Best practices for single-cell analysis across modalities
Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and sp...
Saved in:
| Published in: | Nature reviews. Genetics Vol. 24; no. 8; pp. 550 - 572 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
01.08.2023
Nature Publishing Group |
| Subjects: | |
| ISSN: | 1471-0056, 1471-0064, 1471-0064 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices.
Practitioners in the field of single-cell omics are now faced with diverse options for analytical tools to process and integrate data from various molecular modalities. In an Expert Recommendation article, the authors provide guidance on robust single-cell data analysis, including choices of best-performing tools from benchmarking studies. |
|---|---|
| AbstractList | Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices.Practitioners in the field of single-cell omics are now faced with diverse options for analytical tools to process and integrate data from various molecular modalities. In an Expert Recommendation article, the authors provide guidance on robust single-cell data analysis, including choices of best-performing tools from benchmarking studies. Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices. Practitioners in the field of single-cell omics are now faced with diverse options for analytical tools to process and integrate data from various molecular modalities. In an Expert Recommendation article, the authors provide guidance on robust single-cell data analysis, including choices of best-performing tools from benchmarking studies. Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices.Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices. Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices. |
| Author | Schiller, Herbert B. Schaar, Anna C. Zappia, Luke Heumos, Lukas Curion, Fabiola Lücken, Malte D. Lance, Christopher Drost, Felix Strobl, Daniel C. Litinetskaya, Anastasia Henao, Juan Theis, Fabian J. |
| Author_xml | – sequence: 1 givenname: Lukas orcidid: 0000-0002-8937-3457 surname: Heumos fullname: Heumos, Lukas organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Munich; Member of the German Center for Lung Research (DZL), TUM School of Life Sciences Weihenstephan, Technical University of Munich – sequence: 2 givenname: Anna C. orcidid: 0000-0003-1063-005X surname: Schaar fullname: Schaar, Anna C. organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Munich Center for Machine Learning, Technical University of Munich – sequence: 3 givenname: Christopher orcidid: 0000-0002-1275-9802 surname: Lance fullname: Lance, Christopher organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Department of Paediatrics, Dr von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität München – sequence: 4 givenname: Anastasia surname: Litinetskaya fullname: Litinetskaya, Anastasia organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich – sequence: 5 givenname: Felix orcidid: 0000-0002-2600-4048 surname: Drost fullname: Drost, Felix organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, TUM School of Life Sciences Weihenstephan, Technical University of Munich – sequence: 6 givenname: Luke orcidid: 0000-0001-7744-8565 surname: Zappia fullname: Zappia, Luke organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich – sequence: 7 givenname: Malte D. orcidid: 0000-0001-7464-7921 surname: Lücken fullname: Lücken, Malte D. organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Institute of Lung Health and Immunity, Helmholtz Munich – sequence: 8 givenname: Daniel C. surname: Strobl fullname: Strobl, Daniel C. organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, TranslaTUM, Center for Translational Cancer Research, Technical University of Munich – sequence: 9 givenname: Juan surname: Henao fullname: Henao, Juan organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich – sequence: 10 givenname: Fabiola orcidid: 0000-0003-2502-8803 surname: Curion fullname: Curion, Fabiola organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich – sequence: 12 givenname: Herbert B. surname: Schiller fullname: Schiller, Herbert B. organization: Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Munich; Member of the German Center for Lung Research (DZL) – sequence: 13 givenname: Fabian J. orcidid: 0000-0002-2419-1943 surname: Theis fullname: Theis, Fabian J. email: fabian.theis@helmholtz-muenchen.de organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Munich Center for Machine Learning, Technical University of Munich |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37002403$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtPAyEUhYnR-Kj-ARdmEjduRi_DY2Bl1PhKTNzomiADFTMdKkw1_nupfahddAWE79yce84e2uxCZxE6xHCKgYizRDGreQkVKQGY4OXnBtrFtMb5yenm8s74DtpL6Q0Ac1yTbbRDaoCKAtlF8tKmvhhHbXpvbCpciEXy3bC1pbFtW-hOt1_Jp0KbGFIqRqHRre-9Tftoy-k22YP5OUDPN9dPV3flw-Pt_dXFQ2lozfrSARgnjDSylgyzCiiVFEtraQPYMkE0lsQ1BhqhHXUSnOXUgGQNsJoZTAbofDZ3PHkZ2cbYro-6VePoRzp-qaC9-v_T-Vc1DB8K5xQ4VDxPOJlPiOF9kvdVI5-m2-nOhklSVS2JFJQJkdHjFfQtTGLOIFOCCIY55VWmjv5aWnpZxJoBMQN-QovWKeN73fswdejbbE1NG1SzBlVuUP00qD6ztFqRLqavFZGZKGW4G9r4a3uN6huNga3F |
| CitedBy_id | crossref_primary_10_1038_s41556_025_01706_w crossref_primary_10_1038_s41587_023_01934_1 crossref_primary_10_1016_j_cell_2025_06_009 crossref_primary_10_1016_j_coemr_2024_100524 crossref_primary_10_1016_j_xpro_2024_103475 crossref_primary_10_1038_s44320_025_00088_3 crossref_primary_10_1002_admt_202401953 crossref_primary_10_1007_s12032_025_03002_x crossref_primary_10_1021_acs_jproteome_4c00091 crossref_primary_10_1093_carcin_bgaf038 crossref_primary_10_2174_0115748936278884240102094058 crossref_primary_10_1002_smtd_202400789 crossref_primary_10_1186_s12974_024_03210_8 crossref_primary_10_1360_SSV_2025_0140 crossref_primary_10_1038_s41592_024_02303_9 crossref_primary_10_1093_nargab_lqaf043 crossref_primary_10_1093_nargab_lqaf042 crossref_primary_10_1038_s41592_023_02067_8 crossref_primary_10_3389_fsysb_2024_1466368 crossref_primary_10_1093_bioadv_vbaf069 crossref_primary_10_3389_fgene_2023_1256991 crossref_primary_10_1093_bioadv_vbae099 crossref_primary_10_1111_imcb_70040 crossref_primary_10_1093_biostatistics_kxaf024 crossref_primary_10_1002_glia_24633 crossref_primary_10_1080_19396368_2025_2533992 crossref_primary_10_1038_s41551_025_01481_x crossref_primary_10_1038_s41571_025_01003_3 crossref_primary_10_1093_plcell_koae003 crossref_primary_10_3390_biom13101516 crossref_primary_10_1038_s41588_024_01658_1 crossref_primary_10_1093_jxb_erae107 crossref_primary_10_1186_s12967_023_04382_2 crossref_primary_10_1038_s42003_025_07872_9 crossref_primary_10_1126_science_adp3957 crossref_primary_10_1038_s44385_025_00023_z crossref_primary_10_1093_oxfimm_iqaf005 crossref_primary_10_1111_jgh_16915 crossref_primary_10_1126_science_adl0544 crossref_primary_10_1016_j_gpb_2023_06_003 crossref_primary_10_1038_s41556_025_01619_8 crossref_primary_10_1093_gigascience_giaf076 crossref_primary_10_1007_s12015_024_10831_2 crossref_primary_10_3390_genes15091114 crossref_primary_10_1016_j_mad_2024_111918 crossref_primary_10_1016_j_gde_2024_102155 crossref_primary_10_1038_s41592_024_02353_z crossref_primary_10_1093_nar_gkae225 crossref_primary_10_3390_cimb46060316 crossref_primary_10_1093_gpbjnl_qzae026 crossref_primary_10_1016_j_talanta_2024_126728 crossref_primary_10_1093_bib_bbaf198 crossref_primary_10_1007_s40291_023_00668_9 crossref_primary_10_1038_s41584_023_01031_2 crossref_primary_10_7554_eLife_90214_3 crossref_primary_10_1016_j_neuint_2025_105998 crossref_primary_10_1371_journal_pone_0302118 crossref_primary_10_1038_s41590_024_01768_2 crossref_primary_10_1186_s13072_024_00547_5 crossref_primary_10_3390_genes14112033 crossref_primary_10_3390_genes15121551 crossref_primary_10_3390_stats7030059 crossref_primary_10_1038_s42256_025_01097_5 crossref_primary_10_1016_j_cotox_2024_100475 crossref_primary_10_1016_j_xcrp_2025_102811 crossref_primary_10_1186_s13059_024_03303_w crossref_primary_10_1371_journal_pbio_3002640 crossref_primary_10_1038_s41467_024_53355_6 crossref_primary_10_1038_s41467_024_45661_w crossref_primary_10_1186_s13059_025_03677_5 crossref_primary_10_3390_ijms252011298 crossref_primary_10_1002_adma_202415160 crossref_primary_10_1007_s10157_025_02679_8 crossref_primary_10_1016_j_copbio_2024_103078 crossref_primary_10_1186_s41065_025_00573_7 crossref_primary_10_1093_lifemeta_loaf010 crossref_primary_10_1038_s41588_025_02285_0 crossref_primary_10_1186_s12864_024_11015_5 crossref_primary_10_1038_s41598_025_99364_3 crossref_primary_10_1093_gpbjnl_qzaf002 crossref_primary_10_1016_j_immuni_2024_01_006 crossref_primary_10_1016_j_immuni_2023_10_002 crossref_primary_10_1038_s42256_024_00934_3 crossref_primary_10_1039_D5SC01764E crossref_primary_10_1038_s41467_024_44757_7 crossref_primary_10_1038_s41467_025_59822_y crossref_primary_10_3389_fimmu_2025_1554876 crossref_primary_10_1002_smtd_202300923 crossref_primary_10_1016_j_tifs_2025_105193 crossref_primary_10_1101_gr_278253_123 crossref_primary_10_1002_anie_202314468 crossref_primary_10_1016_j_biopha_2024_117005 crossref_primary_10_1016_j_cotox_2024_100464 crossref_primary_10_1523_JNEUROSCI_0043_24_2024 crossref_primary_10_1093_bib_bbae095 crossref_primary_10_1182_bloodadvances_2022009313 crossref_primary_10_1038_s41592_024_02511_3 crossref_primary_10_3390_cells13010027 crossref_primary_10_1371_journal_pcbi_1012962 crossref_primary_10_1093_gpbjnl_qzaf011 crossref_primary_10_3389_frai_2024_1424012 crossref_primary_10_1016_j_tins_2023_09_007 crossref_primary_10_1016_j_mam_2024_101253 crossref_primary_10_1186_s13059_024_03322_7 crossref_primary_10_1016_j_xpro_2025_103670 crossref_primary_10_1038_s41587_023_02040_y crossref_primary_10_1038_s41598_025_89988_w crossref_primary_10_3389_fimmu_2025_1529847 crossref_primary_10_1038_s41592_025_02624_3 crossref_primary_10_1093_bib_bbaf018 crossref_primary_10_1038_s41590_025_02161_3 crossref_primary_10_1371_journal_pcbi_1012480 crossref_primary_10_3389_fgene_2025_1603687 crossref_primary_10_1109_JBHI_2024_3460761 crossref_primary_10_1002_anie_202319248 crossref_primary_10_1038_s41467_024_49806_9 crossref_primary_10_1007_s40242_025_4243_5 crossref_primary_10_1038_s42003_024_07238_7 crossref_primary_10_1371_journal_pbio_3003085 crossref_primary_10_1016_j_molcel_2024_08_002 crossref_primary_10_1038_s41592_024_02532_y crossref_primary_10_1111_bph_70128 crossref_primary_10_1161_CIRCRESAHA_124_325656 crossref_primary_10_1186_s12931_024_02823_0 crossref_primary_10_1186_s13059_025_03731_2 crossref_primary_10_1093_bib_bbae399 crossref_primary_10_1111_brv_13063 crossref_primary_10_1038_s43586_023_00284_1 crossref_primary_10_1038_s44161_024_00533_w crossref_primary_10_1093_nargab_lqae134 crossref_primary_10_3390_diagnostics14192172 crossref_primary_10_1186_s13059_025_03716_1 crossref_primary_10_1038_s41467_024_53340_z crossref_primary_10_1093_bib_bbae152 crossref_primary_10_1038_s41568_024_00757_9 crossref_primary_10_1038_s41598_025_96823_9 crossref_primary_10_1016_j_molmed_2025_06_004 crossref_primary_10_1017_S2633903X24000138 crossref_primary_10_1186_s13059_024_03249_z crossref_primary_10_1186_s13062_025_00691_2 crossref_primary_10_1016_j_csbj_2024_07_012 crossref_primary_10_1038_s41598_025_95079_7 crossref_primary_10_1016_j_exphem_2024_104167 crossref_primary_10_1038_s41586_024_07079_8 crossref_primary_10_1186_s12983_025_00579_x crossref_primary_10_3389_fgene_2023_1304661 crossref_primary_10_1038_s41467_024_54516_3 crossref_primary_10_1080_13102818_2024_2379837 crossref_primary_10_1016_j_jid_2024_02_006 crossref_primary_10_1038_s41592_024_02263_0 crossref_primary_10_1038_s43018_025_00942_1 crossref_primary_10_1093_bib_bbaf397 crossref_primary_10_1016_j_medp_2024_100042 crossref_primary_10_1080_17474086_2023_2285985 crossref_primary_10_1088_1478_3975_adda85 crossref_primary_10_1186_s12915_025_02128_8 crossref_primary_10_1016_j_biotechadv_2024_108506 crossref_primary_10_1186_s13059_025_03574_x crossref_primary_10_3390_cells14030156 crossref_primary_10_1093_bib_bbad525 crossref_primary_10_3389_fonc_2025_1584178 crossref_primary_10_1186_s12885_024_13258_7 crossref_primary_10_1038_s41467_024_51003_7 crossref_primary_10_1038_s44318_024_00313_z crossref_primary_10_3390_ijms25137367 crossref_primary_10_1038_s41417_024_00788_2 crossref_primary_10_1371_journal_ppat_1012012 crossref_primary_10_1002_bit_70030 crossref_primary_10_1093_bib_bbaf388 crossref_primary_10_1016_j_crmeth_2023_100591 crossref_primary_10_1016_j_measurement_2024_116258 crossref_primary_10_1145_3702646 crossref_primary_10_1146_annurev_genet_072920_013842 crossref_primary_10_1186_s12943_024_02113_9 crossref_primary_10_1093_bioinformatics_btaf114 crossref_primary_10_1038_s41556_024_01469_w crossref_primary_10_1038_s41597_025_04381_6 crossref_primary_10_3389_fimmu_2025_1599303 crossref_primary_10_1007_s11426_023_1793_7 crossref_primary_10_1016_j_cell_2025_02_009 crossref_primary_10_1016_j_esmoop_2024_104105 crossref_primary_10_1016_j_drudis_2024_103889 crossref_primary_10_3390_ijms252413382 crossref_primary_10_3389_fgene_2023_1256064 crossref_primary_10_1038_s41467_024_52356_9 crossref_primary_10_34133_research_0743 crossref_primary_10_1021_acs_analchem_5c00863 crossref_primary_10_1021_acs_jproteome_4c00658 crossref_primary_10_1016_j_isci_2025_112713 crossref_primary_10_1172_JCI186421 crossref_primary_10_1002_adma_202409102 crossref_primary_10_1038_s41593_025_01973_8 crossref_primary_10_1016_j_ajog_2024_08_040 crossref_primary_10_1016_j_talanta_2024_126225 crossref_primary_10_1038_s41568_024_00737_z crossref_primary_10_1016_j_bosn_2025_04_001 crossref_primary_10_1002_ange_202314468 crossref_primary_10_1038_s41431_024_01564_4 crossref_primary_10_1038_s41586_024_08487_6 crossref_primary_10_1038_s42255_025_01296_9 crossref_primary_10_1089_gen_44_02_08 crossref_primary_10_1161_CIRCRESAHA_124_323672 crossref_primary_10_1016_j_intimp_2025_114381 crossref_primary_10_1038_s41571_023_00830_6 crossref_primary_10_1038_s41597_024_03002_y crossref_primary_10_3389_fmicb_2023_1236653 crossref_primary_10_1016_j_trac_2024_118109 crossref_primary_10_1016_j_pharmthera_2024_108613 crossref_primary_10_1038_s41467_025_59206_2 crossref_primary_10_1186_s10020_024_00955_z crossref_primary_10_1186_s13059_024_03219_5 crossref_primary_10_1007_s10456_024_09955_3 crossref_primary_10_1038_s41592_024_02429_w crossref_primary_10_1126_sciadv_adm7042 crossref_primary_10_1177_11779322241287120 crossref_primary_10_1093_bioadv_vbaf105 crossref_primary_10_1038_s41467_025_63029_6 crossref_primary_10_1038_s41587_025_02702_z crossref_primary_10_1200_EDBK_430734 crossref_primary_10_1007_s11538_023_01213_9 crossref_primary_10_3892_mmr_2024_13415 crossref_primary_10_1016_j_immuni_2025_04_009 crossref_primary_10_1371_journal_pone_0322706 crossref_primary_10_1038_s41467_025_59448_0 crossref_primary_10_1002_advs_202401815 crossref_primary_10_1038_s41467_024_51059_5 crossref_primary_10_1093_rheumatology_keaf252 crossref_primary_10_1093_nar_gkad1146 crossref_primary_10_1093_nar_gkae1186 crossref_primary_10_1016_j_addicn_2025_100209 crossref_primary_10_1038_s42003_024_07171_9 crossref_primary_10_1016_j_tig_2024_12_009 crossref_primary_10_1002_advs_202509247 crossref_primary_10_1007_s12015_024_10764_w crossref_primary_10_1080_10428194_2024_2422833 crossref_primary_10_1096_fj_202400303R crossref_primary_10_1145_3718988 crossref_primary_10_1093_bioinformatics_btaf268 crossref_primary_10_1038_s41540_024_00364_2 crossref_primary_10_1186_s13059_025_03514_9 crossref_primary_10_1093_bib_bbae382 crossref_primary_10_1172_jci_insight_169105 crossref_primary_10_1038_s43588_024_00689_2 crossref_primary_10_1186_s40478_025_01966_5 crossref_primary_10_1126_science_adf6162 crossref_primary_10_1111_jne_70072 crossref_primary_10_1038_s41467_024_53971_2 crossref_primary_10_1093_bib_bbaf109 crossref_primary_10_1038_s41523_025_00808_w crossref_primary_10_1186_s13059_024_03356_x crossref_primary_10_1038_s41467_025_56280_4 crossref_primary_10_1038_s41596_023_00932_6 crossref_primary_10_1093_nar_gkaf805 crossref_primary_10_1093_bib_bbaf465 crossref_primary_10_1038_s41577_025_01199_6 crossref_primary_10_1101_gr_278215_123 crossref_primary_10_3390_bioengineering11060542 crossref_primary_10_1016_j_xpro_2024_103521 crossref_primary_10_1093_burnst_tkae043 crossref_primary_10_1186_s13059_023_03123_4 crossref_primary_10_1038_s41587_023_01943_0 crossref_primary_10_3390_cancers16173100 crossref_primary_10_1002_ange_202319248 crossref_primary_10_1007_s11936_025_01100_7 crossref_primary_10_1016_j_xpro_2024_103083 crossref_primary_10_3389_fimmu_2024_1479166 crossref_primary_10_1038_s41592_025_02713_3 crossref_primary_10_1002_eji_202451234 crossref_primary_10_1007_s00216_023_05028_4 crossref_primary_10_1038_s41467_023_41855_w crossref_primary_10_3390_ijms25084485 crossref_primary_10_1038_s41580_024_00822_z crossref_primary_10_1093_genetics_iyae167 crossref_primary_10_1038_s41586_025_08989_x crossref_primary_10_1093_bib_bbaf339 crossref_primary_10_1093_nar_gkad874 crossref_primary_10_1038_s41421_024_00753_1 crossref_primary_10_1080_08820139_2025_2457039 crossref_primary_10_1103_8vpj_bj7d crossref_primary_10_1038_s41467_025_59424_8 crossref_primary_10_1039_D5AN00037H crossref_primary_10_1016_j_bios_2024_117074 crossref_primary_10_1038_s41587_025_02694_w crossref_primary_10_1002_adtp_202400351 crossref_primary_10_1186_s13059_025_03602_w crossref_primary_10_1038_s42003_025_08123_7 crossref_primary_10_2147_JIR_S490457 crossref_primary_10_1016_j_ard_2025_04_011 crossref_primary_10_1016_j_csbj_2025_06_047 crossref_primary_10_1016_j_csbj_2024_12_030 crossref_primary_10_1016_j_tig_2023_07_005 crossref_primary_10_3390_cancers16061213 crossref_primary_10_1186_s13059_024_03450_0 crossref_primary_10_3389_fchem_2024_1428547 crossref_primary_10_26508_lsa_202402713 crossref_primary_10_7554_eLife_104856 crossref_primary_10_1038_s41586_025_09503_z crossref_primary_10_1038_s44320_024_00045_6 crossref_primary_10_1186_s12859_023_05590_9 crossref_primary_10_1371_journal_pcbi_1012512 crossref_primary_10_1016_j_kint_2023_11_033 crossref_primary_10_1093_cei_uxae077 crossref_primary_10_1038_s41588_025_02124_2 crossref_primary_10_1186_s13059_024_03398_1 crossref_primary_10_1242_dev_202832 crossref_primary_10_7554_eLife_104856_3 crossref_primary_10_1016_j_cels_2024_11_009 crossref_primary_10_1126_scitranslmed_adl6758 crossref_primary_10_1016_j_coisb_2024_100534 crossref_primary_10_1038_s41467_024_47989_9 crossref_primary_10_1016_j_inffus_2025_103479 crossref_primary_10_1016_j_ccell_2024_05_003 crossref_primary_10_1021_acsnano_5c02111 crossref_primary_10_1038_s41592_024_02327_1 crossref_primary_10_1177_0271678X241305914 crossref_primary_10_1186_s13073_023_01259_3 crossref_primary_10_1016_j_patter_2025_101326 crossref_primary_10_1016_j_cell_2024_03_009 crossref_primary_10_1186_s13059_024_03338_z crossref_primary_10_1080_19490976_2025_2528428 crossref_primary_10_1016_j_cell_2024_04_032 crossref_primary_10_1016_j_jaci_2024_11_001 crossref_primary_10_1038_s41467_025_60899_8 crossref_primary_10_1093_nargab_lqaf073 crossref_primary_10_3748_wjg_v31_i31_109605 crossref_primary_10_1097_COH_0000000000000809 crossref_primary_10_3389_fimmu_2023_1275937 crossref_primary_10_3390_biomedicines11082264 crossref_primary_10_1093_nar_gkae1145 crossref_primary_10_1016_j_xgen_2025_100765 crossref_primary_10_1016_j_xgen_2025_100886 crossref_primary_10_1016_j_xgen_2025_100766 crossref_primary_10_1097_TP_0000000000004925 crossref_primary_10_1038_s41592_025_02737_9 crossref_primary_10_1038_s42003_024_06964_2 crossref_primary_10_1016_j_tig_2023_10_003 crossref_primary_10_1038_s41540_024_00441_6 crossref_primary_10_3389_fcell_2024_1500474 crossref_primary_10_1016_j_ajhg_2024_10_019 crossref_primary_10_1016_j_csbj_2025_03_051 crossref_primary_10_1038_s41568_023_00657_4 crossref_primary_10_1016_j_lfs_2025_123751 crossref_primary_10_1186_s40168_025_02089_8 crossref_primary_10_1007_s00521_024_09662_6 crossref_primary_10_1186_s12967_025_06785_9 crossref_primary_10_1016_j_yexmp_2024_104944 crossref_primary_10_1152_ajpgi_00182_2024 crossref_primary_10_3389_fimmu_2023_1306169 crossref_primary_10_1016_j_celbio_2025_100099 crossref_primary_10_1111_imcb_12801 crossref_primary_10_1158_1078_0432_CCR_24_0049 crossref_primary_10_26599_BDMA_2025_9020009 crossref_primary_10_1016_j_devcel_2025_06_032 crossref_primary_10_1128_jvi_01858_23 crossref_primary_10_1002_advs_202500870 crossref_primary_10_1146_annurev_immunol_090122_042631 crossref_primary_10_1186_s12859_024_05788_5 crossref_primary_10_1016_j_celrep_2025_116168 crossref_primary_10_1038_s41597_024_03399_6 crossref_primary_10_1515_oncologie_2023_0244 crossref_primary_10_1016_j_copbio_2024_103151 crossref_primary_10_1016_j_jaci_2024_05_008 crossref_primary_10_1038_s41576_024_00750_w crossref_primary_10_1007_s10238_024_01484_z crossref_primary_10_1002_qub2_78 crossref_primary_10_1186_s13059_024_03254_2 crossref_primary_10_1093_nargab_lqaf089 crossref_primary_10_1002_smtd_202401107 crossref_primary_10_1016_j_biotechadv_2025_108528 crossref_primary_10_1038_s41576_023_00628_3 crossref_primary_10_3390_cancers16193265 crossref_primary_10_1038_s41592_025_02799_9 crossref_primary_10_3389_fimmu_2025_1518658 crossref_primary_10_7554_eLife_90214 crossref_primary_10_1146_annurev_biodatasci_101424_121439 crossref_primary_10_15252_msb_202110571 crossref_primary_10_1016_j_crmeth_2025_101086 crossref_primary_10_1371_journal_pone_0299358 crossref_primary_10_1093_nar_gkae1043 crossref_primary_10_1038_s41377_025_01809_x |
| Cites_doi | 10.15252/msb.202110798 10.1038/s41580-018-0094-y 10.1016/j.molcel.2018.06.044 10.1101/2022.03.10.483747 10.1038/s41467-021-27150-6 10.1038/nbt.4282 10.1038/s41587-019-0336-3 10.1038/s41596-020-0292-x 10.1038/nmeth.4401 10.1101/2022.02.24.481823 10.1038/s41588-021-00790-6 10.1038/s41467-021-21246-9 10.1126/science.aau0730 10.1101/2022.03.16.484643 10.1038/s41592-019-0654-x 10.1016/j.cell.2022.05.013 10.1111/j.2517-6161.1995.tb02031.x 10.1038/s41596-018-0073-y 10.1093/bioinformatics/btac299 10.1101/2022.08.19.504505 10.32614/CRAN.package.pagoda2 10.1038/nmeth.2563 10.1186/s13059-019-1663-x 10.12688/f1000research.22969.2 10.1186/s13059-021-02519-4 10.15252/msb.20209620 10.1038/s41467-021-25960-2 10.1038/s41587-022-01467-z 10.1093/bioinformatics/btz614 10.1038/nbt.1630 10.1101/gr.275224.121 10.1038/s41467-019-10216-x 10.1038/s41592-019-0619-0 10.1126/science.aaa6090 10.1093/gigascience/giaa151 10.1038/s41586-019-0933-9 10.1038/s41592-021-01282-5 10.1038/nmeth.4636 10.3390/genes12121947 10.1016/j.cels.2020.11.013 10.1038/nbt.4038 10.1038/s41592-021-01171-x 10.1016/j.immuni.2022.09.002 10.1038/s41467-021-27716-4 10.1016/j.cels.2019.07.012 10.1126/science.aaf2403 10.1093/bioinformatics/btw631 10.1186/s13059-019-1795-z 10.1186/1471-2105-14-7 10.1038/nmeth.4612 10.1038/s41596-021-00534-0 10.1242/dev.169730 10.1002/bies.201900221 10.1038/nmeth.4292 10.1038/nmeth.3364 10.1038/s41587-021-00935-2 10.1093/nar/gkab004 10.1093/bioinformatics/btz914 10.1186/s13059-021-02286-2 10.1038/s41576-019-0093-7 10.1016/j.cels.2021.05.008 10.1038/s41592-020-01037-8 10.1038/s41587-021-00830-w 10.1186/s12864-018-4772-0 10.1101/2021.08.20.457057 10.1016/j.cell.2018.05.061 10.1101/2022.04.11.487796 10.1101/2022.05.06.490859 10.1016/j.crmeth.2022.100182 10.1186/s13059-015-0844-5 10.1186/s13059-020-02136-7 10.1038/s41587-022-01209-1 10.1093/bib/bbaa145 10.1073/pnas.2100293118 10.1016/j.cell.2022.02.015 10.1038/s41592-021-01142-2 10.1038/s41467-018-08205-7 10.1093/bioinformatics/btr260 10.1186/s13059-021-02451-7 10.1186/s13059-019-1861-6 10.1016/j.patcog.2010.12.015 10.1038/s41592-021-01346-6 10.1093/bioinformatics/btaa282 10.1093/bib/bbac286 10.1093/bioinformatics/btv612 10.1038/icb.2015.104 10.1016/j.cell.2021.04.048 10.1038/s41592-020-01020-3 10.1093/bioinformatics/btaa443 10.1093/bioinformatics/btp616 10.1101/2022.04.29.489989 10.1016/j.csbj.2021.01.015 10.1038/s41596-021-00561-x 10.1186/s13059-020-02214-w 10.1186/s13059-016-0947-7 10.1038/s41587-021-01001-7 10.1016/j.cell.2019.11.003 10.1101/2021.08.25.457696 10.1093/nar/gkaa740 10.1101/791699 10.1126/science.aax6234 10.1038/s41592-022-01480-9 10.1038/s41587-021-00895-7 10.1038/s41587-021-00989-2 10.1038/s41592-021-01153-z 10.1186/s13059-019-1850-9 10.1186/s13059-019-1874-1 10.1038/s41587-019-0071-9 10.12688/f1000research.73600.1 10.1126/science.aaw1219 10.1038/s41586-022-05688-9 10.1038/s42256-022-00492-6 10.1186/s13059-021-02581-y 10.1038/nature14590 10.1101/2022.05.04.490536 10.1186/s12859-019-2599-6 10.1038/s41467-021-21038-1 10.1038/s41598-020-66998-4 10.1038/s41592-021-01336-8 10.1093/bioinformatics/btaa611 10.1186/s13059-021-02469-x 10.15252/msb.202110282 10.1038/s41592-019-0367-1 10.1007/978-1-0716-2756-3_14 10.1038/75556 10.1038/s41592-019-0582-9 10.1038/nmeth.2019 10.1126/science.abl4290 10.1038/s41588-021-00778-2 10.1038/nmeth.4380 10.1186/s13059-017-1382-0 10.1038/s41467-021-22811-y 10.48550/arXiv.1905.02269 10.1016/j.csbj.2020.06.012 10.1093/nar/gkv007 10.1038/s41467-022-30755-0 10.1038/s41592-021-01358-2 10.1038/s41592-020-01038-7 10.1093/bioinformatics/btab447 10.1186/s13059-019-1854-5 10.1186/s13059-022-02663-5 10.12688/f1000research.22139.1 10.1038/nature22383 10.1016/j.cels.2020.11.008 10.1038/s41587-019-0113-3 10.1038/s41467-021-23807-4 10.1101/060012 10.1038/nbt.3973 10.1038/nature22976 10.1038/s41592-019-0701-7 10.1371/journal.pbio.2005970 10.1038/s41592-020-01050-x 10.1101/gr.240663.118 10.1093/nar/gkaa183 10.1038/s41467-017-02391-6 10.1038/s41587-022-01284-4 10.1371/journal.pcbi.1010492 10.1038/s41587-021-01033-z 10.1101/2022.05.09.490241 10.4049/jimmunol.1800904 10.1038/s41592-022-01705-x 10.1186/s12864-018-4559-3 10.1093/bioadv/vbac016 10.1186/s13059-021-02577-8 10.1038/s41587-021-01182-1 10.1038/s41587-021-01044-w 10.1038/nrg3832 10.48550/arXiv.2208.05229 10.1093/nar/gkab1028 10.1016/j.xgen.2022.100166 10.1126/science.aab1601 10.1038/s41586-022-05279-8 10.1038/nmeth.2892 10.1038/s41592-019-0494-8 10.3389/fimmu.2021.640725 10.1016/j.stem.2016.05.010 10.1186/s13059-020-02015-1 10.1016/j.cell.2016.11.038 10.1038/s41592-021-01255-8 10.1038/s41467-020-15968-5 10.1038/nmeth.4556 10.1089/cmb.2021.0446 10.1038/s41591-021-01329-2 10.1016/j.it.2015.09.006 10.1093/bioinformatics/btab164 10.1093/bioinformatics/btac805 10.1038/s41467-021-25133-1 10.1038/s41467-021-21583-9 10.1038/s41598-019-41695-z 10.1101/2021.11.11.468178 10.1093/nar/gkw1092 10.1073/pnas.0506580102 10.1186/s12859-019-3211-9 10.1038/s41586-022-05094-1 10.1186/s13059-020-02000-8 10.1038/s41587-021-00927-2 10.12688/f1000research.15809.1 10.1126/sciadv.abf1356 10.1101/2020.05.31.125658 10.1038/s41592-018-0082-3 10.3389/fimmu.2021.664514 10.1038/s41551-020-0578-x 10.1016/j.cels.2021.05.016 10.1101/2021.06.24.449733 10.1038/s41587-021-01139-4 10.1016/j.csbj.2020.10.007 10.1038/s41592-022-01595-z 10.1038/s41576-022-00512-6 10.1101/2022.02.24.481684 10.3389/fgene.2021.766405 10.1101/2022.08.16.504115 10.1186/s13073-018-0528-3 10.1186/s13059-020-1926-6 10.1038/s41467-022-29356-8 10.1101/2021.06.24.449781 10.1016/j.celrep.2019.08.077 10.1038/s41592-021-01343-9 10.1016/j.molmet.2019.12.006 10.1101/2022.03.07.483367 10.1038/s41587-020-0591-3 10.1186/s13059-021-02362-7 10.1126/science.abl5197 10.1101/2021.04.14.439903 10.1186/s13059-020-1949-z 10.1016/j.tibtech.2020.05.006 10.1038/s41598-019-45839-z 10.1038/s41587-020-0469-4 10.1038/nbt.4096 10.12688/f1000research.27893.1 10.1038/s41587-020-0605-1 10.1186/s13059-020-1950-6 10.1038/s41592-018-0229-2 10.1038/s41592-019-0667-5 10.1186/s13059-014-0550-8 10.1016/j.cell.2019.06.029 10.3389/fimmu.2017.00278 10.1038/s41587-021-01075-3 10.1038/s41592-021-01264-7 10.1038/s41592-020-01018-x 10.1038/s41467-019-12266-7 10.1038/s41586-018-0414-6 10.1038/s41587-020-00803-5 10.1038/nbt.2938 10.1016/j.cell.2019.11.019 10.15252/msb.20188746 10.1016/j.xpro.2021.100699 10.1093/nar/gkx760 10.12688/f1000research.15666.2 10.1038/s41467-021-25957-x 10.1093/nargab/lqac049 10.1093/bioinformatics/btab337 |
| ContentType | Journal Article |
| Contributor | Ansari, Meshal Ostner, Johannes Schubert, Benjamin Büttner, Maren Frishberg, Amit Martens, Laura D Jones, Matthew G Ramírez-Suástegui, Ciro Badia-I-Mompel, Pau Saez-Rodriguez, Julio Sarkar, Hirak Dony, Leander Palla, Giovanni Tanevski, Jovan He, Dongze Aliee, Hananeh Müller, Christian L Weiler, Philipp Nitzan, Mor Patro, Rob Virshup, Isaac Dimitrov, Daniel Lotfollahi, Mohammad Srivastava, Avi Piran, Zoe Dann, Emma Hediyeh-Zadeh, Soroor Sikkema, Lisa Hetzel, Leon Ibarra, Ignacio L |
| Contributor_xml | – sequence: 1 givenname: Hananeh surname: Aliee fullname: Aliee, Hananeh – sequence: 2 givenname: Meshal surname: Ansari fullname: Ansari, Meshal – sequence: 3 givenname: Pau surname: Badia-I-Mompel fullname: Badia-I-Mompel, Pau – sequence: 4 givenname: Maren surname: Büttner fullname: Büttner, Maren – sequence: 5 givenname: Emma surname: Dann fullname: Dann, Emma – sequence: 6 givenname: Daniel surname: Dimitrov fullname: Dimitrov, Daniel – sequence: 7 givenname: Leander surname: Dony fullname: Dony, Leander – sequence: 8 givenname: Amit surname: Frishberg fullname: Frishberg, Amit – sequence: 9 givenname: Dongze surname: He fullname: He, Dongze – sequence: 10 givenname: Soroor surname: Hediyeh-Zadeh fullname: Hediyeh-Zadeh, Soroor – sequence: 11 givenname: Leon surname: Hetzel fullname: Hetzel, Leon – sequence: 12 givenname: Ignacio L surname: Ibarra fullname: Ibarra, Ignacio L – sequence: 13 givenname: Matthew G surname: Jones fullname: Jones, Matthew G – sequence: 14 givenname: Mohammad surname: Lotfollahi fullname: Lotfollahi, Mohammad – sequence: 15 givenname: Laura D surname: Martens fullname: Martens, Laura D – sequence: 16 givenname: Christian L surname: Müller fullname: Müller, Christian L – sequence: 17 givenname: Mor surname: Nitzan fullname: Nitzan, Mor – sequence: 18 givenname: Johannes surname: Ostner fullname: Ostner, Johannes – sequence: 19 givenname: Giovanni surname: Palla fullname: Palla, Giovanni – sequence: 20 givenname: Rob surname: Patro fullname: Patro, Rob – sequence: 21 givenname: Zoe surname: Piran fullname: Piran, Zoe – sequence: 22 givenname: Ciro surname: Ramírez-Suástegui fullname: Ramírez-Suástegui, Ciro – sequence: 23 givenname: Julio surname: Saez-Rodriguez fullname: Saez-Rodriguez, Julio – sequence: 24 givenname: Hirak surname: Sarkar fullname: Sarkar, Hirak – sequence: 25 givenname: Benjamin surname: Schubert fullname: Schubert, Benjamin – sequence: 26 givenname: Lisa surname: Sikkema fullname: Sikkema, Lisa – sequence: 27 givenname: Avi surname: Srivastava fullname: Srivastava, Avi – sequence: 28 givenname: Jovan surname: Tanevski fullname: Tanevski, Jovan – sequence: 29 givenname: Isaac surname: Virshup fullname: Virshup, Isaac – sequence: 30 givenname: Philipp surname: Weiler fullname: Weiler, Philipp |
| Copyright | Springer Nature Limited 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. Springer Nature Limited. Copyright Nature Publishing Group Aug 2023 Springer Nature Limited 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: Springer Nature Limited 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. Springer Nature Limited. – notice: Copyright Nature Publishing Group Aug 2023 – notice: Springer Nature Limited 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| CorporateAuthor | Single-cell Best Practices Consortium |
| CorporateAuthor_xml | – name: Single-cell Best Practices Consortium |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7RV 7TK 7TM 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
| DOI | 10.1038/s41576-023-00586-w |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Central Student MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture Biology |
| EISSN | 1471-0064 |
| EndPage | 572 |
| ExternalDocumentID | PMC10066026 37002403 10_1038_s41576_023_00586_w |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Wellcome Trust – fundername: NCI NIH HHS grantid: K99 CA267677 – fundername: NHGRI NIH HHS grantid: R01 HG009937 |
| GroupedDBID | --- -DZ .55 0R~ 123 29M 36B 39C 3V. 4.4 53G 70F 7RV 7X7 88A 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AFBBN AFFNX AFKRA AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKEYQ BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 EAD EAP EBS EE. EJD EMB EMK EMOBN EPL ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR IHW INH INR ISR ITC LK8 M0L M1P M7P N9A NAPCQ NNMJJ O9- ODYON PQQKQ PROAC PSQYO Q2X RIG RNR RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WOW X7M ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION NFIDA CGR CUY CVF ECM EIF NPM PHGZM PHGZT PJZUB PPXIY PQGLB 7QP 7QR 7TK 7TM 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c475t-f00cf8c9c97951520449419ee4d01e583a193fdc0d8af4f90fe64c095d0575c13 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 460 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000961193300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-0056 1471-0064 |
| IngestDate | Tue Nov 04 02:07:07 EST 2025 Sun Nov 09 11:49:21 EST 2025 Tue Oct 07 05:17:12 EDT 2025 Mon Jul 21 06:17:34 EDT 2025 Tue Nov 18 21:54:24 EST 2025 Sat Nov 29 02:34:59 EST 2025 Fri Feb 21 02:36:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | 2023. Springer Nature Limited. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-f00cf8c9c97951520449419ee4d01e583a193fdc0d8af4f90fe64c095d0575c13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-1063-005X 0000-0002-1275-9802 0000-0002-2600-4048 0000-0001-7464-7921 0000-0002-8937-3457 0000-0001-7744-8565 0000-0003-2502-8803 0000-0002-2419-1943 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10066026 |
| PMID | 37002403 |
| PQID | 2838516462 |
| PQPubID | 44267 |
| PageCount | 23 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10066026 proquest_miscellaneous_2793984588 proquest_journals_2838516462 pubmed_primary_37002403 crossref_citationtrail_10_1038_s41576_023_00586_w crossref_primary_10_1038_s41576_023_00586_w springer_journals_10_1038_s41576_023_00586_w |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature reviews. Genetics |
| PublicationTitleAbbrev | Nat Rev Genet |
| PublicationTitleAlternate | Nat Rev Genet |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | E Lubeck (586_CR203) 2014; 11 H Chen (586_CR135) 2019; 20 X Tan (586_CR193) 2020; 36 C Soneson (586_CR85) 2018; 15 RM Layer (586_CR149) 2018; 15 M Lotfollahi (586_CR58) 2022; 40 D Neavin (586_CR27) 2022 KR Moon (586_CR48) 2019; 37 S Cabello-Aguilar (586_CR129) 2020; 48 R Argelaguet (586_CR245) 2021; 39 D Righelli (586_CR211) 2022; 38 S-Q Zhang (586_CR178) 2018 J Glanville (586_CR183) 2017; 547 HM Amemiya (586_CR138) 2019; 9 K Street (586_CR62) 2018; 19 VK Kartha (586_CR154) 2022; 2 I Lindeman (586_CR171) 2018; 15 D Dimitrov (586_CR126) 2022; 13 D van Dijk (586_CR152) 2018; 174 A Gayoso (586_CR162) 2021; 18 Z Cang (586_CR239) 2020; 11 D Lähnemann (586_CR91) 2020; 21 B He (586_CR194) 2020; 4 B Duan (586_CR120) 2019; 10 G Palla (586_CR209) 2022; 19 R Sokal (586_CR73) 1958; 38 SG Rodriques (586_CR202) 2019; 363 W Fleri (586_CR180) 2017; 8 A Subramanian (586_CR100) 2005; 102 A Anderson (586_CR235) 2021; 37 E Dann (586_CR112) 2022; 40 586_CR104 CB González-Blas (586_CR242) 2022 V Rai (586_CR13) 2020; 32 M Zhang (586_CR207) 2021; 22 586_CR223 J Hu (586_CR229) 2021; 18 FA Wolf (586_CR63) 2019; 20 G Korotkevich (586_CR99) 2021 L Liu (586_CR156) 2019; 10 T Andreani (586_CR172) 2022; 4 T Biancalani (586_CR224) 2021; 18 M Lange (586_CR68) 2022; 19 K Kamimoto (586_CR241) 2022; 614 CH Holland (586_CR102) 2020; 21 E Zhao (586_CR227) 2021; 39 JB Kang (586_CR59) 2021; 12 A McKenna (586_CR77) 2019; 146 J Liao (586_CR197) 2021; 39 V Kleshchevnikov (586_CR212) 2022; 40 Y Benjamini (586_CR92) 1995; 57 M Kanehisa (586_CR95) 2017; 45 RA Amezquita (586_CR2) 2020; 17 C Ahlmann-Eltze (586_CR29) 2022 N Borcherding (586_CR166) 2020; 9 ZA Clarke (586_CR53) 2021; 16 R Dong (586_CR213) 2021; 22 R Argelaguet (586_CR248) 2020; 21 EP Mimitou (586_CR246) 2021; 39 I Setliff (586_CR177) 2019; 179 G Pasquini (586_CR55) 2021; 19 M Lotfollahi (586_CR42) 2019; 16 C Domínguez Conde (586_CR56) 2022; 376 MD Robinson (586_CR79) 2010; 26 L Yan (586_CR216) 2023; 39 C Xu (586_CR40) 2021; 17 T Ashuach (586_CR144) 2022; 2 MD Luecken (586_CR5) 2019; 15 C Bravo González-Blas (586_CR141) 2019; 16 M Lotfollahi (586_CR124) 2021 CA Vallejos (586_CR28) 2017; 14 B Pijuan-Sala (586_CR106) 2019; 566 SJ Fleming (586_CR22) 2022 JM Zhang (586_CR61) 2019; 9 S Liu (586_CR199) 2022; 55 R Dries (586_CR210) 2021; 22 JM Granja (586_CR140) 2021; 53 D Pham (586_CR228) 2020 A Dixit (586_CR114) 2016; 167 V Bergen (586_CR70) 2021; 17 A Gangaev (586_CR15) 2021; 12 P Weiler (586_CR69) 2023; 2584 A Thibodeau (586_CR139) 2021; 22 DS Fischer (586_CR236) 2022 AA Upadhyay (586_CR169) 2018; 10 S Canzar (586_CR170) 2017; 33 SC Zheng (586_CR46) 2022; 23 ATL Lun (586_CR30) 2016; 17 ME Ritchie (586_CR81) 2015; 43 R Chazarra-Gil (586_CR39) 2021; 49 Y Ji (586_CR119) 2021; 12 J Zhao (586_CR111) 2021; 118 DM Cable (586_CR214) 2022; 40 G La Manno (586_CR66) 2018; 560 D Bredikhin (586_CR150) 2022; 23 S Hänzelmann (586_CR101) 2013; 14 VM Peterson (586_CR159) 2017; 35 P Demetci (586_CR249) 2022; 29 X Zhuang (586_CR208) 2021; 18 L Bergenstråhle (586_CR195) 2022; 40 MP Mulè (586_CR161) 2022; 13 W Zhang (586_CR181) 2020; 36 L Song (586_CR168) 2021; 18 S Freytag (586_CR51) 2018; 7 AC Daly (586_CR230) 2021; 37 L Garcia-Alonso (586_CR98) 2019; 29 DA Cusanovich (586_CR133) 2015; 348 R Dries (586_CR191) 2021; 31 P Dash (586_CR184) 2017; 547 KH Chen (586_CR204) 2015; 348 Y Deng (586_CR198) 2022; 609 Z Zhang (586_CR189) 2022; 4 LD Martens (586_CR142) 2022 DA Bolotin (586_CR167) 2015; 12 JM Replogle (586_CR117) 2022; 185 E Stephenson (586_CR165) 2021; 27 T Chari (586_CR49) 2022 NM Xi (586_CR26) 2021; 12 DB Burkhardt (586_CR123) 2021; 39 S Ghazanfar (586_CR253) 2022 Z Zhang (586_CR186) 2021; 18 FW Townes (586_CR47) 2019; 20 G Finak (586_CR82) 2015; 16 B Yuan (586_CR125) 2021; 12 S Jin (586_CR127) 2021; 12 CW Law (586_CR89) 2020; 9 N Del Rossi (586_CR244) 2022; 2 S Junttila (586_CR88) 2022; 23 L Zappia (586_CR1) 2021; 22 C Stringer (586_CR220) 2021; 18 M Dhainaut (586_CR16) 2022; 185 T Wang (586_CR83) 2019; 20 PV Kharchenko (586_CR6) 2021; 18 Y Zhang (586_CR105) 2020; 18 P Datlinger (586_CR115) 2021; 18 AN Schep (586_CR153) 2017; 14 Y Hu (586_CR131) 2021; 7 J Park (586_CR221) 2021; 12 JD Buenrostro (586_CR134) 2015; 523 B Li (586_CR215) 2022; 19 A Chervov (586_CR44) 2022 I Springer (586_CR176) 2021; 12 MD Luecken (586_CR35) 2022; 19 E Lundberg (586_CR200) 2019; 20 T Stuart (586_CR17) 2019; 20 VA Traag (586_CR52) 2019; 9 V Greiff (586_CR175) 2015; 36 A Unterman (586_CR14) 2022; 13 NC Sheffield (586_CR148) 2016; 32 JE Rood (586_CR232) 2019; 179 A Duò (586_CR50) 2018; 7 HA Pliner (586_CR151) 2018; 71 G Gorin (586_CR71) 2022; 18 A Forrow (586_CR76) 2021; 12 E Papalexi (586_CR116) 2021; 53 J Schindelin (586_CR217) 2012; 9 586_CR187 SA Schattgen (586_CR188) 2022; 40 J Lause (586_CR31) 2021; 22 BB Lake (586_CR247) 2018; 36 B Hie (586_CR43) 2019; 37 Y Hao (586_CR256) 2022 A-D Brunner (586_CR243) 2022; 18 T Abdelaal (586_CR54) 2019; 20 KD Zimmerman (586_CR87) 2021; 12 Y Cao (586_CR109) 2019; 20 HJ Kim (586_CR163) 2020; 36 G Palla (586_CR190) 2022; 40 J Ou (586_CR137) 2018; 19 A Lafzi (586_CR19) 2018; 13 I Korsunsky (586_CR37) 2019; 16 A Sina Booeshaghi (586_CR33) 2022 M Ashburner (586_CR94) 2000; 25 G Sturm (586_CR164) 2020; 36 E Barshan (586_CR255) 2011; 44 B Velten (586_CR196) 2022; 19 S Baek (586_CR9) 2020; 18 R Fang (586_CR136) 2021; 12 586_CR179 T Stuart (586_CR143) 2021; 18 Schubert (586_CR97) 2018; 9 B Vieth (586_CR34) 2019; 10 MA Skinnider (586_CR122) 2021; 39 N Crosetto (586_CR206) 2015; 16 J Tanevski (586_CR238) 2022; 23 NJ Schuldt (586_CR173) 2019; 202 W Saelens (586_CR65) 2019; 37 M Stoeckius (586_CR10) 2017; 14 MI Love (586_CR80) 2014; 15 MG Jones (586_CR72) 2020; 21 Y Yuan (586_CR237) 2020; 21 P Badia-i-Mompel (586_CR103) 2022; 2 586_CR160 S-W Wang (586_CR78) 2022; 40 D Arnol (586_CR240) 2019; 29 A Butler (586_CR36) 2018; 36 JM Pullin (586_CR60) 2022 P-L Germain (586_CR20) 2020; 21 CY McLean (586_CR147) 2010; 28 WD Chronister (586_CR185) 2021; 12 M Büttner (586_CR108) 2021; 12 M Lotfollahi (586_CR254) 2022 PL Ståhl (586_CR201) 2016; 353 CS Smillie (586_CR107) 2019; 178 E Mereu (586_CR18) 2020; 38 J Cao (586_CR155) 2018; 361 C Hafemeister (586_CR45) 2019; 20 NM Xi (586_CR25) 2021; 2 V Petukhov (586_CR222) 2022; 40 W Gong (586_CR75) 2021; 12 S Das (586_CR84) 2021; 12 L Sikkema (586_CR7) 2022 R Ke (586_CR205) 2013; 10 G Eraslan (586_CR8) 2022; 376 S Yang (586_CR23) 2020; 21 A Andersson (586_CR231) 2021 HTN Tran (586_CR38) 2020; 21 T Abdelaal (586_CR226) 2020; 48 R Fu (586_CR57) 2020; 9 A Liberzon (586_CR93) 2011; 27 AW Lynch (586_CR157) 2022; 19 MD Young (586_CR21) 2020; 9 N Saitou (586_CR74) 1987; 4 M Efremova (586_CR128) 2020; 15 586_CR145 ZJ Cao (586_CR251) 2022; 40 JS Fleck (586_CR158) 2022 JW Squair (586_CR86) 2021; 12 L Isbel (586_CR132) 2022; 23 P-L Germain (586_CR24) 2021; 10 FA Wolf (586_CR4) 2018; 19 M Shugay (586_CR182) 2018; 46 SR Srivatsan (586_CR113) 2020; 367 R Browaeys (586_CR130) 2020; 17 S Sun (586_CR233) 2020; 17 Y Hao (586_CR3) 2021; 184 A Han (586_CR11) 2014; 32 M Polonsky (586_CR174) 2016; 94 J Ostner (586_CR110) 2021; 12 586_CR252 M Asp (586_CR192) 2020; 42 D Grün (586_CR64) 2016; 19 AL Thurman (586_CR90) 2021; 37 P Gontarz (586_CR146) 2020; 10 C McQuin (586_CR218) 2018; 16 C Ahlmann-Eltze (586_CR32) 2022 V Bergen (586_CR67) 2020; 38 L Larsson (586_CR12) 2021; 18 R Lopez (586_CR41) 2018; 15 JW Squair (586_CR121) 2021; 16 R Lopez (586_CR225) 2019 K Cao (586_CR250) 2020; 36 M Gillespie (586_CR96) 2022; 50 S Berg (586_CR219) 2019; 16 V Svensson (586_CR234) 2018; 15 H-H Wessels (586_CR118) 2023; 20 |
| References_xml | – volume: 18 year: 2022 ident: 586_CR243 publication-title: Mol. Syst. Biol. doi: 10.15252/msb.202110798 – volume: 20 start-page: 285 year: 2019 ident: 586_CR200 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0094-y – volume: 71 start-page: 858 year: 2018 ident: 586_CR151 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.06.044 – year: 2022 ident: 586_CR7 publication-title: bioRxiv doi: 10.1101/2022.03.10.483747 – volume: 12 year: 2021 ident: 586_CR108 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27150-6 – year: 2018 ident: 586_CR178 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4282 – volume: 37 start-page: 1482 year: 2019 ident: 586_CR48 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0336-3 – volume: 15 start-page: 1484 year: 2020 ident: 586_CR128 publication-title: Nat. Protoc. doi: 10.1038/s41596-020-0292-x – volume: 14 start-page: 975 year: 2017 ident: 586_CR153 publication-title: Nat. Methods doi: 10.1038/nmeth.4401 – year: 2022 ident: 586_CR253 publication-title: bioRxiv doi: 10.1101/2022.02.24.481823 – volume: 53 start-page: 403 year: 2021 ident: 586_CR140 publication-title: Nat. Genet. doi: 10.1038/s41588-021-00790-6 – volume: 12 year: 2021 ident: 586_CR127 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21246-9 – volume: 361 start-page: 1380 year: 2018 ident: 586_CR155 publication-title: Science doi: 10.1126/science.aau0730 – year: 2022 ident: 586_CR254 publication-title: bioRxiv doi: 10.1101/2022.03.16.484643 – volume: 17 start-page: 137 year: 2020 ident: 586_CR2 publication-title: Nat. Methods doi: 10.1038/s41592-019-0654-x – volume: 185 start-page: 2559 year: 2022 ident: 586_CR117 publication-title: Cell doi: 10.1016/j.cell.2022.05.013 – volume: 57 start-page: 289 year: 1995 ident: 586_CR92 publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 13 start-page: 2742 year: 2018 ident: 586_CR19 publication-title: Nat. Protoc. doi: 10.1038/s41596-018-0073-y – volume: 38 start-page: 3128 year: 2022 ident: 586_CR211 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac299 – year: 2022 ident: 586_CR242 publication-title: bioRxiv doi: 10.1101/2022.08.19.504505 – ident: 586_CR104 doi: 10.32614/CRAN.package.pagoda2 – ident: 586_CR179 – volume: 10 start-page: 857 year: 2013 ident: 586_CR205 publication-title: Nat. Methods doi: 10.1038/nmeth.2563 – volume: 20 year: 2019 ident: 586_CR63 publication-title: Genome Biol. doi: 10.1186/s13059-019-1663-x – volume: 9 start-page: 223 year: 2020 ident: 586_CR57 publication-title: F1000Research doi: 10.12688/f1000research.22969.2 – volume: 22 year: 2021 ident: 586_CR1 publication-title: Genome Biol. doi: 10.1186/s13059-021-02519-4 – volume: 17 year: 2021 ident: 586_CR40 publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20209620 – volume: 12 year: 2021 ident: 586_CR86 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25960-2 – year: 2022 ident: 586_CR236 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01467-z – volume: 36 start-page: 897 year: 2020 ident: 586_CR181 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz614 – volume: 28 start-page: 495 year: 2010 ident: 586_CR147 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1630 – volume: 31 start-page: 1706 year: 2021 ident: 586_CR191 publication-title: Genome Res. doi: 10.1101/gr.275224.121 – volume: 10 year: 2019 ident: 586_CR120 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10216-x – volume: 16 start-page: 1289 year: 2019 ident: 586_CR37 publication-title: Nat. Methods doi: 10.1038/s41592-019-0619-0 – volume: 38 start-page: 1409 year: 1958 ident: 586_CR73 publication-title: Univ. Kans., Sci. Bull. – volume: 348 start-page: aaa6090 year: 2015 ident: 586_CR204 publication-title: Science doi: 10.1126/science.aaa6090 – volume: 9 year: 2020 ident: 586_CR21 publication-title: Gigascience doi: 10.1093/gigascience/giaa151 – volume: 566 start-page: 490 year: 2019 ident: 586_CR106 publication-title: Nature doi: 10.1038/s41586-019-0933-9 – volume: 18 start-page: 1333 year: 2021 ident: 586_CR143 publication-title: Nat. Methods doi: 10.1038/s41592-021-01282-5 – volume: 15 start-page: 343 year: 2018 ident: 586_CR234 publication-title: Nat. Methods doi: 10.1038/nmeth.4636 – volume: 12 start-page: 1947 year: 2021 ident: 586_CR84 publication-title: Genes doi: 10.3390/genes12121947 – volume: 12 start-page: 128 year: 2021 ident: 586_CR125 publication-title: Cell Syst. doi: 10.1016/j.cels.2020.11.013 – volume: 36 start-page: 70 year: 2018 ident: 586_CR247 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4038 – volume: 18 start-page: 723 year: 2021 ident: 586_CR6 publication-title: Nat. Methods doi: 10.1038/s41592-021-01171-x – volume: 55 start-page: 1940 year: 2022 ident: 586_CR199 publication-title: Immunity doi: 10.1016/j.immuni.2022.09.002 – volume: 13 year: 2022 ident: 586_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27716-4 – volume: 9 start-page: 383 year: 2019 ident: 586_CR61 publication-title: Cell Syst. doi: 10.1016/j.cels.2019.07.012 – volume: 353 start-page: 78 year: 2016 ident: 586_CR201 publication-title: Science doi: 10.1126/science.aaf2403 – volume: 33 start-page: 425 year: 2017 ident: 586_CR170 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw631 – volume: 20 year: 2019 ident: 586_CR54 publication-title: Genome Biol. doi: 10.1186/s13059-019-1795-z – volume: 14 year: 2013 ident: 586_CR101 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-7 – volume: 15 start-page: 255 year: 2018 ident: 586_CR85 publication-title: Nat. Methods doi: 10.1038/nmeth.4612 – volume: 16 start-page: 2749 year: 2021 ident: 586_CR53 publication-title: Nat. Protoc. doi: 10.1038/s41596-021-00534-0 – volume: 146 start-page: dev169730 year: 2019 ident: 586_CR77 publication-title: Development doi: 10.1242/dev.169730 – volume: 42 year: 2020 ident: 586_CR192 publication-title: Bioessays doi: 10.1002/bies.201900221 – volume: 14 start-page: 565 year: 2017 ident: 586_CR28 publication-title: Nat. Methods doi: 10.1038/nmeth.4292 – volume: 12 start-page: 380 year: 2015 ident: 586_CR167 publication-title: Nat. Methods doi: 10.1038/nmeth.3364 – volume: 39 start-page: 1375 year: 2021 ident: 586_CR227 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-00935-2 – volume: 49 year: 2021 ident: 586_CR39 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab004 – volume: 36 start-page: 2293 year: 2020 ident: 586_CR193 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz914 – volume: 22 year: 2021 ident: 586_CR210 publication-title: Genome Biol. doi: 10.1186/s13059-021-02286-2 – volume: 20 start-page: 257 year: 2019 ident: 586_CR17 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0093-7 – volume: 12 start-page: 810 year: 2021 ident: 586_CR75 publication-title: Cell Syst. doi: 10.1016/j.cels.2021.05.008 – volume: 18 start-page: 18 year: 2021 ident: 586_CR208 publication-title: Nat. Methods doi: 10.1038/s41592-020-01037-8 – volume: 40 start-page: 517 year: 2022 ident: 586_CR214 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-00830-w – volume: 19 year: 2018 ident: 586_CR62 publication-title: BMC Genomics doi: 10.1186/s12864-018-4772-0 – ident: 586_CR145 doi: 10.1101/2021.08.20.457057 – volume: 174 start-page: 716 year: 2018 ident: 586_CR152 publication-title: Cell doi: 10.1016/j.cell.2018.05.061 – ident: 586_CR252 doi: 10.1101/2022.04.11.487796 – year: 2022 ident: 586_CR33 publication-title: bioRxiv doi: 10.1101/2022.05.06.490859 – volume: 2 start-page: 100182 year: 2022 ident: 586_CR144 publication-title: Cell Rep. Methods doi: 10.1016/j.crmeth.2022.100182 – volume: 16 year: 2015 ident: 586_CR82 publication-title: Genome Biol. doi: 10.1186/s13059-015-0844-5 – volume: 21 year: 2020 ident: 586_CR20 publication-title: Genome Biol. doi: 10.1186/s13059-020-02136-7 – volume: 40 start-page: 1066 year: 2022 ident: 586_CR78 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01209-1 – volume: 22 start-page: bbaa145 year: 2021 ident: 586_CR207 publication-title: Brief. Bioinform. doi: 10.1093/bib/bbaa145 – volume: 118 year: 2021 ident: 586_CR111 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2100293118 – volume: 185 start-page: 1223 year: 2022 ident: 586_CR16 publication-title: Cell doi: 10.1016/j.cell.2022.02.015 – volume: 18 start-page: 627 year: 2021 ident: 586_CR168 publication-title: Nat. Methods doi: 10.1038/s41592-021-01142-2 – volume: 10 year: 2019 ident: 586_CR156 publication-title: Nat. Commun. doi: 10.1038/s41467-018-08205-7 – volume: 27 start-page: 1739 year: 2011 ident: 586_CR93 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr260 – volume: 22 year: 2021 ident: 586_CR31 publication-title: Genome Biol. doi: 10.1186/s13059-021-02451-7 – volume: 20 year: 2019 ident: 586_CR47 publication-title: Genome Biol. doi: 10.1186/s13059-019-1861-6 – volume: 2 year: 2022 ident: 586_CR244 publication-title: Curr. Protoc. – volume: 44 start-page: 1357 year: 2011 ident: 586_CR255 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2010.12.015 – volume: 19 start-page: 159 year: 2022 ident: 586_CR68 publication-title: Nat. Methods doi: 10.1038/s41592-021-01346-6 – volume: 36 start-page: 4137 year: 2020 ident: 586_CR163 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa282 – volume: 23 start-page: bbac286 year: 2022 ident: 586_CR88 publication-title: Brief. Bioinform. doi: 10.1093/bib/bbac286 – volume: 32 start-page: 587 year: 2016 ident: 586_CR148 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv612 – volume: 94 start-page: 242 year: 2016 ident: 586_CR174 publication-title: Immunol. Cell Biol. doi: 10.1038/icb.2015.104 – volume: 184 start-page: 3573 year: 2021 ident: 586_CR3 publication-title: Cell doi: 10.1016/j.cell.2021.04.048 – volume: 18 start-page: 92 year: 2021 ident: 586_CR186 publication-title: Nat. Methods doi: 10.1038/s41592-020-01020-3 – volume: 36 start-page: i48 year: 2020 ident: 586_CR250 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa443 – volume: 26 start-page: 139 year: 2010 ident: 586_CR79 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – ident: 586_CR160 doi: 10.1101/2022.04.29.489989 – volume: 19 start-page: 961 year: 2021 ident: 586_CR55 publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2021.01.015 – volume: 16 start-page: 3836 year: 2021 ident: 586_CR121 publication-title: Nat. Protoc. doi: 10.1038/s41596-021-00561-x – volume: 21 year: 2020 ident: 586_CR237 publication-title: Genome Biol. doi: 10.1186/s13059-020-02214-w – volume: 17 year: 2016 ident: 586_CR30 publication-title: Genome Biol. doi: 10.1186/s13059-016-0947-7 – volume: 40 start-page: 121 year: 2022 ident: 586_CR58 publication-title: Nat Biotechnol doi: 10.1038/s41587-021-01001-7 – volume: 179 start-page: 1636 year: 2019 ident: 586_CR177 publication-title: Cell doi: 10.1016/j.cell.2019.11.003 – year: 2022 ident: 586_CR49 publication-title: bioRxiv doi: 10.1101/2021.08.25.457696 – volume: 48 year: 2020 ident: 586_CR226 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa740 – year: 2022 ident: 586_CR22 publication-title: bioRxiv doi: 10.1101/791699 – volume: 367 start-page: 45 year: 2020 ident: 586_CR113 publication-title: Science doi: 10.1126/science.aax6234 – volume: 19 start-page: 662 year: 2022 ident: 586_CR215 publication-title: Nat. Methods doi: 10.1038/s41592-022-01480-9 – volume: 39 start-page: 1202 year: 2021 ident: 586_CR245 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-00895-7 – volume: 40 start-page: 54 year: 2022 ident: 586_CR188 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-00989-2 – volume: 18 start-page: 635 year: 2021 ident: 586_CR115 publication-title: Nat. Methods doi: 10.1038/s41592-021-01153-z – volume: 21 year: 2020 ident: 586_CR38 publication-title: Genome Biol. doi: 10.1186/s13059-019-1850-9 – volume: 20 year: 2019 ident: 586_CR45 publication-title: Genome Biol. doi: 10.1186/s13059-019-1874-1 – volume: 37 start-page: 547 year: 2019 ident: 586_CR65 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0071-9 – volume: 10 start-page: 979 year: 2021 ident: 586_CR24 publication-title: F1000Res. doi: 10.12688/f1000research.73600.1 – volume: 363 start-page: 1463 year: 2019 ident: 586_CR202 publication-title: Science doi: 10.1126/science.aaw1219 – volume: 614 start-page: 742 year: 2022 ident: 586_CR241 publication-title: Nature doi: 10.1038/s41586-022-05688-9 – volume: 4 start-page: 596 year: 2022 ident: 586_CR189 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-022-00492-6 – volume: 23 year: 2022 ident: 586_CR46 publication-title: Genome Biol. doi: 10.1186/s13059-021-02581-y – volume: 523 start-page: 486 year: 2015 ident: 586_CR134 publication-title: Nature doi: 10.1038/nature14590 – year: 2022 ident: 586_CR142 publication-title: bioRxiv doi: 10.1101/2022.05.04.490536 – volume: 20 year: 2019 ident: 586_CR83 publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-2599-6 – volume: 12 year: 2021 ident: 586_CR87 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21038-1 – volume: 10 year: 2020 ident: 586_CR146 publication-title: Sci. Rep. doi: 10.1038/s41598-020-66998-4 – volume: 19 start-page: 41 year: 2022 ident: 586_CR35 publication-title: Nat. Methods doi: 10.1038/s41592-021-01336-8 – volume: 36 start-page: 4817 year: 2020 ident: 586_CR164 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa611 – volume: 22 year: 2021 ident: 586_CR139 publication-title: Genome Biol. doi: 10.1186/s13059-021-02469-x – volume: 17 year: 2021 ident: 586_CR70 publication-title: Mol. Syst. Biol. doi: 10.15252/msb.202110282 – volume: 16 start-page: 397 year: 2019 ident: 586_CR141 publication-title: Nat. Methods doi: 10.1038/s41592-019-0367-1 – volume: 2584 start-page: 269 year: 2023 ident: 586_CR69 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-0716-2756-3_14 – volume: 25 start-page: 25 year: 2000 ident: 586_CR94 publication-title: Nat. Genet. doi: 10.1038/75556 – volume: 16 start-page: 1226 year: 2019 ident: 586_CR219 publication-title: Nat. Methods doi: 10.1038/s41592-019-0582-9 – volume: 9 start-page: 676 year: 2012 ident: 586_CR217 publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 376 start-page: eabl4290 year: 2022 ident: 586_CR8 publication-title: Science doi: 10.1126/science.abl4290 – volume: 53 start-page: 322 year: 2021 ident: 586_CR116 publication-title: Nat. Genet. doi: 10.1038/s41588-021-00778-2 – volume: 14 start-page: 865 year: 2017 ident: 586_CR10 publication-title: Nat. Methods doi: 10.1038/nmeth.4380 – volume: 19 year: 2018 ident: 586_CR4 publication-title: Genome Biol. doi: 10.1186/s13059-017-1382-0 – volume: 12 year: 2021 ident: 586_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22811-y – year: 2019 ident: 586_CR225 publication-title: arXiv doi: 10.48550/arXiv.1905.02269 – volume: 18 start-page: 1429 year: 2020 ident: 586_CR9 publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2020.06.012 – volume: 43 year: 2015 ident: 586_CR81 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv007 – volume: 13 year: 2022 ident: 586_CR126 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30755-0 – volume: 19 start-page: 171 year: 2022 ident: 586_CR209 publication-title: Nat. Methods doi: 10.1038/s41592-021-01358-2 – volume: 18 start-page: 15 year: 2021 ident: 586_CR12 publication-title: Nat. Methods doi: 10.1038/s41592-020-01038-7 – volume: 37 start-page: 4216 year: 2021 ident: 586_CR230 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab447 – volume: 20 year: 2019 ident: 586_CR135 publication-title: Genome Biol. doi: 10.1186/s13059-019-1854-5 – volume: 23 year: 2022 ident: 586_CR238 publication-title: Genome Biol. doi: 10.1186/s13059-022-02663-5 – volume: 9 start-page: 47 year: 2020 ident: 586_CR166 publication-title: F1000Res. doi: 10.12688/f1000research.22139.1 – volume: 547 start-page: 89 year: 2017 ident: 586_CR184 publication-title: Nature doi: 10.1038/nature22383 – volume: 12 start-page: 176 year: 2021 ident: 586_CR26 publication-title: Cell Syst. doi: 10.1016/j.cels.2020.11.008 – volume: 37 start-page: 685 year: 2019 ident: 586_CR43 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0113-3 – volume: 12 year: 2021 ident: 586_CR221 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23807-4 – year: 2021 ident: 586_CR99 publication-title: bioRxiv doi: 10.1101/060012 – volume: 35 start-page: 936 year: 2017 ident: 586_CR159 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3973 – volume: 547 start-page: 94 year: 2017 ident: 586_CR183 publication-title: Nature doi: 10.1038/nature22976 – volume: 17 start-page: 193 year: 2020 ident: 586_CR233 publication-title: Nat. Methods doi: 10.1038/s41592-019-0701-7 – volume: 16 year: 2018 ident: 586_CR218 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2005970 – volume: 18 start-page: 272 year: 2021 ident: 586_CR162 publication-title: Nat. Methods doi: 10.1038/s41592-020-01050-x – volume: 29 start-page: 1363 year: 2019 ident: 586_CR98 publication-title: Genome Res. doi: 10.1101/gr.240663.118 – volume: 48 year: 2020 ident: 586_CR129 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa183 – volume: 9 year: 2018 ident: 586_CR97 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02391-6 – volume: 40 start-page: 1458 year: 2022 ident: 586_CR251 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01284-4 – volume: 18 year: 2022 ident: 586_CR71 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1010492 – volume: 40 start-page: 245 year: 2022 ident: 586_CR112 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01033-z – year: 2022 ident: 586_CR60 publication-title: bioRxiv doi: 10.1101/2022.05.09.490241 – volume: 202 start-page: 637 year: 2019 ident: 586_CR173 publication-title: J. Immunol. doi: 10.4049/jimmunol.1800904 – volume: 20 start-page: 86 year: 2023 ident: 586_CR118 publication-title: Nat. Methods doi: 10.1038/s41592-022-01705-x – volume: 19 year: 2018 ident: 586_CR137 publication-title: BMC Genomics doi: 10.1186/s12864-018-4559-3 – volume: 2 start-page: vbac016 year: 2022 ident: 586_CR103 publication-title: Bioinform. Adv. doi: 10.1093/bioadv/vbac016 – volume: 23 year: 2022 ident: 586_CR150 publication-title: Genome Biol. doi: 10.1186/s13059-021-02577-8 – volume: 40 start-page: 308 year: 2022 ident: 586_CR190 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01182-1 – volume: 40 start-page: 345 year: 2022 ident: 586_CR222 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01044-w – volume: 16 start-page: 57 year: 2015 ident: 586_CR206 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3832 – year: 2022 ident: 586_CR44 publication-title: arXiv doi: 10.48550/arXiv.2208.05229 – volume: 50 start-page: D687 year: 2022 ident: 586_CR96 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab1028 – volume: 2 start-page: 100166 year: 2022 ident: 586_CR154 publication-title: Cell Genom. doi: 10.1016/j.xgen.2022.100166 – volume: 348 start-page: 910 year: 2015 ident: 586_CR133 publication-title: Science doi: 10.1126/science.aab1601 – year: 2022 ident: 586_CR158 publication-title: Nature doi: 10.1038/s41586-022-05279-8 – volume: 11 start-page: 360 year: 2014 ident: 586_CR203 publication-title: Nat. Methods doi: 10.1038/nmeth.2892 – volume: 16 start-page: 715 year: 2019 ident: 586_CR42 publication-title: Nat. Methods doi: 10.1038/s41592-019-0494-8 – volume: 12 start-page: 640725 year: 2021 ident: 586_CR185 publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.640725 – volume: 19 start-page: 266 year: 2016 ident: 586_CR64 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.05.010 – volume: 21 year: 2020 ident: 586_CR248 publication-title: Genome Biol. doi: 10.1186/s13059-020-02015-1 – volume: 167 start-page: 1853 year: 2016 ident: 586_CR114 publication-title: Cell doi: 10.1016/j.cell.2016.11.038 – volume: 18 start-page: 1342 year: 2021 ident: 586_CR229 publication-title: Nat. Methods doi: 10.1038/s41592-021-01255-8 – volume: 11 year: 2020 ident: 586_CR239 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15968-5 – volume: 15 start-page: 123 year: 2018 ident: 586_CR149 publication-title: Nat. Methods doi: 10.1038/nmeth.4556 – volume: 29 start-page: 3 year: 2022 ident: 586_CR249 publication-title: J. Comput. Biol. doi: 10.1089/cmb.2021.0446 – volume: 27 start-page: 904 year: 2021 ident: 586_CR165 publication-title: Nat. Med. doi: 10.1038/s41591-021-01329-2 – volume: 36 start-page: 738 year: 2015 ident: 586_CR175 publication-title: Trends Immunol. doi: 10.1016/j.it.2015.09.006 – volume: 37 start-page: 2644 year: 2021 ident: 586_CR235 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab164 – volume: 39 start-page: btac805 year: 2023 ident: 586_CR216 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac805 – volume: 12 year: 2021 ident: 586_CR76 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25133-1 – volume: 12 year: 2021 ident: 586_CR136 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21583-9 – volume: 9 year: 2019 ident: 586_CR52 publication-title: Sci. Rep. doi: 10.1038/s41598-019-41695-z – year: 2021 ident: 586_CR231 publication-title: bioRxiv doi: 10.1101/2021.11.11.468178 – volume: 45 start-page: D353 year: 2017 ident: 586_CR95 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1092 – volume: 102 start-page: 15545 year: 2005 ident: 586_CR100 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0506580102 – volume: 20 issue: Suppl. 19 year: 2019 ident: 586_CR109 publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-3211-9 – volume: 609 start-page: 375 year: 2022 ident: 586_CR198 publication-title: Nature doi: 10.1038/s41586-022-05094-1 – volume: 21 year: 2020 ident: 586_CR72 publication-title: Genome Biol. doi: 10.1186/s13059-020-02000-8 – volume: 39 start-page: 1246 year: 2021 ident: 586_CR246 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-00927-2 – volume: 7 start-page: 1297 year: 2018 ident: 586_CR51 publication-title: F1000Res. doi: 10.12688/f1000research.15809.1 – volume: 7 start-page: eabf1356 year: 2021 ident: 586_CR131 publication-title: Sci. Adv. doi: 10.1126/sciadv.abf1356 – year: 2020 ident: 586_CR228 publication-title: bioRxiv doi: 10.1101/2020.05.31.125658 – volume: 15 start-page: 563 year: 2018 ident: 586_CR171 publication-title: Nat. Methods doi: 10.1038/s41592-018-0082-3 – volume: 12 start-page: 664514 year: 2021 ident: 586_CR176 publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.664514 – volume: 4 start-page: 827 year: 2020 ident: 586_CR194 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-020-0578-x – volume: 12 start-page: 522 year: 2021 ident: 586_CR119 publication-title: Cell Syst. doi: 10.1016/j.cels.2021.05.016 – ident: 586_CR187 doi: 10.1101/2021.06.24.449733 – volume: 40 start-page: 661 year: 2022 ident: 586_CR212 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01139-4 – volume: 18 start-page: 2953 year: 2020 ident: 586_CR105 publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2020.10.007 – volume: 4 start-page: 406 year: 1987 ident: 586_CR74 publication-title: Mol. Biol. Evol. – volume: 19 start-page: 1097 year: 2022 ident: 586_CR157 publication-title: Nat. Methods doi: 10.1038/s41592-022-01595-z – volume: 23 start-page: 728 year: 2022 ident: 586_CR132 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-022-00512-6 – year: 2022 ident: 586_CR256 publication-title: bioRxiv doi: 10.1101/2022.02.24.481684 – volume: 12 start-page: 766405 year: 2021 ident: 586_CR110 publication-title: Front. Genet. doi: 10.3389/fgene.2021.766405 – ident: 586_CR223 doi: 10.1101/2022.08.16.504115 – volume: 10 year: 2018 ident: 586_CR169 publication-title: Genome Med. doi: 10.1186/s13073-018-0528-3 – volume: 21 year: 2020 ident: 586_CR91 publication-title: Genome Biol. doi: 10.1186/s13059-020-1926-6 – volume: 13 year: 2022 ident: 586_CR161 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29356-8 – year: 2022 ident: 586_CR32 publication-title: bioRxiv doi: 10.1101/2021.06.24.449781 – year: 2022 ident: 586_CR29 publication-title: bioRxiv doi: 10.1101/2021.06.24.449781 – volume: 29 start-page: 202 year: 2019 ident: 586_CR240 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.08.077 – volume: 19 start-page: 179 year: 2022 ident: 586_CR196 publication-title: Nat. Methods doi: 10.1038/s41592-021-01343-9 – volume: 32 start-page: 109 year: 2020 ident: 586_CR13 publication-title: Mol. Metab. doi: 10.1016/j.molmet.2019.12.006 – year: 2022 ident: 586_CR27 publication-title: bioRxiv doi: 10.1101/2022.03.07.483367 – volume: 38 start-page: 1408 year: 2020 ident: 586_CR67 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0591-3 – volume: 22 year: 2021 ident: 586_CR213 publication-title: Genome Biol. doi: 10.1186/s13059-021-02362-7 – volume: 376 start-page: eabl5197 year: 2022 ident: 586_CR56 publication-title: Science doi: 10.1126/science.abl5197 – year: 2021 ident: 586_CR124 publication-title: bioRxiv doi: 10.1101/2021.04.14.439903 – volume: 21 year: 2020 ident: 586_CR102 publication-title: Genome Biol. doi: 10.1186/s13059-020-1949-z – volume: 39 start-page: 43 year: 2021 ident: 586_CR197 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2020.05.006 – volume: 9 year: 2019 ident: 586_CR138 publication-title: Sci. Rep. doi: 10.1038/s41598-019-45839-z – volume: 38 start-page: 747 year: 2020 ident: 586_CR18 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0469-4 – volume: 36 start-page: 411 year: 2018 ident: 586_CR36 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4096 – volume: 9 start-page: 1444 year: 2020 ident: 586_CR89 publication-title: F1000Res. doi: 10.12688/f1000research.27893.1 – volume: 39 start-page: 30 year: 2021 ident: 586_CR122 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0605-1 – volume: 21 year: 2020 ident: 586_CR23 publication-title: Genome Biol. doi: 10.1186/s13059-020-1950-6 – volume: 15 start-page: 1053 year: 2018 ident: 586_CR41 publication-title: Nat. Methods doi: 10.1038/s41592-018-0229-2 – volume: 17 start-page: 159 year: 2020 ident: 586_CR130 publication-title: Nat. Methods doi: 10.1038/s41592-019-0667-5 – volume: 15 year: 2014 ident: 586_CR80 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 178 start-page: 714 year: 2019 ident: 586_CR107 publication-title: Cell doi: 10.1016/j.cell.2019.06.029 – volume: 8 start-page: 278 year: 2017 ident: 586_CR180 publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.00278 – volume: 40 start-page: 476 year: 2022 ident: 586_CR195 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01075-3 – volume: 18 start-page: 1352 year: 2021 ident: 586_CR224 publication-title: Nat. Methods doi: 10.1038/s41592-021-01264-7 – volume: 18 start-page: 100 year: 2021 ident: 586_CR220 publication-title: Nat. Methods doi: 10.1038/s41592-020-01018-x – volume: 10 year: 2019 ident: 586_CR34 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12266-7 – volume: 560 start-page: 494 year: 2018 ident: 586_CR66 publication-title: Nature doi: 10.1038/s41586-018-0414-6 – volume: 39 start-page: 619 year: 2021 ident: 586_CR123 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-00803-5 – volume: 32 start-page: 684 year: 2014 ident: 586_CR11 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2938 – volume: 179 start-page: 1455 year: 2019 ident: 586_CR232 publication-title: Cell doi: 10.1016/j.cell.2019.11.019 – volume: 15 year: 2019 ident: 586_CR5 publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20188746 – volume: 2 start-page: 100699 year: 2021 ident: 586_CR25 publication-title: Star. Protoc. doi: 10.1016/j.xpro.2021.100699 – volume: 46 start-page: D419 year: 2018 ident: 586_CR182 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx760 – volume: 7 start-page: 1141 year: 2018 ident: 586_CR50 publication-title: F1000Res. doi: 10.12688/f1000research.15666.2 – volume: 12 year: 2021 ident: 586_CR59 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25957-x – volume: 4 start-page: lqac049 year: 2022 ident: 586_CR172 publication-title: NAR Genom. Bioinform. doi: 10.1093/nargab/lqac049 – volume: 37 start-page: 3243 year: 2021 ident: 586_CR90 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab337 |
| SSID | ssj0016173 |
| Score | 2.7548559 |
| SecondaryResourceType | review_article |
| Snippet | Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 550 |
| SubjectTerms | 631/114/1305 631/114/794 631/1647/514/1949 631/208/191 Agriculture Animal Genetics and Genomics Biomedical and Life Sciences Biomedicine Cancer Research Chromatin Electrons Expert Recommendation Gene Expression Profiling - methods Gene Function Human Genetics Proteomics Single-Cell Analysis - methods Transcriptomics |
| Title | Best practices for single-cell analysis across modalities |
| URI | https://link.springer.com/article/10.1038/s41576-023-00586-w https://www.ncbi.nlm.nih.gov/pubmed/37002403 https://www.proquest.com/docview/2838516462 https://www.proquest.com/docview/2793984588 https://pubmed.ncbi.nlm.nih.gov/PMC10066026 |
| Volume | 24 |
| WOSCitedRecordID | wos000961193300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1471-0064 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0016173 issn: 1471-0056 databaseCode: 7RV dateStart: 20001001 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvAuBsgoSN7Aax05in6q2asUBrVYVVHuLsn6ISiXbNlsq_j0zjpNqqeiFiy92HjN-zGfP-BuAj14gai9KyWRROCa5zVnTGM8WAs35YlEaH8h0Tr9W06maz_UsHrh1MaxyWBPDQm2Xhs7Id9EMIjgoZZnvXVwyyhpF3tWYQmMDtoglIQ-he7PRi1D2HmaOCzAjzst4aSYTardDw1VR-K2gGlWym3XDdAdt3g2a_MtzGgzS8dP_FeUZPIlQNN3vx85zeODaF_CoT075-yXoA3xjOtyi6lJEtykdLJw7Rqf9aRPpTNImCJT-XFrC9LjzfgXfj4--HX5hMdECM7IqVsxnmfHKaKMr7KEiz6TUkmvnpM24K5RoEOZ5azKrGi-9zrwrpUFwZgntGS62YbNdtu4NpLbJ84X1FUfDLwtTassFN9Jxkwc9J8AHLdcmspBTMozzOnjDhar7nqmxZ-rwRH2TwKfxmYueg-Pe1juD1us4H7v6VuUJfBircSaRwprWLa-xDS5VWtHN3QRe9309fk5UgQxOJKDWRsHYgFi612vasx-BrZsTqsOdbgKfhwFz-1__FuPt_WK8g8d5GLwUirgDm6ura_ceHppfq7PuagIb1ckplfMqlApLdcgnsHVwNJ2dTMI0-QODshHT |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb0qgQJDgBFbj2EmcA0JQqFp1WXEoqDeT9UOs1GZLs2XVP8VvZMZ5VEtFbz1wtp3YnvHMZ3v8DcBLLxC1Z7lkMssck9ymrKqMZxOB7nwyyY0PZDrfRsV4rPb3yy8r8Lt_C0Nhlb1NDIbazgydkW-gG0RwkMs8fXf0k1HWKLpd7VNotGqx604XuGVr3u58RPm-StOtT3ub26zLKsCMLLI580livDKlKQvsTpYmUpaSl85Jm3CXKVEhpvHWJFZVXvoy8S6XBpGIJWhjuMDvXoGrxGRHK0ptDiEltFUIAf1o8BlxbHaPdBKhNhp0lAWF-woqUTlbLDvCc-j2fJDmXze1wQFu3f7fpu4O3Oqgdvy-XRt3YcXV9-B6m3zz9D6UH3AEcf9KrIkRvcd0cHLgGN1mxFVH1xJXYQLjw5mlPcvUNQ_g66X0-yGs1rPaPYLYVmk6sb7gCGxkZvLScsGNdNykQa4R8F6q2nQs65Ts40CH236hdKsJGjVBhxZ6EcHroc1RyzFyYe31Xsq6szeNPhNxBC-GYrQUNGFV7WYnWAdNcanoZXIEa61uDb8TRSC7ExGoJa0bKhAL-XJJPf0R2Mg5oVbcyUfwplfQs379exiPLx7Gc7ixvfd5pEc7490ncDMNC4fCLtdhdX584p7CNfNrPm2On4UlGMP3y1bcP0bVaAQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFBAX3pSFAosEJ7CyfuzDB4QobUTVKooQoN7Mxg8Rqd2UbkrUv8avY-x9VKGitx442961PeOZz54XwCvHEbWnmSAiTS0R1DBSltqRKUd1Pp1m2oVkOt_28_G4ODiQkzX43cXCeLfKTiYGQW3m2r-RD1ENIjjIRMaGrnWLmGyP3h__JL6ClLe0duU0GhbZs2dLvL7V73a3kdavGRvtfPn4ibQVBogWebogLkm0K7TUMseppSwRQgoqrRUmoTYteIn4xhmdmKJ0wsnE2UxoRCXGwxxNOX73GqznCDLEANa3dsaTz70NI2vs2xTFP_EZN9uQnYQXwxrVZu6df7lvKTKyXFWLF7DuRZfNv-y2QR2O7vzPG3kXbrcgPP7QnJp7sGar-3CjKct59gDkFq4m7uLH6hhxfeyfVA4t8XaOuGwTucRl2Mz4aG78bWZm64fw9Urm_QgG1byyjyE2JWNT43KKkEekOpOGcqqFpZoFGkdAOwor3eZf92VADlXwA-CFarhCIVeoMEItI3jTjzluso9c2nuzo7hqJVGtzskdwcu-GWWI37CysvNT7INCWhY-ZjmCjYbP-t_xPKTB4xEUKxzYd_D5yVdbqtmPkKecejyLd_wI3nbMej6vfy_jyeXLeAE3kV_V_u547yncYuEMeX_MTRgsTk7tM7iufy1m9cnz9jzG8P2qOfcPvoNyYg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Best+practices+for+single-cell+analysis+across+modalities&rft.jtitle=Nature+reviews.+Genetics&rft.au=Heumos%2C+Lukas&rft.au=Schaar%2C+Anna+C.&rft.au=Lance%2C+Christopher&rft.au=Litinetskaya%2C+Anastasia&rft.date=2023-08-01&rft.issn=1471-0056&rft.eissn=1471-0064&rft.volume=24&rft.issue=8&rft.spage=550&rft.epage=572&rft_id=info:doi/10.1038%2Fs41576-023-00586-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41576_023_00586_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0056&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0056&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0056&client=summon |