi&rft.au=Xi%2C+Cong&rft.au=Cheng%2C+Chuan%E2%80%90Qi&rft.date=2020-07-06&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=28&rft.spage=11510&rft.epage=11515&rft_id=info:doi/10.1002%2Fanie.202002650&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202002650
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon