Best practices for single-cell analysis across modalities

Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and sp...

Full description

Saved in:
Bibliographic Details
Published in:Nature reviews. Genetics Vol. 24; no. 8; pp. 550 - 572
Main Authors: Heumos, Lukas, Schaar, Anna C., Lance, Christopher, Litinetskaya, Anastasia, Drost, Felix, Zappia, Luke, Lücken, Malte D., Strobl, Daniel C., Henao, Juan, Curion, Fabiola, Schiller, Herbert B., Theis, Fabian J.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01.08.2023
Nature Publishing Group
Subjects:
ISSN:1471-0056, 1471-0064, 1471-0064
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices. Practitioners in the field of single-cell omics are now faced with diverse options for analytical tools to process and integrate data from various molecular modalities. In an Expert Recommendation article, the authors provide guidance on robust single-cell data analysis, including choices of best-performing tools from benchmarking studies.
AbstractList Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices.Practitioners in the field of single-cell omics are now faced with diverse options for analytical tools to process and integrate data from various molecular modalities. In an Expert Recommendation article, the authors provide guidance on robust single-cell data analysis, including choices of best-performing tools from benchmarking studies.
Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices. Practitioners in the field of single-cell omics are now faced with diverse options for analytical tools to process and integrate data from various molecular modalities. In an Expert Recommendation article, the authors provide guidance on robust single-cell data analysis, including choices of best-performing tools from benchmarking studies.
Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices.Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices.
Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices.
Author Schiller, Herbert B.
Schaar, Anna C.
Zappia, Luke
Heumos, Lukas
Curion, Fabiola
Lücken, Malte D.
Lance, Christopher
Drost, Felix
Strobl, Daniel C.
Litinetskaya, Anastasia
Henao, Juan
Theis, Fabian J.
Author_xml – sequence: 1
  givenname: Lukas
  orcidid: 0000-0002-8937-3457
  surname: Heumos
  fullname: Heumos, Lukas
  organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Munich; Member of the German Center for Lung Research (DZL), TUM School of Life Sciences Weihenstephan, Technical University of Munich
– sequence: 2
  givenname: Anna C.
  orcidid: 0000-0003-1063-005X
  surname: Schaar
  fullname: Schaar, Anna C.
  organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Munich Center for Machine Learning, Technical University of Munich
– sequence: 3
  givenname: Christopher
  orcidid: 0000-0002-1275-9802
  surname: Lance
  fullname: Lance, Christopher
  organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Department of Paediatrics, Dr von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität München
– sequence: 4
  givenname: Anastasia
  surname: Litinetskaya
  fullname: Litinetskaya, Anastasia
  organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich
– sequence: 5
  givenname: Felix
  orcidid: 0000-0002-2600-4048
  surname: Drost
  fullname: Drost, Felix
  organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, TUM School of Life Sciences Weihenstephan, Technical University of Munich
– sequence: 6
  givenname: Luke
  orcidid: 0000-0001-7744-8565
  surname: Zappia
  fullname: Zappia, Luke
  organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich
– sequence: 7
  givenname: Malte D.
  orcidid: 0000-0001-7464-7921
  surname: Lücken
  fullname: Lücken, Malte D.
  organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Institute of Lung Health and Immunity, Helmholtz Munich
– sequence: 8
  givenname: Daniel C.
  surname: Strobl
  fullname: Strobl, Daniel C.
  organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, TranslaTUM, Center for Translational Cancer Research, Technical University of Munich
– sequence: 9
  givenname: Juan
  surname: Henao
  fullname: Henao, Juan
  organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich
– sequence: 10
  givenname: Fabiola
  orcidid: 0000-0003-2502-8803
  surname: Curion
  fullname: Curion, Fabiola
  organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich
– sequence: 12
  givenname: Herbert B.
  surname: Schiller
  fullname: Schiller, Herbert B.
  organization: Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Munich; Member of the German Center for Lung Research (DZL)
– sequence: 13
  givenname: Fabian J.
  orcidid: 0000-0002-2419-1943
  surname: Theis
  fullname: Theis, Fabian J.
  email: fabian.theis@helmholtz-muenchen.de
  organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Munich Center for Machine Learning, Technical University of Munich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37002403$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPAyEUhYnR-Kj-ARdmEjduRi_DY2Bl1PhKTNzomiADFTMdKkw1_nupfahddAWE79yce84e2uxCZxE6xHCKgYizRDGreQkVKQGY4OXnBtrFtMb5yenm8s74DtpL6Q0Ac1yTbbRDaoCKAtlF8tKmvhhHbXpvbCpciEXy3bC1pbFtW-hOt1_Jp0KbGFIqRqHRre-9Tftoy-k22YP5OUDPN9dPV3flw-Pt_dXFQ2lozfrSARgnjDSylgyzCiiVFEtraQPYMkE0lsQ1BhqhHXUSnOXUgGQNsJoZTAbofDZ3PHkZ2cbYro-6VePoRzp-qaC9-v_T-Vc1DB8K5xQ4VDxPOJlPiOF9kvdVI5-m2-nOhklSVS2JFJQJkdHjFfQtTGLOIFOCCIY55VWmjv5aWnpZxJoBMQN-QovWKeN73fswdejbbE1NG1SzBlVuUP00qD6ztFqRLqavFZGZKGW4G9r4a3uN6huNga3F
CitedBy_id crossref_primary_10_1038_s41556_025_01706_w
crossref_primary_10_1038_s41587_023_01934_1
crossref_primary_10_1016_j_cell_2025_06_009
crossref_primary_10_1016_j_coemr_2024_100524
crossref_primary_10_1016_j_xpro_2024_103475
crossref_primary_10_1038_s44320_025_00088_3
crossref_primary_10_1002_admt_202401953
crossref_primary_10_1007_s12032_025_03002_x
crossref_primary_10_1021_acs_jproteome_4c00091
crossref_primary_10_1093_carcin_bgaf038
crossref_primary_10_2174_0115748936278884240102094058
crossref_primary_10_1002_smtd_202400789
crossref_primary_10_1186_s12974_024_03210_8
crossref_primary_10_1360_SSV_2025_0140
crossref_primary_10_1038_s41592_024_02303_9
crossref_primary_10_1093_nargab_lqaf043
crossref_primary_10_1093_nargab_lqaf042
crossref_primary_10_1038_s41592_023_02067_8
crossref_primary_10_3389_fsysb_2024_1466368
crossref_primary_10_1093_bioadv_vbaf069
crossref_primary_10_3389_fgene_2023_1256991
crossref_primary_10_1093_bioadv_vbae099
crossref_primary_10_1111_imcb_70040
crossref_primary_10_1093_biostatistics_kxaf024
crossref_primary_10_1002_glia_24633
crossref_primary_10_1080_19396368_2025_2533992
crossref_primary_10_1038_s41551_025_01481_x
crossref_primary_10_1038_s41571_025_01003_3
crossref_primary_10_1093_plcell_koae003
crossref_primary_10_3390_biom13101516
crossref_primary_10_1038_s41588_024_01658_1
crossref_primary_10_1093_jxb_erae107
crossref_primary_10_1186_s12967_023_04382_2
crossref_primary_10_1038_s42003_025_07872_9
crossref_primary_10_1126_science_adp3957
crossref_primary_10_1038_s44385_025_00023_z
crossref_primary_10_1093_oxfimm_iqaf005
crossref_primary_10_1111_jgh_16915
crossref_primary_10_1126_science_adl0544
crossref_primary_10_1016_j_gpb_2023_06_003
crossref_primary_10_1038_s41556_025_01619_8
crossref_primary_10_1093_gigascience_giaf076
crossref_primary_10_1007_s12015_024_10831_2
crossref_primary_10_3390_genes15091114
crossref_primary_10_1016_j_mad_2024_111918
crossref_primary_10_1016_j_gde_2024_102155
crossref_primary_10_1038_s41592_024_02353_z
crossref_primary_10_1093_nar_gkae225
crossref_primary_10_3390_cimb46060316
crossref_primary_10_1093_gpbjnl_qzae026
crossref_primary_10_1016_j_talanta_2024_126728
crossref_primary_10_1093_bib_bbaf198
crossref_primary_10_1007_s40291_023_00668_9
crossref_primary_10_1038_s41584_023_01031_2
crossref_primary_10_7554_eLife_90214_3
crossref_primary_10_1016_j_neuint_2025_105998
crossref_primary_10_1371_journal_pone_0302118
crossref_primary_10_1038_s41590_024_01768_2
crossref_primary_10_1186_s13072_024_00547_5
crossref_primary_10_3390_genes14112033
crossref_primary_10_3390_genes15121551
crossref_primary_10_3390_stats7030059
crossref_primary_10_1038_s42256_025_01097_5
crossref_primary_10_1016_j_cotox_2024_100475
crossref_primary_10_1016_j_xcrp_2025_102811
crossref_primary_10_1186_s13059_024_03303_w
crossref_primary_10_1371_journal_pbio_3002640
crossref_primary_10_1038_s41467_024_53355_6
crossref_primary_10_1038_s41467_024_45661_w
crossref_primary_10_1186_s13059_025_03677_5
crossref_primary_10_3390_ijms252011298
crossref_primary_10_1002_adma_202415160
crossref_primary_10_1007_s10157_025_02679_8
crossref_primary_10_1016_j_copbio_2024_103078
crossref_primary_10_1186_s41065_025_00573_7
crossref_primary_10_1093_lifemeta_loaf010
crossref_primary_10_1038_s41588_025_02285_0
crossref_primary_10_1186_s12864_024_11015_5
crossref_primary_10_1038_s41598_025_99364_3
crossref_primary_10_1093_gpbjnl_qzaf002
crossref_primary_10_1016_j_immuni_2024_01_006
crossref_primary_10_1016_j_immuni_2023_10_002
crossref_primary_10_1038_s42256_024_00934_3
crossref_primary_10_1039_D5SC01764E
crossref_primary_10_1038_s41467_024_44757_7
crossref_primary_10_1038_s41467_025_59822_y
crossref_primary_10_3389_fimmu_2025_1554876
crossref_primary_10_1002_smtd_202300923
crossref_primary_10_1016_j_tifs_2025_105193
crossref_primary_10_1101_gr_278253_123
crossref_primary_10_1002_anie_202314468
crossref_primary_10_1016_j_biopha_2024_117005
crossref_primary_10_1016_j_cotox_2024_100464
crossref_primary_10_1523_JNEUROSCI_0043_24_2024
crossref_primary_10_1093_bib_bbae095
crossref_primary_10_1182_bloodadvances_2022009313
crossref_primary_10_1038_s41592_024_02511_3
crossref_primary_10_3390_cells13010027
crossref_primary_10_1371_journal_pcbi_1012962
crossref_primary_10_1093_gpbjnl_qzaf011
crossref_primary_10_3389_frai_2024_1424012
crossref_primary_10_1016_j_tins_2023_09_007
crossref_primary_10_1016_j_mam_2024_101253
crossref_primary_10_1186_s13059_024_03322_7
crossref_primary_10_1016_j_xpro_2025_103670
crossref_primary_10_1038_s41587_023_02040_y
crossref_primary_10_1038_s41598_025_89988_w
crossref_primary_10_3389_fimmu_2025_1529847
crossref_primary_10_1038_s41592_025_02624_3
crossref_primary_10_1093_bib_bbaf018
crossref_primary_10_1038_s41590_025_02161_3
crossref_primary_10_1371_journal_pcbi_1012480
crossref_primary_10_3389_fgene_2025_1603687
crossref_primary_10_1109_JBHI_2024_3460761
crossref_primary_10_1002_anie_202319248
crossref_primary_10_1038_s41467_024_49806_9
crossref_primary_10_1007_s40242_025_4243_5
crossref_primary_10_1038_s42003_024_07238_7
crossref_primary_10_1371_journal_pbio_3003085
crossref_primary_10_1016_j_molcel_2024_08_002
crossref_primary_10_1038_s41592_024_02532_y
crossref_primary_10_1111_bph_70128
crossref_primary_10_1161_CIRCRESAHA_124_325656
crossref_primary_10_1186_s12931_024_02823_0
crossref_primary_10_1186_s13059_025_03731_2
crossref_primary_10_1093_bib_bbae399
crossref_primary_10_1111_brv_13063
crossref_primary_10_1038_s43586_023_00284_1
crossref_primary_10_1038_s44161_024_00533_w
crossref_primary_10_1093_nargab_lqae134
crossref_primary_10_3390_diagnostics14192172
crossref_primary_10_1186_s13059_025_03716_1
crossref_primary_10_1038_s41467_024_53340_z
crossref_primary_10_1093_bib_bbae152
crossref_primary_10_1038_s41568_024_00757_9
crossref_primary_10_1038_s41598_025_96823_9
crossref_primary_10_1016_j_molmed_2025_06_004
crossref_primary_10_1017_S2633903X24000138
crossref_primary_10_1186_s13059_024_03249_z
crossref_primary_10_1186_s13062_025_00691_2
crossref_primary_10_1016_j_csbj_2024_07_012
crossref_primary_10_1038_s41598_025_95079_7
crossref_primary_10_1016_j_exphem_2024_104167
crossref_primary_10_1038_s41586_024_07079_8
crossref_primary_10_1186_s12983_025_00579_x
crossref_primary_10_3389_fgene_2023_1304661
crossref_primary_10_1038_s41467_024_54516_3
crossref_primary_10_1080_13102818_2024_2379837
crossref_primary_10_1016_j_jid_2024_02_006
crossref_primary_10_1038_s41592_024_02263_0
crossref_primary_10_1038_s43018_025_00942_1
crossref_primary_10_1093_bib_bbaf397
crossref_primary_10_1016_j_medp_2024_100042
crossref_primary_10_1080_17474086_2023_2285985
crossref_primary_10_1088_1478_3975_adda85
crossref_primary_10_1186_s12915_025_02128_8
crossref_primary_10_1016_j_biotechadv_2024_108506
crossref_primary_10_1186_s13059_025_03574_x
crossref_primary_10_3390_cells14030156
crossref_primary_10_1093_bib_bbad525
crossref_primary_10_3389_fonc_2025_1584178
crossref_primary_10_1186_s12885_024_13258_7
crossref_primary_10_1038_s41467_024_51003_7
crossref_primary_10_1038_s44318_024_00313_z
crossref_primary_10_3390_ijms25137367
crossref_primary_10_1038_s41417_024_00788_2
crossref_primary_10_1371_journal_ppat_1012012
crossref_primary_10_1002_bit_70030
crossref_primary_10_1093_bib_bbaf388
crossref_primary_10_1016_j_crmeth_2023_100591
crossref_primary_10_1016_j_measurement_2024_116258
crossref_primary_10_1145_3702646
crossref_primary_10_1146_annurev_genet_072920_013842
crossref_primary_10_1186_s12943_024_02113_9
crossref_primary_10_1093_bioinformatics_btaf114
crossref_primary_10_1038_s41556_024_01469_w
crossref_primary_10_1038_s41597_025_04381_6
crossref_primary_10_3389_fimmu_2025_1599303
crossref_primary_10_1007_s11426_023_1793_7
crossref_primary_10_1016_j_cell_2025_02_009
crossref_primary_10_1016_j_esmoop_2024_104105
crossref_primary_10_1016_j_drudis_2024_103889
crossref_primary_10_3390_ijms252413382
crossref_primary_10_3389_fgene_2023_1256064
crossref_primary_10_1038_s41467_024_52356_9
crossref_primary_10_34133_research_0743
crossref_primary_10_1021_acs_analchem_5c00863
crossref_primary_10_1021_acs_jproteome_4c00658
crossref_primary_10_1016_j_isci_2025_112713
crossref_primary_10_1172_JCI186421
crossref_primary_10_1002_adma_202409102
crossref_primary_10_1038_s41593_025_01973_8
crossref_primary_10_1016_j_ajog_2024_08_040
crossref_primary_10_1016_j_talanta_2024_126225
crossref_primary_10_1038_s41568_024_00737_z
crossref_primary_10_1016_j_bosn_2025_04_001
crossref_primary_10_1002_ange_202314468
crossref_primary_10_1038_s41431_024_01564_4
crossref_primary_10_1038_s41586_024_08487_6
crossref_primary_10_1038_s42255_025_01296_9
crossref_primary_10_1089_gen_44_02_08
crossref_primary_10_1161_CIRCRESAHA_124_323672
crossref_primary_10_1016_j_intimp_2025_114381
crossref_primary_10_1038_s41571_023_00830_6
crossref_primary_10_1038_s41597_024_03002_y
crossref_primary_10_3389_fmicb_2023_1236653
crossref_primary_10_1016_j_trac_2024_118109
crossref_primary_10_1016_j_pharmthera_2024_108613
crossref_primary_10_1038_s41467_025_59206_2
crossref_primary_10_1186_s10020_024_00955_z
crossref_primary_10_1186_s13059_024_03219_5
crossref_primary_10_1007_s10456_024_09955_3
crossref_primary_10_1038_s41592_024_02429_w
crossref_primary_10_1126_sciadv_adm7042
crossref_primary_10_1177_11779322241287120
crossref_primary_10_1093_bioadv_vbaf105
crossref_primary_10_1038_s41467_025_63029_6
crossref_primary_10_1038_s41587_025_02702_z
crossref_primary_10_1200_EDBK_430734
crossref_primary_10_1007_s11538_023_01213_9
crossref_primary_10_3892_mmr_2024_13415
crossref_primary_10_1016_j_immuni_2025_04_009
crossref_primary_10_1371_journal_pone_0322706
crossref_primary_10_1038_s41467_025_59448_0
crossref_primary_10_1002_advs_202401815
crossref_primary_10_1038_s41467_024_51059_5
crossref_primary_10_1093_rheumatology_keaf252
crossref_primary_10_1093_nar_gkad1146
crossref_primary_10_1093_nar_gkae1186
crossref_primary_10_1016_j_addicn_2025_100209
crossref_primary_10_1038_s42003_024_07171_9
crossref_primary_10_1016_j_tig_2024_12_009
crossref_primary_10_1002_advs_202509247
crossref_primary_10_1007_s12015_024_10764_w
crossref_primary_10_1080_10428194_2024_2422833
crossref_primary_10_1096_fj_202400303R
crossref_primary_10_1145_3718988
crossref_primary_10_1093_bioinformatics_btaf268
crossref_primary_10_1038_s41540_024_00364_2
crossref_primary_10_1186_s13059_025_03514_9
crossref_primary_10_1093_bib_bbae382
crossref_primary_10_1172_jci_insight_169105
crossref_primary_10_1038_s43588_024_00689_2
crossref_primary_10_1186_s40478_025_01966_5
crossref_primary_10_1126_science_adf6162
crossref_primary_10_1111_jne_70072
crossref_primary_10_1038_s41467_024_53971_2
crossref_primary_10_1093_bib_bbaf109
crossref_primary_10_1038_s41523_025_00808_w
crossref_primary_10_1186_s13059_024_03356_x
crossref_primary_10_1038_s41467_025_56280_4
crossref_primary_10_1038_s41596_023_00932_6
crossref_primary_10_1093_nar_gkaf805
crossref_primary_10_1093_bib_bbaf465
crossref_primary_10_1038_s41577_025_01199_6
crossref_primary_10_1101_gr_278215_123
crossref_primary_10_3390_bioengineering11060542
crossref_primary_10_1016_j_xpro_2024_103521
crossref_primary_10_1093_burnst_tkae043
crossref_primary_10_1186_s13059_023_03123_4
crossref_primary_10_1038_s41587_023_01943_0
crossref_primary_10_3390_cancers16173100
crossref_primary_10_1002_ange_202319248
crossref_primary_10_1007_s11936_025_01100_7
crossref_primary_10_1016_j_xpro_2024_103083
crossref_primary_10_3389_fimmu_2024_1479166
crossref_primary_10_1038_s41592_025_02713_3
crossref_primary_10_1002_eji_202451234
crossref_primary_10_1007_s00216_023_05028_4
crossref_primary_10_1038_s41467_023_41855_w
crossref_primary_10_3390_ijms25084485
crossref_primary_10_1038_s41580_024_00822_z
crossref_primary_10_1093_genetics_iyae167
crossref_primary_10_1038_s41586_025_08989_x
crossref_primary_10_1093_bib_bbaf339
crossref_primary_10_1093_nar_gkad874
crossref_primary_10_1038_s41421_024_00753_1
crossref_primary_10_1080_08820139_2025_2457039
crossref_primary_10_1103_8vpj_bj7d
crossref_primary_10_1038_s41467_025_59424_8
crossref_primary_10_1039_D5AN00037H
crossref_primary_10_1016_j_bios_2024_117074
crossref_primary_10_1038_s41587_025_02694_w
crossref_primary_10_1002_adtp_202400351
crossref_primary_10_1186_s13059_025_03602_w
crossref_primary_10_1038_s42003_025_08123_7
crossref_primary_10_2147_JIR_S490457
crossref_primary_10_1016_j_ard_2025_04_011
crossref_primary_10_1016_j_csbj_2025_06_047
crossref_primary_10_1016_j_csbj_2024_12_030
crossref_primary_10_1016_j_tig_2023_07_005
crossref_primary_10_3390_cancers16061213
crossref_primary_10_1186_s13059_024_03450_0
crossref_primary_10_3389_fchem_2024_1428547
crossref_primary_10_26508_lsa_202402713
crossref_primary_10_7554_eLife_104856
crossref_primary_10_1038_s41586_025_09503_z
crossref_primary_10_1038_s44320_024_00045_6
crossref_primary_10_1186_s12859_023_05590_9
crossref_primary_10_1371_journal_pcbi_1012512
crossref_primary_10_1016_j_kint_2023_11_033
crossref_primary_10_1093_cei_uxae077
crossref_primary_10_1038_s41588_025_02124_2
crossref_primary_10_1186_s13059_024_03398_1
crossref_primary_10_1242_dev_202832
crossref_primary_10_7554_eLife_104856_3
crossref_primary_10_1016_j_cels_2024_11_009
crossref_primary_10_1126_scitranslmed_adl6758
crossref_primary_10_1016_j_coisb_2024_100534
crossref_primary_10_1038_s41467_024_47989_9
crossref_primary_10_1016_j_inffus_2025_103479
crossref_primary_10_1016_j_ccell_2024_05_003
crossref_primary_10_1021_acsnano_5c02111
crossref_primary_10_1038_s41592_024_02327_1
crossref_primary_10_1177_0271678X241305914
crossref_primary_10_1186_s13073_023_01259_3
crossref_primary_10_1016_j_patter_2025_101326
crossref_primary_10_1016_j_cell_2024_03_009
crossref_primary_10_1186_s13059_024_03338_z
crossref_primary_10_1080_19490976_2025_2528428
crossref_primary_10_1016_j_cell_2024_04_032
crossref_primary_10_1016_j_jaci_2024_11_001
crossref_primary_10_1038_s41467_025_60899_8
crossref_primary_10_1093_nargab_lqaf073
crossref_primary_10_3748_wjg_v31_i31_109605
crossref_primary_10_1097_COH_0000000000000809
crossref_primary_10_3389_fimmu_2023_1275937
crossref_primary_10_3390_biomedicines11082264
crossref_primary_10_1093_nar_gkae1145
crossref_primary_10_1016_j_xgen_2025_100765
crossref_primary_10_1016_j_xgen_2025_100886
crossref_primary_10_1016_j_xgen_2025_100766
crossref_primary_10_1097_TP_0000000000004925
crossref_primary_10_1038_s41592_025_02737_9
crossref_primary_10_1038_s42003_024_06964_2
crossref_primary_10_1016_j_tig_2023_10_003
crossref_primary_10_1038_s41540_024_00441_6
crossref_primary_10_3389_fcell_2024_1500474
crossref_primary_10_1016_j_ajhg_2024_10_019
crossref_primary_10_1016_j_csbj_2025_03_051
crossref_primary_10_1038_s41568_023_00657_4
crossref_primary_10_1016_j_lfs_2025_123751
crossref_primary_10_1186_s40168_025_02089_8
crossref_primary_10_1007_s00521_024_09662_6
crossref_primary_10_1186_s12967_025_06785_9
crossref_primary_10_1016_j_yexmp_2024_104944
crossref_primary_10_1152_ajpgi_00182_2024
crossref_primary_10_3389_fimmu_2023_1306169
crossref_primary_10_1016_j_celbio_2025_100099
crossref_primary_10_1111_imcb_12801
crossref_primary_10_1158_1078_0432_CCR_24_0049
crossref_primary_10_26599_BDMA_2025_9020009
crossref_primary_10_1016_j_devcel_2025_06_032
crossref_primary_10_1128_jvi_01858_23
crossref_primary_10_1002_advs_202500870
crossref_primary_10_1146_annurev_immunol_090122_042631
crossref_primary_10_1186_s12859_024_05788_5
crossref_primary_10_1016_j_celrep_2025_116168
crossref_primary_10_1038_s41597_024_03399_6
crossref_primary_10_1515_oncologie_2023_0244
crossref_primary_10_1016_j_copbio_2024_103151
crossref_primary_10_1016_j_jaci_2024_05_008
crossref_primary_10_1038_s41576_024_00750_w
crossref_primary_10_1007_s10238_024_01484_z
crossref_primary_10_1002_qub2_78
crossref_primary_10_1186_s13059_024_03254_2
crossref_primary_10_1093_nargab_lqaf089
crossref_primary_10_1002_smtd_202401107
crossref_primary_10_1016_j_biotechadv_2025_108528
crossref_primary_10_1038_s41576_023_00628_3
crossref_primary_10_3390_cancers16193265
crossref_primary_10_1038_s41592_025_02799_9
crossref_primary_10_3389_fimmu_2025_1518658
crossref_primary_10_7554_eLife_90214
crossref_primary_10_1146_annurev_biodatasci_101424_121439
crossref_primary_10_15252_msb_202110571
crossref_primary_10_1016_j_crmeth_2025_101086
crossref_primary_10_1371_journal_pone_0299358
crossref_primary_10_1093_nar_gkae1043
crossref_primary_10_1038_s41377_025_01809_x
Cites_doi 10.15252/msb.202110798
10.1038/s41580-018-0094-y
10.1016/j.molcel.2018.06.044
10.1101/2022.03.10.483747
10.1038/s41467-021-27150-6
10.1038/nbt.4282
10.1038/s41587-019-0336-3
10.1038/s41596-020-0292-x
10.1038/nmeth.4401
10.1101/2022.02.24.481823
10.1038/s41588-021-00790-6
10.1038/s41467-021-21246-9
10.1126/science.aau0730
10.1101/2022.03.16.484643
10.1038/s41592-019-0654-x
10.1016/j.cell.2022.05.013
10.1111/j.2517-6161.1995.tb02031.x
10.1038/s41596-018-0073-y
10.1093/bioinformatics/btac299
10.1101/2022.08.19.504505
10.32614/CRAN.package.pagoda2
10.1038/nmeth.2563
10.1186/s13059-019-1663-x
10.12688/f1000research.22969.2
10.1186/s13059-021-02519-4
10.15252/msb.20209620
10.1038/s41467-021-25960-2
10.1038/s41587-022-01467-z
10.1093/bioinformatics/btz614
10.1038/nbt.1630
10.1101/gr.275224.121
10.1038/s41467-019-10216-x
10.1038/s41592-019-0619-0
10.1126/science.aaa6090
10.1093/gigascience/giaa151
10.1038/s41586-019-0933-9
10.1038/s41592-021-01282-5
10.1038/nmeth.4636
10.3390/genes12121947
10.1016/j.cels.2020.11.013
10.1038/nbt.4038
10.1038/s41592-021-01171-x
10.1016/j.immuni.2022.09.002
10.1038/s41467-021-27716-4
10.1016/j.cels.2019.07.012
10.1126/science.aaf2403
10.1093/bioinformatics/btw631
10.1186/s13059-019-1795-z
10.1186/1471-2105-14-7
10.1038/nmeth.4612
10.1038/s41596-021-00534-0
10.1242/dev.169730
10.1002/bies.201900221
10.1038/nmeth.4292
10.1038/nmeth.3364
10.1038/s41587-021-00935-2
10.1093/nar/gkab004
10.1093/bioinformatics/btz914
10.1186/s13059-021-02286-2
10.1038/s41576-019-0093-7
10.1016/j.cels.2021.05.008
10.1038/s41592-020-01037-8
10.1038/s41587-021-00830-w
10.1186/s12864-018-4772-0
10.1101/2021.08.20.457057
10.1016/j.cell.2018.05.061
10.1101/2022.04.11.487796
10.1101/2022.05.06.490859
10.1016/j.crmeth.2022.100182
10.1186/s13059-015-0844-5
10.1186/s13059-020-02136-7
10.1038/s41587-022-01209-1
10.1093/bib/bbaa145
10.1073/pnas.2100293118
10.1016/j.cell.2022.02.015
10.1038/s41592-021-01142-2
10.1038/s41467-018-08205-7
10.1093/bioinformatics/btr260
10.1186/s13059-021-02451-7
10.1186/s13059-019-1861-6
10.1016/j.patcog.2010.12.015
10.1038/s41592-021-01346-6
10.1093/bioinformatics/btaa282
10.1093/bib/bbac286
10.1093/bioinformatics/btv612
10.1038/icb.2015.104
10.1016/j.cell.2021.04.048
10.1038/s41592-020-01020-3
10.1093/bioinformatics/btaa443
10.1093/bioinformatics/btp616
10.1101/2022.04.29.489989
10.1016/j.csbj.2021.01.015
10.1038/s41596-021-00561-x
10.1186/s13059-020-02214-w
10.1186/s13059-016-0947-7
10.1038/s41587-021-01001-7
10.1016/j.cell.2019.11.003
10.1101/2021.08.25.457696
10.1093/nar/gkaa740
10.1101/791699
10.1126/science.aax6234
10.1038/s41592-022-01480-9
10.1038/s41587-021-00895-7
10.1038/s41587-021-00989-2
10.1038/s41592-021-01153-z
10.1186/s13059-019-1850-9
10.1186/s13059-019-1874-1
10.1038/s41587-019-0071-9
10.12688/f1000research.73600.1
10.1126/science.aaw1219
10.1038/s41586-022-05688-9
10.1038/s42256-022-00492-6
10.1186/s13059-021-02581-y
10.1038/nature14590
10.1101/2022.05.04.490536
10.1186/s12859-019-2599-6
10.1038/s41467-021-21038-1
10.1038/s41598-020-66998-4
10.1038/s41592-021-01336-8
10.1093/bioinformatics/btaa611
10.1186/s13059-021-02469-x
10.15252/msb.202110282
10.1038/s41592-019-0367-1
10.1007/978-1-0716-2756-3_14
10.1038/75556
10.1038/s41592-019-0582-9
10.1038/nmeth.2019
10.1126/science.abl4290
10.1038/s41588-021-00778-2
10.1038/nmeth.4380
10.1186/s13059-017-1382-0
10.1038/s41467-021-22811-y
10.48550/arXiv.1905.02269
10.1016/j.csbj.2020.06.012
10.1093/nar/gkv007
10.1038/s41467-022-30755-0
10.1038/s41592-021-01358-2
10.1038/s41592-020-01038-7
10.1093/bioinformatics/btab447
10.1186/s13059-019-1854-5
10.1186/s13059-022-02663-5
10.12688/f1000research.22139.1
10.1038/nature22383
10.1016/j.cels.2020.11.008
10.1038/s41587-019-0113-3
10.1038/s41467-021-23807-4
10.1101/060012
10.1038/nbt.3973
10.1038/nature22976
10.1038/s41592-019-0701-7
10.1371/journal.pbio.2005970
10.1038/s41592-020-01050-x
10.1101/gr.240663.118
10.1093/nar/gkaa183
10.1038/s41467-017-02391-6
10.1038/s41587-022-01284-4
10.1371/journal.pcbi.1010492
10.1038/s41587-021-01033-z
10.1101/2022.05.09.490241
10.4049/jimmunol.1800904
10.1038/s41592-022-01705-x
10.1186/s12864-018-4559-3
10.1093/bioadv/vbac016
10.1186/s13059-021-02577-8
10.1038/s41587-021-01182-1
10.1038/s41587-021-01044-w
10.1038/nrg3832
10.48550/arXiv.2208.05229
10.1093/nar/gkab1028
10.1016/j.xgen.2022.100166
10.1126/science.aab1601
10.1038/s41586-022-05279-8
10.1038/nmeth.2892
10.1038/s41592-019-0494-8
10.3389/fimmu.2021.640725
10.1016/j.stem.2016.05.010
10.1186/s13059-020-02015-1
10.1016/j.cell.2016.11.038
10.1038/s41592-021-01255-8
10.1038/s41467-020-15968-5
10.1038/nmeth.4556
10.1089/cmb.2021.0446
10.1038/s41591-021-01329-2
10.1016/j.it.2015.09.006
10.1093/bioinformatics/btab164
10.1093/bioinformatics/btac805
10.1038/s41467-021-25133-1
10.1038/s41467-021-21583-9
10.1038/s41598-019-41695-z
10.1101/2021.11.11.468178
10.1093/nar/gkw1092
10.1073/pnas.0506580102
10.1186/s12859-019-3211-9
10.1038/s41586-022-05094-1
10.1186/s13059-020-02000-8
10.1038/s41587-021-00927-2
10.12688/f1000research.15809.1
10.1126/sciadv.abf1356
10.1101/2020.05.31.125658
10.1038/s41592-018-0082-3
10.3389/fimmu.2021.664514
10.1038/s41551-020-0578-x
10.1016/j.cels.2021.05.016
10.1101/2021.06.24.449733
10.1038/s41587-021-01139-4
10.1016/j.csbj.2020.10.007
10.1038/s41592-022-01595-z
10.1038/s41576-022-00512-6
10.1101/2022.02.24.481684
10.3389/fgene.2021.766405
10.1101/2022.08.16.504115
10.1186/s13073-018-0528-3
10.1186/s13059-020-1926-6
10.1038/s41467-022-29356-8
10.1101/2021.06.24.449781
10.1016/j.celrep.2019.08.077
10.1038/s41592-021-01343-9
10.1016/j.molmet.2019.12.006
10.1101/2022.03.07.483367
10.1038/s41587-020-0591-3
10.1186/s13059-021-02362-7
10.1126/science.abl5197
10.1101/2021.04.14.439903
10.1186/s13059-020-1949-z
10.1016/j.tibtech.2020.05.006
10.1038/s41598-019-45839-z
10.1038/s41587-020-0469-4
10.1038/nbt.4096
10.12688/f1000research.27893.1
10.1038/s41587-020-0605-1
10.1186/s13059-020-1950-6
10.1038/s41592-018-0229-2
10.1038/s41592-019-0667-5
10.1186/s13059-014-0550-8
10.1016/j.cell.2019.06.029
10.3389/fimmu.2017.00278
10.1038/s41587-021-01075-3
10.1038/s41592-021-01264-7
10.1038/s41592-020-01018-x
10.1038/s41467-019-12266-7
10.1038/s41586-018-0414-6
10.1038/s41587-020-00803-5
10.1038/nbt.2938
10.1016/j.cell.2019.11.019
10.15252/msb.20188746
10.1016/j.xpro.2021.100699
10.1093/nar/gkx760
10.12688/f1000research.15666.2
10.1038/s41467-021-25957-x
10.1093/nargab/lqac049
10.1093/bioinformatics/btab337
ContentType Journal Article
Contributor Ansari, Meshal
Ostner, Johannes
Schubert, Benjamin
Büttner, Maren
Frishberg, Amit
Martens, Laura D
Jones, Matthew G
Ramírez-Suástegui, Ciro
Badia-I-Mompel, Pau
Saez-Rodriguez, Julio
Sarkar, Hirak
Dony, Leander
Palla, Giovanni
Tanevski, Jovan
He, Dongze
Aliee, Hananeh
Müller, Christian L
Weiler, Philipp
Nitzan, Mor
Patro, Rob
Virshup, Isaac
Dimitrov, Daniel
Lotfollahi, Mohammad
Srivastava, Avi
Piran, Zoe
Dann, Emma
Hediyeh-Zadeh, Soroor
Sikkema, Lisa
Hetzel, Leon
Ibarra, Ignacio L
Contributor_xml – sequence: 1
  givenname: Hananeh
  surname: Aliee
  fullname: Aliee, Hananeh
– sequence: 2
  givenname: Meshal
  surname: Ansari
  fullname: Ansari, Meshal
– sequence: 3
  givenname: Pau
  surname: Badia-I-Mompel
  fullname: Badia-I-Mompel, Pau
– sequence: 4
  givenname: Maren
  surname: Büttner
  fullname: Büttner, Maren
– sequence: 5
  givenname: Emma
  surname: Dann
  fullname: Dann, Emma
– sequence: 6
  givenname: Daniel
  surname: Dimitrov
  fullname: Dimitrov, Daniel
– sequence: 7
  givenname: Leander
  surname: Dony
  fullname: Dony, Leander
– sequence: 8
  givenname: Amit
  surname: Frishberg
  fullname: Frishberg, Amit
– sequence: 9
  givenname: Dongze
  surname: He
  fullname: He, Dongze
– sequence: 10
  givenname: Soroor
  surname: Hediyeh-Zadeh
  fullname: Hediyeh-Zadeh, Soroor
– sequence: 11
  givenname: Leon
  surname: Hetzel
  fullname: Hetzel, Leon
– sequence: 12
  givenname: Ignacio L
  surname: Ibarra
  fullname: Ibarra, Ignacio L
– sequence: 13
  givenname: Matthew G
  surname: Jones
  fullname: Jones, Matthew G
– sequence: 14
  givenname: Mohammad
  surname: Lotfollahi
  fullname: Lotfollahi, Mohammad
– sequence: 15
  givenname: Laura D
  surname: Martens
  fullname: Martens, Laura D
– sequence: 16
  givenname: Christian L
  surname: Müller
  fullname: Müller, Christian L
– sequence: 17
  givenname: Mor
  surname: Nitzan
  fullname: Nitzan, Mor
– sequence: 18
  givenname: Johannes
  surname: Ostner
  fullname: Ostner, Johannes
– sequence: 19
  givenname: Giovanni
  surname: Palla
  fullname: Palla, Giovanni
– sequence: 20
  givenname: Rob
  surname: Patro
  fullname: Patro, Rob
– sequence: 21
  givenname: Zoe
  surname: Piran
  fullname: Piran, Zoe
– sequence: 22
  givenname: Ciro
  surname: Ramírez-Suástegui
  fullname: Ramírez-Suástegui, Ciro
– sequence: 23
  givenname: Julio
  surname: Saez-Rodriguez
  fullname: Saez-Rodriguez, Julio
– sequence: 24
  givenname: Hirak
  surname: Sarkar
  fullname: Sarkar, Hirak
– sequence: 25
  givenname: Benjamin
  surname: Schubert
  fullname: Schubert, Benjamin
– sequence: 26
  givenname: Lisa
  surname: Sikkema
  fullname: Sikkema, Lisa
– sequence: 27
  givenname: Avi
  surname: Srivastava
  fullname: Srivastava, Avi
– sequence: 28
  givenname: Jovan
  surname: Tanevski
  fullname: Tanevski, Jovan
– sequence: 29
  givenname: Isaac
  surname: Virshup
  fullname: Virshup, Isaac
– sequence: 30
  givenname: Philipp
  surname: Weiler
  fullname: Weiler, Philipp
Copyright Springer Nature Limited 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. Springer Nature Limited.
Copyright Nature Publishing Group Aug 2023
Springer Nature Limited 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Springer Nature Limited 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. Springer Nature Limited.
– notice: Copyright Nature Publishing Group Aug 2023
– notice: Springer Nature Limited 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
CorporateAuthor Single-cell Best Practices Consortium
CorporateAuthor_xml – name: Single-cell Best Practices Consortium
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7RV
7TK
7TM
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1038/s41576-023-00586-w
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1471-0064
EndPage 572
ExternalDocumentID PMC10066026
37002403
10_1038_s41576_023_00586_w
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Wellcome Trust
– fundername: NCI NIH HHS
  grantid: K99 CA267677
– fundername: NHGRI NIH HHS
  grantid: R01 HG009937
GroupedDBID ---
-DZ
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AFBBN
AFFNX
AFKRA
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
EAD
EAP
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
IHW
INH
INR
ISR
ITC
LK8
M0L
M1P
M7P
N9A
NAPCQ
NNMJJ
O9-
ODYON
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNR
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NFIDA
CGR
CUY
CVF
ECM
EIF
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7QP
7QR
7TK
7TM
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c475t-f00cf8c9c97951520449419ee4d01e583a193fdc0d8af4f90fe64c095d0575c13
IEDL.DBID M7P
ISICitedReferencesCount 460
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000961193300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-0056
1471-0064
IngestDate Tue Nov 04 02:07:07 EST 2025
Sun Nov 09 11:49:21 EST 2025
Tue Oct 07 05:17:12 EDT 2025
Mon Jul 21 06:17:34 EDT 2025
Tue Nov 18 21:54:24 EST 2025
Sat Nov 29 02:34:59 EST 2025
Fri Feb 21 02:36:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2023. Springer Nature Limited.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-f00cf8c9c97951520449419ee4d01e583a193fdc0d8af4f90fe64c095d0575c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1063-005X
0000-0002-1275-9802
0000-0002-2600-4048
0000-0001-7464-7921
0000-0002-8937-3457
0000-0001-7744-8565
0000-0003-2502-8803
0000-0002-2419-1943
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10066026
PMID 37002403
PQID 2838516462
PQPubID 44267
PageCount 23
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10066026
proquest_miscellaneous_2793984588
proquest_journals_2838516462
pubmed_primary_37002403
crossref_citationtrail_10_1038_s41576_023_00586_w
crossref_primary_10_1038_s41576_023_00586_w
springer_journals_10_1038_s41576_023_00586_w
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Genetics
PublicationTitleAbbrev Nat Rev Genet
PublicationTitleAlternate Nat Rev Genet
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References E Lubeck (586_CR203) 2014; 11
H Chen (586_CR135) 2019; 20
X Tan (586_CR193) 2020; 36
C Soneson (586_CR85) 2018; 15
RM Layer (586_CR149) 2018; 15
M Lotfollahi (586_CR58) 2022; 40
D Neavin (586_CR27) 2022
KR Moon (586_CR48) 2019; 37
S Cabello-Aguilar (586_CR129) 2020; 48
R Argelaguet (586_CR245) 2021; 39
D Righelli (586_CR211) 2022; 38
S-Q Zhang (586_CR178) 2018
J Glanville (586_CR183) 2017; 547
HM Amemiya (586_CR138) 2019; 9
K Street (586_CR62) 2018; 19
VK Kartha (586_CR154) 2022; 2
I Lindeman (586_CR171) 2018; 15
D Dimitrov (586_CR126) 2022; 13
D van Dijk (586_CR152) 2018; 174
A Gayoso (586_CR162) 2021; 18
Z Cang (586_CR239) 2020; 11
D Lähnemann (586_CR91) 2020; 21
B He (586_CR194) 2020; 4
B Duan (586_CR120) 2019; 10
G Palla (586_CR209) 2022; 19
R Sokal (586_CR73) 1958; 38
SG Rodriques (586_CR202) 2019; 363
W Fleri (586_CR180) 2017; 8
A Subramanian (586_CR100) 2005; 102
A Anderson (586_CR235) 2021; 37
E Dann (586_CR112) 2022; 40
586_CR104
CB González-Blas (586_CR242) 2022
V Rai (586_CR13) 2020; 32
M Zhang (586_CR207) 2021; 22
586_CR223
J Hu (586_CR229) 2021; 18
FA Wolf (586_CR63) 2019; 20
G Korotkevich (586_CR99) 2021
L Liu (586_CR156) 2019; 10
T Andreani (586_CR172) 2022; 4
T Biancalani (586_CR224) 2021; 18
M Lange (586_CR68) 2022; 19
K Kamimoto (586_CR241) 2022; 614
CH Holland (586_CR102) 2020; 21
E Zhao (586_CR227) 2021; 39
JB Kang (586_CR59) 2021; 12
A McKenna (586_CR77) 2019; 146
J Liao (586_CR197) 2021; 39
V Kleshchevnikov (586_CR212) 2022; 40
Y Benjamini (586_CR92) 1995; 57
M Kanehisa (586_CR95) 2017; 45
RA Amezquita (586_CR2) 2020; 17
C Ahlmann-Eltze (586_CR29) 2022
N Borcherding (586_CR166) 2020; 9
ZA Clarke (586_CR53) 2021; 16
R Dong (586_CR213) 2021; 22
R Argelaguet (586_CR248) 2020; 21
EP Mimitou (586_CR246) 2021; 39
I Setliff (586_CR177) 2019; 179
G Pasquini (586_CR55) 2021; 19
M Lotfollahi (586_CR42) 2019; 16
C Domínguez Conde (586_CR56) 2022; 376
MD Robinson (586_CR79) 2010; 26
L Yan (586_CR216) 2023; 39
C Xu (586_CR40) 2021; 17
T Ashuach (586_CR144) 2022; 2
MD Luecken (586_CR5) 2019; 15
C Bravo González-Blas (586_CR141) 2019; 16
M Lotfollahi (586_CR124) 2021
CA Vallejos (586_CR28) 2017; 14
B Pijuan-Sala (586_CR106) 2019; 566
SJ Fleming (586_CR22) 2022
JM Zhang (586_CR61) 2019; 9
S Liu (586_CR199) 2022; 55
R Dries (586_CR210) 2021; 22
JM Granja (586_CR140) 2021; 53
D Pham (586_CR228) 2020
A Dixit (586_CR114) 2016; 167
V Bergen (586_CR70) 2021; 17
A Gangaev (586_CR15) 2021; 12
P Weiler (586_CR69) 2023; 2584
A Thibodeau (586_CR139) 2021; 22
DS Fischer (586_CR236) 2022
AA Upadhyay (586_CR169) 2018; 10
S Canzar (586_CR170) 2017; 33
SC Zheng (586_CR46) 2022; 23
ATL Lun (586_CR30) 2016; 17
ME Ritchie (586_CR81) 2015; 43
R Chazarra-Gil (586_CR39) 2021; 49
Y Ji (586_CR119) 2021; 12
J Zhao (586_CR111) 2021; 118
DM Cable (586_CR214) 2022; 40
G La Manno (586_CR66) 2018; 560
D Bredikhin (586_CR150) 2022; 23
S Hänzelmann (586_CR101) 2013; 14
VM Peterson (586_CR159) 2017; 35
P Demetci (586_CR249) 2022; 29
X Zhuang (586_CR208) 2021; 18
L Bergenstråhle (586_CR195) 2022; 40
MP Mulè (586_CR161) 2022; 13
W Zhang (586_CR181) 2020; 36
L Song (586_CR168) 2021; 18
S Freytag (586_CR51) 2018; 7
AC Daly (586_CR230) 2021; 37
L Garcia-Alonso (586_CR98) 2019; 29
DA Cusanovich (586_CR133) 2015; 348
R Dries (586_CR191) 2021; 31
P Dash (586_CR184) 2017; 547
KH Chen (586_CR204) 2015; 348
Y Deng (586_CR198) 2022; 609
Z Zhang (586_CR189) 2022; 4
LD Martens (586_CR142) 2022
DA Bolotin (586_CR167) 2015; 12
JM Replogle (586_CR117) 2022; 185
E Stephenson (586_CR165) 2021; 27
T Chari (586_CR49) 2022
NM Xi (586_CR26) 2021; 12
DB Burkhardt (586_CR123) 2021; 39
S Ghazanfar (586_CR253) 2022
Z Zhang (586_CR186) 2021; 18
FW Townes (586_CR47) 2019; 20
G Finak (586_CR82) 2015; 16
B Yuan (586_CR125) 2021; 12
S Jin (586_CR127) 2021; 12
CW Law (586_CR89) 2020; 9
N Del Rossi (586_CR244) 2022; 2
S Junttila (586_CR88) 2022; 23
L Zappia (586_CR1) 2021; 22
C Stringer (586_CR220) 2021; 18
M Dhainaut (586_CR16) 2022; 185
T Wang (586_CR83) 2019; 20
PV Kharchenko (586_CR6) 2021; 18
Y Zhang (586_CR105) 2020; 18
P Datlinger (586_CR115) 2021; 18
AN Schep (586_CR153) 2017; 14
Y Hu (586_CR131) 2021; 7
J Park (586_CR221) 2021; 12
JD Buenrostro (586_CR134) 2015; 523
B Li (586_CR215) 2022; 19
A Chervov (586_CR44) 2022
I Springer (586_CR176) 2021; 12
MD Luecken (586_CR35) 2022; 19
E Lundberg (586_CR200) 2019; 20
T Stuart (586_CR17) 2019; 20
VA Traag (586_CR52) 2019; 9
V Greiff (586_CR175) 2015; 36
A Unterman (586_CR14) 2022; 13
NC Sheffield (586_CR148) 2016; 32
JE Rood (586_CR232) 2019; 179
A Duò (586_CR50) 2018; 7
HA Pliner (586_CR151) 2018; 71
G Gorin (586_CR71) 2022; 18
A Forrow (586_CR76) 2021; 12
E Papalexi (586_CR116) 2021; 53
J Schindelin (586_CR217) 2012; 9
586_CR187
SA Schattgen (586_CR188) 2022; 40
J Lause (586_CR31) 2021; 22
BB Lake (586_CR247) 2018; 36
B Hie (586_CR43) 2019; 37
Y Hao (586_CR256) 2022
A-D Brunner (586_CR243) 2022; 18
T Abdelaal (586_CR54) 2019; 20
KD Zimmerman (586_CR87) 2021; 12
Y Cao (586_CR109) 2019; 20
HJ Kim (586_CR163) 2020; 36
G Palla (586_CR190) 2022; 40
J Ou (586_CR137) 2018; 19
A Lafzi (586_CR19) 2018; 13
I Korsunsky (586_CR37) 2019; 16
A Sina Booeshaghi (586_CR33) 2022
M Ashburner (586_CR94) 2000; 25
G Sturm (586_CR164) 2020; 36
E Barshan (586_CR255) 2011; 44
B Velten (586_CR196) 2022; 19
S Baek (586_CR9) 2020; 18
R Fang (586_CR136) 2021; 12
586_CR179
T Stuart (586_CR143) 2021; 18
Schubert (586_CR97) 2018; 9
B Vieth (586_CR34) 2019; 10
MA Skinnider (586_CR122) 2021; 39
N Crosetto (586_CR206) 2015; 16
J Tanevski (586_CR238) 2022; 23
NJ Schuldt (586_CR173) 2019; 202
W Saelens (586_CR65) 2019; 37
M Stoeckius (586_CR10) 2017; 14
MI Love (586_CR80) 2014; 15
MG Jones (586_CR72) 2020; 21
Y Yuan (586_CR237) 2020; 21
P Badia-i-Mompel (586_CR103) 2022; 2
586_CR160
S-W Wang (586_CR78) 2022; 40
D Arnol (586_CR240) 2019; 29
A Butler (586_CR36) 2018; 36
JM Pullin (586_CR60) 2022
P-L Germain (586_CR20) 2020; 21
CY McLean (586_CR147) 2010; 28
WD Chronister (586_CR185) 2021; 12
M Büttner (586_CR108) 2021; 12
M Lotfollahi (586_CR254) 2022
PL Ståhl (586_CR201) 2016; 353
CS Smillie (586_CR107) 2019; 178
E Mereu (586_CR18) 2020; 38
J Cao (586_CR155) 2018; 361
C Hafemeister (586_CR45) 2019; 20
NM Xi (586_CR25) 2021; 2
V Petukhov (586_CR222) 2022; 40
W Gong (586_CR75) 2021; 12
S Das (586_CR84) 2021; 12
L Sikkema (586_CR7) 2022
R Ke (586_CR205) 2013; 10
G Eraslan (586_CR8) 2022; 376
S Yang (586_CR23) 2020; 21
A Andersson (586_CR231) 2021
HTN Tran (586_CR38) 2020; 21
T Abdelaal (586_CR226) 2020; 48
R Fu (586_CR57) 2020; 9
A Liberzon (586_CR93) 2011; 27
AW Lynch (586_CR157) 2022; 19
MD Young (586_CR21) 2020; 9
N Saitou (586_CR74) 1987; 4
M Efremova (586_CR128) 2020; 15
586_CR145
ZJ Cao (586_CR251) 2022; 40
JS Fleck (586_CR158) 2022
JW Squair (586_CR86) 2021; 12
L Isbel (586_CR132) 2022; 23
P-L Germain (586_CR24) 2021; 10
FA Wolf (586_CR4) 2018; 19
M Shugay (586_CR182) 2018; 46
SR Srivatsan (586_CR113) 2020; 367
R Browaeys (586_CR130) 2020; 17
S Sun (586_CR233) 2020; 17
Y Hao (586_CR3) 2021; 184
A Han (586_CR11) 2014; 32
M Polonsky (586_CR174) 2016; 94
J Ostner (586_CR110) 2021; 12
586_CR252
M Asp (586_CR192) 2020; 42
D Grün (586_CR64) 2016; 19
AL Thurman (586_CR90) 2021; 37
P Gontarz (586_CR146) 2020; 10
C McQuin (586_CR218) 2018; 16
C Ahlmann-Eltze (586_CR32) 2022
V Bergen (586_CR67) 2020; 38
L Larsson (586_CR12) 2021; 18
R Lopez (586_CR41) 2018; 15
JW Squair (586_CR121) 2021; 16
R Lopez (586_CR225) 2019
K Cao (586_CR250) 2020; 36
M Gillespie (586_CR96) 2022; 50
S Berg (586_CR219) 2019; 16
V Svensson (586_CR234) 2018; 15
H-H Wessels (586_CR118) 2023; 20
References_xml – volume: 18
  year: 2022
  ident: 586_CR243
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.202110798
– volume: 20
  start-page: 285
  year: 2019
  ident: 586_CR200
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0094-y
– volume: 71
  start-page: 858
  year: 2018
  ident: 586_CR151
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.06.044
– year: 2022
  ident: 586_CR7
  publication-title: bioRxiv
  doi: 10.1101/2022.03.10.483747
– volume: 12
  year: 2021
  ident: 586_CR108
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27150-6
– year: 2018
  ident: 586_CR178
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4282
– volume: 37
  start-page: 1482
  year: 2019
  ident: 586_CR48
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0336-3
– volume: 15
  start-page: 1484
  year: 2020
  ident: 586_CR128
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-020-0292-x
– volume: 14
  start-page: 975
  year: 2017
  ident: 586_CR153
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4401
– year: 2022
  ident: 586_CR253
  publication-title: bioRxiv
  doi: 10.1101/2022.02.24.481823
– volume: 53
  start-page: 403
  year: 2021
  ident: 586_CR140
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00790-6
– volume: 12
  year: 2021
  ident: 586_CR127
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21246-9
– volume: 361
  start-page: 1380
  year: 2018
  ident: 586_CR155
  publication-title: Science
  doi: 10.1126/science.aau0730
– year: 2022
  ident: 586_CR254
  publication-title: bioRxiv
  doi: 10.1101/2022.03.16.484643
– volume: 17
  start-page: 137
  year: 2020
  ident: 586_CR2
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0654-x
– volume: 185
  start-page: 2559
  year: 2022
  ident: 586_CR117
  publication-title: Cell
  doi: 10.1016/j.cell.2022.05.013
– volume: 57
  start-page: 289
  year: 1995
  ident: 586_CR92
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 13
  start-page: 2742
  year: 2018
  ident: 586_CR19
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-018-0073-y
– volume: 38
  start-page: 3128
  year: 2022
  ident: 586_CR211
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac299
– year: 2022
  ident: 586_CR242
  publication-title: bioRxiv
  doi: 10.1101/2022.08.19.504505
– ident: 586_CR104
  doi: 10.32614/CRAN.package.pagoda2
– ident: 586_CR179
– volume: 10
  start-page: 857
  year: 2013
  ident: 586_CR205
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2563
– volume: 20
  year: 2019
  ident: 586_CR63
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1663-x
– volume: 9
  start-page: 223
  year: 2020
  ident: 586_CR57
  publication-title: F1000Research
  doi: 10.12688/f1000research.22969.2
– volume: 22
  year: 2021
  ident: 586_CR1
  publication-title: Genome Biol.
  doi: 10.1186/s13059-021-02519-4
– volume: 17
  year: 2021
  ident: 586_CR40
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20209620
– volume: 12
  year: 2021
  ident: 586_CR86
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25960-2
– year: 2022
  ident: 586_CR236
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01467-z
– volume: 36
  start-page: 897
  year: 2020
  ident: 586_CR181
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz614
– volume: 28
  start-page: 495
  year: 2010
  ident: 586_CR147
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1630
– volume: 31
  start-page: 1706
  year: 2021
  ident: 586_CR191
  publication-title: Genome Res.
  doi: 10.1101/gr.275224.121
– volume: 10
  year: 2019
  ident: 586_CR120
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10216-x
– volume: 16
  start-page: 1289
  year: 2019
  ident: 586_CR37
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0619-0
– volume: 38
  start-page: 1409
  year: 1958
  ident: 586_CR73
  publication-title: Univ. Kans., Sci. Bull.
– volume: 348
  start-page: aaa6090
  year: 2015
  ident: 586_CR204
  publication-title: Science
  doi: 10.1126/science.aaa6090
– volume: 9
  year: 2020
  ident: 586_CR21
  publication-title: Gigascience
  doi: 10.1093/gigascience/giaa151
– volume: 566
  start-page: 490
  year: 2019
  ident: 586_CR106
  publication-title: Nature
  doi: 10.1038/s41586-019-0933-9
– volume: 18
  start-page: 1333
  year: 2021
  ident: 586_CR143
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01282-5
– volume: 15
  start-page: 343
  year: 2018
  ident: 586_CR234
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4636
– volume: 12
  start-page: 1947
  year: 2021
  ident: 586_CR84
  publication-title: Genes
  doi: 10.3390/genes12121947
– volume: 12
  start-page: 128
  year: 2021
  ident: 586_CR125
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2020.11.013
– volume: 36
  start-page: 70
  year: 2018
  ident: 586_CR247
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4038
– volume: 18
  start-page: 723
  year: 2021
  ident: 586_CR6
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01171-x
– volume: 55
  start-page: 1940
  year: 2022
  ident: 586_CR199
  publication-title: Immunity
  doi: 10.1016/j.immuni.2022.09.002
– volume: 13
  year: 2022
  ident: 586_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27716-4
– volume: 9
  start-page: 383
  year: 2019
  ident: 586_CR61
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2019.07.012
– volume: 353
  start-page: 78
  year: 2016
  ident: 586_CR201
  publication-title: Science
  doi: 10.1126/science.aaf2403
– volume: 33
  start-page: 425
  year: 2017
  ident: 586_CR170
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw631
– volume: 20
  year: 2019
  ident: 586_CR54
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1795-z
– volume: 14
  year: 2013
  ident: 586_CR101
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-7
– volume: 15
  start-page: 255
  year: 2018
  ident: 586_CR85
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4612
– volume: 16
  start-page: 2749
  year: 2021
  ident: 586_CR53
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-021-00534-0
– volume: 146
  start-page: dev169730
  year: 2019
  ident: 586_CR77
  publication-title: Development
  doi: 10.1242/dev.169730
– volume: 42
  year: 2020
  ident: 586_CR192
  publication-title: Bioessays
  doi: 10.1002/bies.201900221
– volume: 14
  start-page: 565
  year: 2017
  ident: 586_CR28
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4292
– volume: 12
  start-page: 380
  year: 2015
  ident: 586_CR167
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3364
– volume: 39
  start-page: 1375
  year: 2021
  ident: 586_CR227
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-00935-2
– volume: 49
  year: 2021
  ident: 586_CR39
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab004
– volume: 36
  start-page: 2293
  year: 2020
  ident: 586_CR193
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz914
– volume: 22
  year: 2021
  ident: 586_CR210
  publication-title: Genome Biol.
  doi: 10.1186/s13059-021-02286-2
– volume: 20
  start-page: 257
  year: 2019
  ident: 586_CR17
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0093-7
– volume: 12
  start-page: 810
  year: 2021
  ident: 586_CR75
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2021.05.008
– volume: 18
  start-page: 18
  year: 2021
  ident: 586_CR208
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01037-8
– volume: 40
  start-page: 517
  year: 2022
  ident: 586_CR214
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-00830-w
– volume: 19
  year: 2018
  ident: 586_CR62
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-4772-0
– ident: 586_CR145
  doi: 10.1101/2021.08.20.457057
– volume: 174
  start-page: 716
  year: 2018
  ident: 586_CR152
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.061
– ident: 586_CR252
  doi: 10.1101/2022.04.11.487796
– year: 2022
  ident: 586_CR33
  publication-title: bioRxiv
  doi: 10.1101/2022.05.06.490859
– volume: 2
  start-page: 100182
  year: 2022
  ident: 586_CR144
  publication-title: Cell Rep. Methods
  doi: 10.1016/j.crmeth.2022.100182
– volume: 16
  year: 2015
  ident: 586_CR82
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0844-5
– volume: 21
  year: 2020
  ident: 586_CR20
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02136-7
– volume: 40
  start-page: 1066
  year: 2022
  ident: 586_CR78
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01209-1
– volume: 22
  start-page: bbaa145
  year: 2021
  ident: 586_CR207
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbaa145
– volume: 118
  year: 2021
  ident: 586_CR111
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2100293118
– volume: 185
  start-page: 1223
  year: 2022
  ident: 586_CR16
  publication-title: Cell
  doi: 10.1016/j.cell.2022.02.015
– volume: 18
  start-page: 627
  year: 2021
  ident: 586_CR168
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01142-2
– volume: 10
  year: 2019
  ident: 586_CR156
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-08205-7
– volume: 27
  start-page: 1739
  year: 2011
  ident: 586_CR93
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr260
– volume: 22
  year: 2021
  ident: 586_CR31
  publication-title: Genome Biol.
  doi: 10.1186/s13059-021-02451-7
– volume: 20
  year: 2019
  ident: 586_CR47
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1861-6
– volume: 2
  year: 2022
  ident: 586_CR244
  publication-title: Curr. Protoc.
– volume: 44
  start-page: 1357
  year: 2011
  ident: 586_CR255
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2010.12.015
– volume: 19
  start-page: 159
  year: 2022
  ident: 586_CR68
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01346-6
– volume: 36
  start-page: 4137
  year: 2020
  ident: 586_CR163
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa282
– volume: 23
  start-page: bbac286
  year: 2022
  ident: 586_CR88
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbac286
– volume: 32
  start-page: 587
  year: 2016
  ident: 586_CR148
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv612
– volume: 94
  start-page: 242
  year: 2016
  ident: 586_CR174
  publication-title: Immunol. Cell Biol.
  doi: 10.1038/icb.2015.104
– volume: 184
  start-page: 3573
  year: 2021
  ident: 586_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 18
  start-page: 92
  year: 2021
  ident: 586_CR186
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01020-3
– volume: 36
  start-page: i48
  year: 2020
  ident: 586_CR250
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa443
– volume: 26
  start-page: 139
  year: 2010
  ident: 586_CR79
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– ident: 586_CR160
  doi: 10.1101/2022.04.29.489989
– volume: 19
  start-page: 961
  year: 2021
  ident: 586_CR55
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2021.01.015
– volume: 16
  start-page: 3836
  year: 2021
  ident: 586_CR121
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-021-00561-x
– volume: 21
  year: 2020
  ident: 586_CR237
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02214-w
– volume: 17
  year: 2016
  ident: 586_CR30
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-0947-7
– volume: 40
  start-page: 121
  year: 2022
  ident: 586_CR58
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-021-01001-7
– volume: 179
  start-page: 1636
  year: 2019
  ident: 586_CR177
  publication-title: Cell
  doi: 10.1016/j.cell.2019.11.003
– year: 2022
  ident: 586_CR49
  publication-title: bioRxiv
  doi: 10.1101/2021.08.25.457696
– volume: 48
  year: 2020
  ident: 586_CR226
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa740
– year: 2022
  ident: 586_CR22
  publication-title: bioRxiv
  doi: 10.1101/791699
– volume: 367
  start-page: 45
  year: 2020
  ident: 586_CR113
  publication-title: Science
  doi: 10.1126/science.aax6234
– volume: 19
  start-page: 662
  year: 2022
  ident: 586_CR215
  publication-title: Nat. Methods
  doi: 10.1038/s41592-022-01480-9
– volume: 39
  start-page: 1202
  year: 2021
  ident: 586_CR245
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-00895-7
– volume: 40
  start-page: 54
  year: 2022
  ident: 586_CR188
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-00989-2
– volume: 18
  start-page: 635
  year: 2021
  ident: 586_CR115
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01153-z
– volume: 21
  year: 2020
  ident: 586_CR38
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1850-9
– volume: 20
  year: 2019
  ident: 586_CR45
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1874-1
– volume: 37
  start-page: 547
  year: 2019
  ident: 586_CR65
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0071-9
– volume: 10
  start-page: 979
  year: 2021
  ident: 586_CR24
  publication-title: F1000Res.
  doi: 10.12688/f1000research.73600.1
– volume: 363
  start-page: 1463
  year: 2019
  ident: 586_CR202
  publication-title: Science
  doi: 10.1126/science.aaw1219
– volume: 614
  start-page: 742
  year: 2022
  ident: 586_CR241
  publication-title: Nature
  doi: 10.1038/s41586-022-05688-9
– volume: 4
  start-page: 596
  year: 2022
  ident: 586_CR189
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00492-6
– volume: 23
  year: 2022
  ident: 586_CR46
  publication-title: Genome Biol.
  doi: 10.1186/s13059-021-02581-y
– volume: 523
  start-page: 486
  year: 2015
  ident: 586_CR134
  publication-title: Nature
  doi: 10.1038/nature14590
– year: 2022
  ident: 586_CR142
  publication-title: bioRxiv
  doi: 10.1101/2022.05.04.490536
– volume: 20
  year: 2019
  ident: 586_CR83
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-2599-6
– volume: 12
  year: 2021
  ident: 586_CR87
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21038-1
– volume: 10
  year: 2020
  ident: 586_CR146
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-66998-4
– volume: 19
  start-page: 41
  year: 2022
  ident: 586_CR35
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01336-8
– volume: 36
  start-page: 4817
  year: 2020
  ident: 586_CR164
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa611
– volume: 22
  year: 2021
  ident: 586_CR139
  publication-title: Genome Biol.
  doi: 10.1186/s13059-021-02469-x
– volume: 17
  year: 2021
  ident: 586_CR70
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.202110282
– volume: 16
  start-page: 397
  year: 2019
  ident: 586_CR141
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0367-1
– volume: 2584
  start-page: 269
  year: 2023
  ident: 586_CR69
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-0716-2756-3_14
– volume: 25
  start-page: 25
  year: 2000
  ident: 586_CR94
  publication-title: Nat. Genet.
  doi: 10.1038/75556
– volume: 16
  start-page: 1226
  year: 2019
  ident: 586_CR219
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0582-9
– volume: 9
  start-page: 676
  year: 2012
  ident: 586_CR217
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 376
  start-page: eabl4290
  year: 2022
  ident: 586_CR8
  publication-title: Science
  doi: 10.1126/science.abl4290
– volume: 53
  start-page: 322
  year: 2021
  ident: 586_CR116
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00778-2
– volume: 14
  start-page: 865
  year: 2017
  ident: 586_CR10
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4380
– volume: 19
  year: 2018
  ident: 586_CR4
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1382-0
– volume: 12
  year: 2021
  ident: 586_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22811-y
– year: 2019
  ident: 586_CR225
  publication-title: arXiv
  doi: 10.48550/arXiv.1905.02269
– volume: 18
  start-page: 1429
  year: 2020
  ident: 586_CR9
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2020.06.012
– volume: 43
  year: 2015
  ident: 586_CR81
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv007
– volume: 13
  year: 2022
  ident: 586_CR126
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30755-0
– volume: 19
  start-page: 171
  year: 2022
  ident: 586_CR209
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01358-2
– volume: 18
  start-page: 15
  year: 2021
  ident: 586_CR12
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01038-7
– volume: 37
  start-page: 4216
  year: 2021
  ident: 586_CR230
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab447
– volume: 20
  year: 2019
  ident: 586_CR135
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1854-5
– volume: 23
  year: 2022
  ident: 586_CR238
  publication-title: Genome Biol.
  doi: 10.1186/s13059-022-02663-5
– volume: 9
  start-page: 47
  year: 2020
  ident: 586_CR166
  publication-title: F1000Res.
  doi: 10.12688/f1000research.22139.1
– volume: 547
  start-page: 89
  year: 2017
  ident: 586_CR184
  publication-title: Nature
  doi: 10.1038/nature22383
– volume: 12
  start-page: 176
  year: 2021
  ident: 586_CR26
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2020.11.008
– volume: 37
  start-page: 685
  year: 2019
  ident: 586_CR43
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0113-3
– volume: 12
  year: 2021
  ident: 586_CR221
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23807-4
– year: 2021
  ident: 586_CR99
  publication-title: bioRxiv
  doi: 10.1101/060012
– volume: 35
  start-page: 936
  year: 2017
  ident: 586_CR159
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3973
– volume: 547
  start-page: 94
  year: 2017
  ident: 586_CR183
  publication-title: Nature
  doi: 10.1038/nature22976
– volume: 17
  start-page: 193
  year: 2020
  ident: 586_CR233
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0701-7
– volume: 16
  year: 2018
  ident: 586_CR218
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2005970
– volume: 18
  start-page: 272
  year: 2021
  ident: 586_CR162
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01050-x
– volume: 29
  start-page: 1363
  year: 2019
  ident: 586_CR98
  publication-title: Genome Res.
  doi: 10.1101/gr.240663.118
– volume: 48
  year: 2020
  ident: 586_CR129
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa183
– volume: 9
  year: 2018
  ident: 586_CR97
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02391-6
– volume: 40
  start-page: 1458
  year: 2022
  ident: 586_CR251
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01284-4
– volume: 18
  year: 2022
  ident: 586_CR71
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1010492
– volume: 40
  start-page: 245
  year: 2022
  ident: 586_CR112
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01033-z
– year: 2022
  ident: 586_CR60
  publication-title: bioRxiv
  doi: 10.1101/2022.05.09.490241
– volume: 202
  start-page: 637
  year: 2019
  ident: 586_CR173
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1800904
– volume: 20
  start-page: 86
  year: 2023
  ident: 586_CR118
  publication-title: Nat. Methods
  doi: 10.1038/s41592-022-01705-x
– volume: 19
  year: 2018
  ident: 586_CR137
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-4559-3
– volume: 2
  start-page: vbac016
  year: 2022
  ident: 586_CR103
  publication-title: Bioinform. Adv.
  doi: 10.1093/bioadv/vbac016
– volume: 23
  year: 2022
  ident: 586_CR150
  publication-title: Genome Biol.
  doi: 10.1186/s13059-021-02577-8
– volume: 40
  start-page: 308
  year: 2022
  ident: 586_CR190
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01182-1
– volume: 40
  start-page: 345
  year: 2022
  ident: 586_CR222
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01044-w
– volume: 16
  start-page: 57
  year: 2015
  ident: 586_CR206
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3832
– year: 2022
  ident: 586_CR44
  publication-title: arXiv
  doi: 10.48550/arXiv.2208.05229
– volume: 50
  start-page: D687
  year: 2022
  ident: 586_CR96
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab1028
– volume: 2
  start-page: 100166
  year: 2022
  ident: 586_CR154
  publication-title: Cell Genom.
  doi: 10.1016/j.xgen.2022.100166
– volume: 348
  start-page: 910
  year: 2015
  ident: 586_CR133
  publication-title: Science
  doi: 10.1126/science.aab1601
– year: 2022
  ident: 586_CR158
  publication-title: Nature
  doi: 10.1038/s41586-022-05279-8
– volume: 11
  start-page: 360
  year: 2014
  ident: 586_CR203
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2892
– volume: 16
  start-page: 715
  year: 2019
  ident: 586_CR42
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0494-8
– volume: 12
  start-page: 640725
  year: 2021
  ident: 586_CR185
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2021.640725
– volume: 19
  start-page: 266
  year: 2016
  ident: 586_CR64
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.05.010
– volume: 21
  year: 2020
  ident: 586_CR248
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02015-1
– volume: 167
  start-page: 1853
  year: 2016
  ident: 586_CR114
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.038
– volume: 18
  start-page: 1342
  year: 2021
  ident: 586_CR229
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01255-8
– volume: 11
  year: 2020
  ident: 586_CR239
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15968-5
– volume: 15
  start-page: 123
  year: 2018
  ident: 586_CR149
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4556
– volume: 29
  start-page: 3
  year: 2022
  ident: 586_CR249
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2021.0446
– volume: 27
  start-page: 904
  year: 2021
  ident: 586_CR165
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01329-2
– volume: 36
  start-page: 738
  year: 2015
  ident: 586_CR175
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2015.09.006
– volume: 37
  start-page: 2644
  year: 2021
  ident: 586_CR235
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab164
– volume: 39
  start-page: btac805
  year: 2023
  ident: 586_CR216
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac805
– volume: 12
  year: 2021
  ident: 586_CR76
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25133-1
– volume: 12
  year: 2021
  ident: 586_CR136
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21583-9
– volume: 9
  year: 2019
  ident: 586_CR52
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41695-z
– year: 2021
  ident: 586_CR231
  publication-title: bioRxiv
  doi: 10.1101/2021.11.11.468178
– volume: 45
  start-page: D353
  year: 2017
  ident: 586_CR95
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1092
– volume: 102
  start-page: 15545
  year: 2005
  ident: 586_CR100
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
– volume: 20
  issue: Suppl. 19
  year: 2019
  ident: 586_CR109
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-3211-9
– volume: 609
  start-page: 375
  year: 2022
  ident: 586_CR198
  publication-title: Nature
  doi: 10.1038/s41586-022-05094-1
– volume: 21
  year: 2020
  ident: 586_CR72
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02000-8
– volume: 39
  start-page: 1246
  year: 2021
  ident: 586_CR246
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-00927-2
– volume: 7
  start-page: 1297
  year: 2018
  ident: 586_CR51
  publication-title: F1000Res.
  doi: 10.12688/f1000research.15809.1
– volume: 7
  start-page: eabf1356
  year: 2021
  ident: 586_CR131
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf1356
– year: 2020
  ident: 586_CR228
  publication-title: bioRxiv
  doi: 10.1101/2020.05.31.125658
– volume: 15
  start-page: 563
  year: 2018
  ident: 586_CR171
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0082-3
– volume: 12
  start-page: 664514
  year: 2021
  ident: 586_CR176
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2021.664514
– volume: 4
  start-page: 827
  year: 2020
  ident: 586_CR194
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-020-0578-x
– volume: 12
  start-page: 522
  year: 2021
  ident: 586_CR119
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2021.05.016
– ident: 586_CR187
  doi: 10.1101/2021.06.24.449733
– volume: 40
  start-page: 661
  year: 2022
  ident: 586_CR212
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01139-4
– volume: 18
  start-page: 2953
  year: 2020
  ident: 586_CR105
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2020.10.007
– volume: 4
  start-page: 406
  year: 1987
  ident: 586_CR74
  publication-title: Mol. Biol. Evol.
– volume: 19
  start-page: 1097
  year: 2022
  ident: 586_CR157
  publication-title: Nat. Methods
  doi: 10.1038/s41592-022-01595-z
– volume: 23
  start-page: 728
  year: 2022
  ident: 586_CR132
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-022-00512-6
– year: 2022
  ident: 586_CR256
  publication-title: bioRxiv
  doi: 10.1101/2022.02.24.481684
– volume: 12
  start-page: 766405
  year: 2021
  ident: 586_CR110
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2021.766405
– ident: 586_CR223
  doi: 10.1101/2022.08.16.504115
– volume: 10
  year: 2018
  ident: 586_CR169
  publication-title: Genome Med.
  doi: 10.1186/s13073-018-0528-3
– volume: 21
  year: 2020
  ident: 586_CR91
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-1926-6
– volume: 13
  year: 2022
  ident: 586_CR161
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29356-8
– year: 2022
  ident: 586_CR32
  publication-title: bioRxiv
  doi: 10.1101/2021.06.24.449781
– year: 2022
  ident: 586_CR29
  publication-title: bioRxiv
  doi: 10.1101/2021.06.24.449781
– volume: 29
  start-page: 202
  year: 2019
  ident: 586_CR240
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.08.077
– volume: 19
  start-page: 179
  year: 2022
  ident: 586_CR196
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01343-9
– volume: 32
  start-page: 109
  year: 2020
  ident: 586_CR13
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2019.12.006
– year: 2022
  ident: 586_CR27
  publication-title: bioRxiv
  doi: 10.1101/2022.03.07.483367
– volume: 38
  start-page: 1408
  year: 2020
  ident: 586_CR67
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0591-3
– volume: 22
  year: 2021
  ident: 586_CR213
  publication-title: Genome Biol.
  doi: 10.1186/s13059-021-02362-7
– volume: 376
  start-page: eabl5197
  year: 2022
  ident: 586_CR56
  publication-title: Science
  doi: 10.1126/science.abl5197
– year: 2021
  ident: 586_CR124
  publication-title: bioRxiv
  doi: 10.1101/2021.04.14.439903
– volume: 21
  year: 2020
  ident: 586_CR102
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-1949-z
– volume: 39
  start-page: 43
  year: 2021
  ident: 586_CR197
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2020.05.006
– volume: 9
  year: 2019
  ident: 586_CR138
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45839-z
– volume: 38
  start-page: 747
  year: 2020
  ident: 586_CR18
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0469-4
– volume: 36
  start-page: 411
  year: 2018
  ident: 586_CR36
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4096
– volume: 9
  start-page: 1444
  year: 2020
  ident: 586_CR89
  publication-title: F1000Res.
  doi: 10.12688/f1000research.27893.1
– volume: 39
  start-page: 30
  year: 2021
  ident: 586_CR122
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0605-1
– volume: 21
  year: 2020
  ident: 586_CR23
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-1950-6
– volume: 15
  start-page: 1053
  year: 2018
  ident: 586_CR41
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0229-2
– volume: 17
  start-page: 159
  year: 2020
  ident: 586_CR130
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0667-5
– volume: 15
  year: 2014
  ident: 586_CR80
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 178
  start-page: 714
  year: 2019
  ident: 586_CR107
  publication-title: Cell
  doi: 10.1016/j.cell.2019.06.029
– volume: 8
  start-page: 278
  year: 2017
  ident: 586_CR180
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.00278
– volume: 40
  start-page: 476
  year: 2022
  ident: 586_CR195
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01075-3
– volume: 18
  start-page: 1352
  year: 2021
  ident: 586_CR224
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01264-7
– volume: 18
  start-page: 100
  year: 2021
  ident: 586_CR220
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01018-x
– volume: 10
  year: 2019
  ident: 586_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12266-7
– volume: 560
  start-page: 494
  year: 2018
  ident: 586_CR66
  publication-title: Nature
  doi: 10.1038/s41586-018-0414-6
– volume: 39
  start-page: 619
  year: 2021
  ident: 586_CR123
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-00803-5
– volume: 32
  start-page: 684
  year: 2014
  ident: 586_CR11
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2938
– volume: 179
  start-page: 1455
  year: 2019
  ident: 586_CR232
  publication-title: Cell
  doi: 10.1016/j.cell.2019.11.019
– volume: 15
  year: 2019
  ident: 586_CR5
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20188746
– volume: 2
  start-page: 100699
  year: 2021
  ident: 586_CR25
  publication-title: Star. Protoc.
  doi: 10.1016/j.xpro.2021.100699
– volume: 46
  start-page: D419
  year: 2018
  ident: 586_CR182
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx760
– volume: 7
  start-page: 1141
  year: 2018
  ident: 586_CR50
  publication-title: F1000Res.
  doi: 10.12688/f1000research.15666.2
– volume: 12
  year: 2021
  ident: 586_CR59
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25957-x
– volume: 4
  start-page: lqac049
  year: 2022
  ident: 586_CR172
  publication-title: NAR Genom. Bioinform.
  doi: 10.1093/nargab/lqac049
– volume: 37
  start-page: 3243
  year: 2021
  ident: 586_CR90
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab337
SSID ssj0016173
Score 2.7548559
SecondaryResourceType review_article
Snippet Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 550
SubjectTerms 631/114/1305
631/114/794
631/1647/514/1949
631/208/191
Agriculture
Animal Genetics and Genomics
Biomedical and Life Sciences
Biomedicine
Cancer Research
Chromatin
Electrons
Expert Recommendation
Gene Expression Profiling - methods
Gene Function
Human Genetics
Proteomics
Single-Cell Analysis - methods
Transcriptomics
Title Best practices for single-cell analysis across modalities
URI https://link.springer.com/article/10.1038/s41576-023-00586-w
https://www.ncbi.nlm.nih.gov/pubmed/37002403
https://www.proquest.com/docview/2838516462
https://www.proquest.com/docview/2793984588
https://pubmed.ncbi.nlm.nih.gov/PMC10066026
Volume 24
WOSCitedRecordID wos000961193300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1471-0064
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016173
  issn: 1471-0056
  databaseCode: 7RV
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9wwDLcGbBIv7Jt1Y6dO2tsW0TRpmzxNA4H2dDqhbbq3KpekGhLrAT1A---x07TohsbLXiKd4msb23F-iR0b4KOVlS2cc6x00jBpF4YtdCGYNrKwvEAN4U0oNlFNp2o-17N44NbFsMrBJgZD7ZaWzsj3cRlEcFDKMv9yfsGoahR5V2MJjQ3YoiwJeQjdm41ehLL3MHM0wIxyXsZLM5lQ-x0uXBWF3wrqUSW7WV-Y7qHN-0GTf3lOw4J0_PR_h_IMdiIUTb_2uvMcHvn2BTzpi1P-eQn6AJ-YDreouhTRbUoHC2ee0Wl_amI6k9SEAaW_l44wPe68X8GP46Pvh99YLLTAUFTFijVZZhtltdUVAq4iz6TUkmvvpcu4L5QwCPMaZzOnTCMbnTW-lBbBmSO0Z7l4DZvtsvVvILW5MJ7nvsRdN1Gqyixk6XJrlc7xdwJ84HJtYxZyKoZxVgdvuFB1L5kaJVMHydQ3CXwa_3Pe5-B4kHpv4Hod52NX37E8gQ9jN84kYphp_fIKadBUaUU3dxPY7WU9vk5UIRmcSECtacFIQFm613va018hWzcnVIc73QQ-Dwpz913_Hsbbh4fxDrbzoLwUirgHm6vLK_8eHtvr1Wl3OYGN6uQntfMqtApbdcgnsHVwNJ2dTMI0uQVxVxJ_
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAqKX8qaBAkaCE1hNHCexDxWCQtWqZcWhSL2lXtsRK5Vsabas-qf4jcw4j2qp6K0HjpEniR_fjD_b4xmA11YWNnPO8dxJw6UdGz7WWcq1kZlNMkRIUoVkE8VopA4P9dcl-N3fhSG3yt4mBkPtppb2yDdwGkRykMtcvD_5ySlrFJ2u9ik0Wljs-fM5Ltmazd1POL5vhNj-fLC1w7usAhzrlc14Fce2UlZbXSC7yEQspZaJ9l66OPGZSg1ymsrZ2ClTyUrHlc-lRSbiiNrYJMXv3oCbFMmONEptDS4ltFQIDv1o8DnF2Owu6cSp2mhwoizI3TelEpXz-eJEeIndXnbS_OukNkyA23f_t667B6sd1WYfWt24D0u-fgC32-Sb5w9Bf8QWsP6WWMOQvTPaODn2nE4zmOnCtTATOpD9mDpas0x88wi-XUu9H8NyPa39GjArUuMT4fNcxySpCjOWuRPWKi3wOYKkH9XSdlHWKdnHcRlO-1NVtkgoEQllQEI5j-Dt8M5JG2PkSun1fpTLzt405cUQR_BqKEZLQR1maj89Qxk0xVrRzeQInrTYGn6XFiHYXRqBWkDdIEBRyBdL6sn3EI08IdaKK_kI3vUAvajXv5vx9OpmvIQ7Owdf9sv93dHeM1gRQXHI7XIdlmenZ_453LK_ZpPm9EVQQQZH1w3cP8SOaLA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuPAsECgQJTmBtnDiJfUCI0q6oilYrBFJvxms76kolW5otq_61_rrO5FUtFb31wDGyk_jxefzZ8wJ4Y0VuU-ccy5wwTNipYVOVJkwZkVqeIkJ4USebyMdjub-vJmtw1vnCkFllJxNrQe3mlu7Ih7gNIjnIRBYPi9YsYrI9-nj0m1EGKdK0duk0Gojs-dMlHt-qD7vbONdv43i08_3zF9ZmGGDYxnTBiiiyhbTKqhyZRhpHQijBlffCRdynMjHIbwpnIydNIQoVFT4TFlmJI5pjeYLfvQHrOZIMMYD1rZ3x5Fuvw8ga_TZH8c8o4mbrshMlcljhtpmT8W9CJTJjy9Vt8RLXvWyy-Zfett4OR_f-54G8D3dbEh5-albNA1jz5UO41aTlPH0Eagt7E3b-Y1WIvD6kK5VDz0jPEZo2kEto6sEMf80dnWZmvtqAH9fS7scwKOelfwqhjRPjeeyzTEVUU-ZmKjIXWytVjM8B8G6GtW3jr1MakENd2wEkUjeo0IgKXaNCLwN4179z1EQfubL2ZjfjupVElb6Y7gBe98UoQ2jATOnnJ1gHhbSS5LMcwJMGZ_3vkrwOg5cEIFcQ2Feg-OSrJeXsoI5TzonP4hk_gPcdWC_a9e9uPLu6G6_gNuJVf90d7z2HO3G9hsgecxMGi-MT_wJu2j-LWXX8sl2PIfy8buSeA0eHcw4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Best+practices+for+single-cell+analysis+across+modalities&rft.jtitle=Nature+reviews.+Genetics&rft.date=2023-08-01&rft.pub=Nature+Publishing+Group&rft.issn=1471-0056&rft.eissn=1471-0064&rft.volume=24&rft.issue=8&rft.spage=550&rft.epage=572&rft_id=info:doi/10.1038%2Fs41576-023-00586-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0056&client=summon