A Novel Classification Model Using Optimal Long Short-Term Memory for Classification of COVID-19 from CT Images

The human respiratory system is affected when an individual is infected with COVID-19, which became a global pandemic in 2020 and affected millions of people worldwide. However, accurate diagnosis of COVID-19 can be challenging due to small variations in typical and COVID-19 pneumonia, as well as th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of digital imaging Ročník 36; číslo 6; s. 2480 - 2493
Hlavní autoři: Vinothini, R., Niranjana, G., Yakub, Fitri
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2023
Springer Nature B.V
Témata:
ISSN:0897-1889, 1618-727X, 1618-727X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The human respiratory system is affected when an individual is infected with COVID-19, which became a global pandemic in 2020 and affected millions of people worldwide. However, accurate diagnosis of COVID-19 can be challenging due to small variations in typical and COVID-19 pneumonia, as well as the complexities involved in classifying infection regions. Currently, various deep learning (DL)-based methods are being introduced for the automatic detection of COVID-19 using computerized tomography (CT) scan images. In this paper, we propose the pelican optimization algorithm-based long short-term memory (POA-LSTM) method for classifying coronavirus using CT scan images. The data preprocessing technique is used to convert raw image data into a suitable format for subsequent steps. Here, we develop a general framework called no new U-Net (nnU-Net) for region of interest (ROI) segmentation in medical images. We apply a set of heuristic guidelines derived from the domain to systematically optimize the ROI segmentation task, which represents the dataset’s key properties. Furthermore, high-resolution net (HRNet) is a standard neural network design developed for feature extraction. HRNet chooses the top-down strategy over the bottom-up method after considering the two options. It first detects the subject, generates a bounding box around the object and then estimates the relevant feature. The POA is used to minimize the subjective influence of manually selected parameters and enhance the LSTM’s parameters. Thus, the POA-LSTM is used for the classification process, achieving higher performance for each performance metric such as accuracy, sensitivity, F1-score, precision, and specificity of 99%, 98.67%, 98.88%, 98.72%, and 98.43%, respectively.
AbstractList The human respiratory system is affected when an individual is infected with COVID-19, which became a global pandemic in 2020 and affected millions of people worldwide. However, accurate diagnosis of COVID-19 can be challenging due to small variations in typical and COVID-19 pneumonia, as well as the complexities involved in classifying infection regions. Currently, various deep learning (DL)-based methods are being introduced for the automatic detection of COVID-19 using computerized tomography (CT) scan images. In this paper, we propose the pelican optimization algorithm-based long short-term memory (POA-LSTM) method for classifying coronavirus using CT scan images. The data preprocessing technique is used to convert raw image data into a suitable format for subsequent steps. Here, we develop a general framework called no new U-Net (nnU-Net) for region of interest (ROI) segmentation in medical images. We apply a set of heuristic guidelines derived from the domain to systematically optimize the ROI segmentation task, which represents the dataset's key properties. Furthermore, high-resolution net (HRNet) is a standard neural network design developed for feature extraction. HRNet chooses the top-down strategy over the bottom-up method after considering the two options. It first detects the subject, generates a bounding box around the object and then estimates the relevant feature. The POA is used to minimize the subjective influence of manually selected parameters and enhance the LSTM's parameters. Thus, the POA-LSTM is used for the classification process, achieving higher performance for each performance metric such as accuracy, sensitivity, F1-score, precision, and specificity of 99%, 98.67%, 98.88%, 98.72%, and 98.43%, respectively.
The human respiratory system is affected when an individual is infected with COVID-19, which became a global pandemic in 2020 and affected millions of people worldwide. However, accurate diagnosis of COVID-19 can be challenging due to small variations in typical and COVID-19 pneumonia, as well as the complexities involved in classifying infection regions. Currently, various deep learning (DL)-based methods are being introduced for the automatic detection of COVID-19 using computerized tomography (CT) scan images. In this paper, we propose the pelican optimization algorithm-based long short-term memory (POA-LSTM) method for classifying coronavirus using CT scan images. The data preprocessing technique is used to convert raw image data into a suitable format for subsequent steps. Here, we develop a general framework called no new U-Net (nnU-Net) for region of interest (ROI) segmentation in medical images. We apply a set of heuristic guidelines derived from the domain to systematically optimize the ROI segmentation task, which represents the dataset's key properties. Furthermore, high-resolution net (HRNet) is a standard neural network design developed for feature extraction. HRNet chooses the top-down strategy over the bottom-up method after considering the two options. It first detects the subject, generates a bounding box around the object and then estimates the relevant feature. The POA is used to minimize the subjective influence of manually selected parameters and enhance the LSTM's parameters. Thus, the POA-LSTM is used for the classification process, achieving higher performance for each performance metric such as accuracy, sensitivity, F1-score, precision, and specificity of 99%, 98.67%, 98.88%, 98.72%, and 98.43%, respectively.The human respiratory system is affected when an individual is infected with COVID-19, which became a global pandemic in 2020 and affected millions of people worldwide. However, accurate diagnosis of COVID-19 can be challenging due to small variations in typical and COVID-19 pneumonia, as well as the complexities involved in classifying infection regions. Currently, various deep learning (DL)-based methods are being introduced for the automatic detection of COVID-19 using computerized tomography (CT) scan images. In this paper, we propose the pelican optimization algorithm-based long short-term memory (POA-LSTM) method for classifying coronavirus using CT scan images. The data preprocessing technique is used to convert raw image data into a suitable format for subsequent steps. Here, we develop a general framework called no new U-Net (nnU-Net) for region of interest (ROI) segmentation in medical images. We apply a set of heuristic guidelines derived from the domain to systematically optimize the ROI segmentation task, which represents the dataset's key properties. Furthermore, high-resolution net (HRNet) is a standard neural network design developed for feature extraction. HRNet chooses the top-down strategy over the bottom-up method after considering the two options. It first detects the subject, generates a bounding box around the object and then estimates the relevant feature. The POA is used to minimize the subjective influence of manually selected parameters and enhance the LSTM's parameters. Thus, the POA-LSTM is used for the classification process, achieving higher performance for each performance metric such as accuracy, sensitivity, F1-score, precision, and specificity of 99%, 98.67%, 98.88%, 98.72%, and 98.43%, respectively.
Author Niranjana, G.
Vinothini, R.
Yakub, Fitri
Author_xml – sequence: 1
  givenname: R.
  surname: Vinothini
  fullname: Vinothini, R.
  email: vr8004@srmist.edu.in
  organization: Department of Computing Technologies, SRM Institute of Science and Technology
– sequence: 2
  givenname: G.
  surname: Niranjana
  fullname: Niranjana, G.
  organization: SRM Institute of Science and Technology
– sequence: 3
  givenname: Fitri
  surname: Yakub
  fullname: Yakub, Fitri
  organization: Electronic System Engineering Department, Malaysia-Japan International Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37491543$$D View this record in MEDLINE/PubMed
BookMark eNp9kUlvGyEAhVGVqnHS_oEeKqReeqFlNXCqoulmyakPdaLcEIPBIZoZHBhHyr8vibO0PuTC-r2nB-8IHAxp8AC8J_gzwVh-KQRTqRCmDGGsBEXyFZiQKVFIUnlxACZYaYmIUvoQHJVyhTGRQvI34JBJrongbALSCfydbnwHm86WEkN0doxpgKdpVQ_PShzWcLEZY287OE918-cy5REtfe7hqe9TvoUh5X11CrBZnM--IaJhyKmHzRLOerv25S14HWxX_LuH-Ric_fi-bH6h-eLnrDmZI8elGJHllLYk1NG2TAaqmQ5O-ZZQr5jUXKy8YAy3fupUIEHXFbFCcSGd0sRRdgy-7nw327b3K-eHMdvObHJ9Sb41yUbz_80QL8063RiCq40Uujp8enDI6Xrry2j6WJzvOjv4tC2GKk65IFrxin7cQ6_SNg_1fZWSSoipILJSH_6N9JTlsYwKqB3gciol-2BcHO8_tCaMXY1m7no3u95N7d3c927uvOme9NH9RRHbiUqFh7XPz7FfUP0FJ4O-oQ
CitedBy_id crossref_primary_10_1080_23311932_2024_2336002
Cites_doi 10.1016/j.asoc.2022.109683
10.1016/j.asoc.2020.106885
10.1002/ima.22627
10.1016/j.bspc.2021.103076
10.1016/j.clinimag.2021.02.003
10.1080/02286203.2021.1934797
10.1109/TCBB.2021.3065361
10.1016/j.compbiomed.2021.105127
10.1016/j.eswa.2022.116554
10.1016/j.bspc.2021.102920
10.1007/s42979-021-00690-w
10.1016/j.chaos.2020.110190
10.3390/s22030855
10.1016/j.imu.2020.100412
10.1016/j.patcog.2021.108499
10.1007/s00521-020-05410-8
10.34133/2021/8786793
10.1016/j.imu.2021.100540
10.1007/s12652-021-03464-7
10.1016/j.engappai.2023.105820
10.1007/s12559-020-09787-5
10.1007/s10489-020-01965-0
ContentType Journal Article
Copyright The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.
Copyright_xml – notice: The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7SC
7TK
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K9.
KB0
L7M
LK8
L~C
L~D
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s10278-023-00852-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Nursing & Allied Health Premium
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Databases
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1618-727X
EndPage 2493
ExternalDocumentID PMC10584759
37491543
10_1007_s10278_023_00852_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
04C
06C
06D
0R~
0VY
1N0
2.D
203
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5RE
5VS
67Z
6NX
6PF
78A
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAKDD
AAKPC
AANXM
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAWUL
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DIK
DL5
DNIVK
DPUIP
DU5
EBD
EBS
ECT
EDO
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GX1
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HYE
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
KDC
KOV
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
NAPCQ
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
OK1
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
Q2X
QOK
QOR
QOS
R89
R9I
RNS
ROL
RPM
RPX
RRX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
TUS
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7W
Z7X
Z82
Z83
Z88
Z8R
Z8V
Z8W
Z92
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ACSTC
ADHKG
AFFHD
AGQPQ
AHPBZ
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
7TK
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c475t-a422b1f422ab37f2939fc8eb12e837945de5330be6c8f1f90be1a58457c891c23
IEDL.DBID M7P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001035518700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0897-1889
1618-727X
IngestDate Tue Nov 04 02:04:43 EST 2025
Sat Sep 27 16:05:36 EDT 2025
Wed Nov 05 02:12:34 EST 2025
Mon Jul 21 05:46:03 EDT 2025
Sat Nov 29 01:57:30 EST 2025
Tue Nov 18 22:06:29 EST 2025
Fri Feb 21 02:40:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 6
Keywords Computerized tomography scan images
Pelican optimization algorithm
Coronavirus
No new U-Net
High-resolution net
Disease prediction
Language English
License 2023. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-a422b1f422ab37f2939fc8eb12e837945de5330be6c8f1f90be1a58457c891c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pmc.ncbi.nlm.nih.gov/articles/PMC10584759/pdf/10278_2023_Article_852.pdf
PMID 37491543
PQID 2878556517
PQPubID 34218
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10584759
proquest_miscellaneous_2842451984
proquest_journals_2878556517
pubmed_primary_37491543
crossref_citationtrail_10_1007_s10278_023_00852_7
crossref_primary_10_1007_s10278_023_00852_7
springer_journals_10_1007_s10278_023_00852_7
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
– name: New York
PublicationTitle Journal of digital imaging
PublicationTitleAbbrev J Digit Imaging
PublicationTitleAlternate J Digit Imaging
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Bhardwaj, Kaur (CR12) 2021; 31
CR18
Zhou, Lu, Yang, Qiu, Huo, Dong (CR8) 2021; 98
Song, Zheng, Li, Zhang, Zhang, Huang, Chen, Wang, Zhao, Chong, Shen (CR10) 2021; 18
CR14
CR11
Gaur, Malaviya, Gupta, Bhatia, Pachori, Sharma (CR16) 2022; 71
Trojovský, Dehghani (CR23) 2022; 22
CR2
Shaik, Cherukuri (CR1) 2022; 141
Li, Liu, Yip, Yankelevitz, Henschke, Geng, Fang, Li, Pan, Chen, Qin (CR6) 2021; 78
CR3
CR5
Panwar, Gupta, Siddiqui, Morales-Menendez, Bhardwaj, Singh (CR9) 2020; 140
CR25
CR24
Islam, Islam, Asraf (CR15) 2020; 20
Thakur, Kumar (CR17) 2021; 69
Ahuja, Panigrahi, Dey, Taneja, Gandhi (CR19) 2022; 131
CR22
Islam, Nahiduzzaman (CR13) 2022; 195
CR20
Ahmed, Hossain, Hoque, Sarker, Rahman, Shah (CR21) 2021; 2
Mandal (CR7) 2022; 42
Bao, Chen, Liu, Gong, Yin, Wang, Wang (CR4) 2022; 124
852_CR3
852_CR22
852_CR2
852_CR24
852_CR25
852_CR5
P Gaur (852_CR16) 2022; 71
MZ Islam (852_CR15) 2020; 20
852_CR20
S Thakur (852_CR17) 2021; 69
G Bao (852_CR4) 2022; 124
MR Islam (852_CR13) 2022; 195
852_CR18
852_CR11
S Mandal (852_CR7) 2022; 42
H Panwar (852_CR9) 2020; 140
852_CR14
S Ahmed (852_CR21) 2021; 2
NS Shaik (852_CR1) 2022; 141
T Zhou (852_CR8) 2021; 98
Y Song (852_CR10) 2021; 18
S Ahuja (852_CR19) 2022; 131
P Bhardwaj (852_CR12) 2021; 31
K Li (852_CR6) 2021; 78
P Trojovský (852_CR23) 2022; 22
References_xml – volume: 131
  year: 2022
  ident: CR19
  article-title: McS-Net: Multi-class Siamese network for severity of COVID-19 infection classification from lung CT scan slices
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2022.109683
– ident: CR22
– ident: CR18
– volume: 98
  year: 2021
  ident: CR8
  article-title: The ensemble deep learning model for novel COVID-19 on CT images
  publication-title: Applied soft computing
  doi: 10.1016/j.asoc.2020.106885
– volume: 31
  start-page: 1775
  issue: 4
  year: 2021
  end-page: 1791
  ident: CR12
  article-title: A novel and efficient deep learning approach for COVID-19 detection using X-ray imaging modality
  publication-title: International Journal of Imaging Systems and Technology
  doi: 10.1002/ima.22627
– ident: CR14
– ident: CR2
– volume: 71
  year: 2022
  ident: CR16
  article-title: COVID-19 disease identification from chest CT images using empirical wavelet transformation and transfer learning
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.103076
– volume: 78
  start-page: 223
  year: 2021
  end-page: 229
  ident: CR6
  article-title: Early prediction of severity in coronavirus disease (COVID-19) using quantitative CT imaging
  publication-title: Clinical Imaging
  doi: 10.1016/j.clinimag.2021.02.003
– volume: 42
  start-page: 518
  issue: 3
  year: 2022
  end-page: 532
  ident: CR7
  article-title: Identification of Severity of Infection for COVID-19 Affected Lungs Images using Elephant Swarm Water Search Algorithm
  publication-title: International Journal of Modelling and Simulation
  doi: 10.1080/02286203.2021.1934797
– volume: 18
  start-page: 2775
  issue: 6
  year: 2021
  end-page: 2780
  ident: CR10
  article-title: Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images
  publication-title: IEEE/ACM transactions on computational biology and bioinformatics
  doi: 10.1109/TCBB.2021.3065361
– ident: CR25
– volume: 141
  year: 2022
  ident: CR1
  article-title: Transfer learning based novel ensemble classifier for COVID-19 detection from chest CT-scans
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.105127
– volume: 195
  year: 2022
  ident: CR13
  article-title: Complex features extraction with deep learning model for the detection of COVID19 from CT scan images using ensemble based machine learning approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.116554
– volume: 69
  year: 2021
  ident: CR17
  article-title: X-ray and CT-scan-based automated detection and classification of covid-19 using convolutional neural networks (CNN)
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.102920
– ident: CR3
– volume: 2
  start-page: 1
  issue: 4
  year: 2021
  end-page: 17
  ident: CR21
  article-title: Automated covid-19 detection from chest x-ray images: a high-resolution network (hrnet) approach
  publication-title: SN computer science
  doi: 10.1007/s42979-021-00690-w
– volume: 140
  year: 2020
  ident: CR9
  article-title: A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-Scan images
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2020.110190
– volume: 22
  start-page: 855
  issue: 3
  year: 2022
  ident: CR23
  article-title: Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications
  publication-title: Sensors
  doi: 10.3390/s22030855
– ident: CR11
– volume: 20
  year: 2020
  ident: CR15
  article-title: A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images
  publication-title: Informatics in medicine unlocked
  doi: 10.1016/j.imu.2020.100412
– volume: 124
  year: 2022
  ident: CR4
  article-title: COVID-MTL: Multitask learning with Shift3D and random-weighted loss for COVID-19 diagnosis and severity assessment
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2021.108499
– ident: CR5
– ident: CR24
– ident: CR20
– volume: 98
  year: 2021
  ident: 852_CR8
  publication-title: Applied soft computing
  doi: 10.1016/j.asoc.2020.106885
– volume: 124
  year: 2022
  ident: 852_CR4
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2021.108499
– ident: 852_CR3
  doi: 10.1007/s00521-020-05410-8
– volume: 131
  year: 2022
  ident: 852_CR19
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2022.109683
– ident: 852_CR20
  doi: 10.34133/2021/8786793
– ident: 852_CR24
– ident: 852_CR18
  doi: 10.1016/j.imu.2021.100540
– volume: 42
  start-page: 518
  issue: 3
  year: 2022
  ident: 852_CR7
  publication-title: International Journal of Modelling and Simulation
  doi: 10.1080/02286203.2021.1934797
– ident: 852_CR22
  doi: 10.1007/s12652-021-03464-7
– volume: 71
  year: 2022
  ident: 852_CR16
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.103076
– ident: 852_CR14
– volume: 22
  start-page: 855
  issue: 3
  year: 2022
  ident: 852_CR23
  publication-title: Sensors
  doi: 10.3390/s22030855
– volume: 141
  year: 2022
  ident: 852_CR1
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.105127
– volume: 18
  start-page: 2775
  issue: 6
  year: 2021
  ident: 852_CR10
  publication-title: IEEE/ACM transactions on computational biology and bioinformatics
  doi: 10.1109/TCBB.2021.3065361
– volume: 69
  year: 2021
  ident: 852_CR17
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.102920
– ident: 852_CR2
  doi: 10.1016/j.engappai.2023.105820
– ident: 852_CR25
– volume: 140
  year: 2020
  ident: 852_CR9
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2020.110190
– volume: 20
  year: 2020
  ident: 852_CR15
  publication-title: Informatics in medicine unlocked
  doi: 10.1016/j.imu.2020.100412
– volume: 195
  year: 2022
  ident: 852_CR13
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.116554
– ident: 852_CR11
  doi: 10.1007/s12559-020-09787-5
– volume: 31
  start-page: 1775
  issue: 4
  year: 2021
  ident: 852_CR12
  publication-title: International Journal of Imaging Systems and Technology
  doi: 10.1002/ima.22627
– volume: 2
  start-page: 1
  issue: 4
  year: 2021
  ident: 852_CR21
  publication-title: SN computer science
  doi: 10.1007/s42979-021-00690-w
– ident: 852_CR5
  doi: 10.1007/s10489-020-01965-0
– volume: 78
  start-page: 223
  year: 2021
  ident: 852_CR6
  publication-title: Clinical Imaging
  doi: 10.1016/j.clinimag.2021.02.003
SSID ssj0017574
Score 1.9713559
Snippet The human respiratory system is affected when an individual is infected with COVID-19, which became a global pandemic in 2020 and affected millions of people...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2480
SubjectTerms Algorithms
Classification
Computed tomography
Coronaviruses
COVID-19
COVID-19 - diagnostic imaging
Deep learning
Design standards
Feature extraction
Humans
Image processing
Image segmentation
Imaging
Long short-term memory
Machine learning
Medical imaging
Medicine
Medicine & Public Health
Network design
Neural networks
Neural Networks, Computer
Optimization
Pandemics
Parameters
Radiology
Respiratory system
Segmentation
Tomography, X-Ray Computed
Viral diseases
Title A Novel Classification Model Using Optimal Long Short-Term Memory for Classification of COVID-19 from CT Images
URI https://link.springer.com/article/10.1007/s10278-023-00852-7
https://www.ncbi.nlm.nih.gov/pubmed/37491543
https://www.proquest.com/docview/2878556517
https://www.proquest.com/docview/2842451984
https://pubmed.ncbi.nlm.nih.gov/PMC10584759
Volume 36
WOSCitedRecordID wos001035518700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1618-727X
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0017574
  issn: 0897-1889
  databaseCode: 7RV
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4NmKa9sN9bNlZ50t42a9hxavtpYh1oSFAq1qFqL1Hi2AKpJEAL0v77nR03VUHjZS9WIttJrDtfPvvO3wF8tNuaM1M6yhEeUyFEQYuCOeqM6bvK8arfUuYfyOFQTSZ6FDfcZjGscmETg6GuGuP3yL8gslcZog8mv15cUp81yntXYwqNNdjwLAk8hO6NOi-CzFoWZqUlZUrpeGgmHp3jnluWp9SjDkSZqz-mO2jzbtDkLc9p-CHtPfnfoTyFzQhFyU6rO8_gga2fw6PD6Gx_Ac0OGTY3dkpC4kwfUhSkSHz6tCkJsQbkCC3OOT7koMGbn6eI5ekYbT059AG8fwgi4tu9G0cGRyf73ynTxJ9tIYMx2T9HqzZ7Cb_2dseDHzTmZ6BGyGxOC8F5yRyWRZlKh8BBO6PQ-HOLy14tssr62NXS9o1yzGm8YgUCnkwapZnh6StYr5vavgGCQFMUHJcupRaikqYQNk1TbViG68G-0wmwhXByE8nLfQ6Nab6kXfYCzVGgeRBoLhP41PW5aKk77m29tRBWHqfxLF9KKoEPXTVOQO9VKWrbXPs23nnMtBIJvG5VpHtdKoVGjJomoFaUp2vgyb1Xa-qz00DyjbhXeS7GBD4v9Gz5Xf8extv7h_EOHnOv8yEeZwvW51fX9j08NDfzs9lVD9bk8YkvJzKUqgcb33aHo-NemFdYjrLffwGe7iNY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBQEX3g9DgUWCE6zortfx7gGhKqVq1CStREAVF2Ovd9VKqV2atKh_it_IjF9RWtFbD1wiR17HWefbmW8ys98AvHXrRgqbeS6RHnOlVMrTVHjure353Mu8V0vmD-PxWO_vm70V-NPuhaGyytYmVoY6Ly39R_4Rmb2OkH2I-PPxL05doyi72rbQqGGx485_Y8g2-zTYxN_3nZRbXyb9bd50FeBWxdGcp0rKTHh8TbMw9ujujLcaTZZ0GKwZFeWOKi4z17PaC2_wSKTopqPYaiMsCR2gyb-hlFynVbQX_eiyFnFUqz5rE3OhtWk26TRb9SRp2cqQE8tBVrvsCC-x28tFmhcytZUD3Lr3vz26-3C3odpso14bD2DFFQ_h1qgpJngE5QYbl2duyqrGoFQyVaGUUXu4KatqKdguWtQj_JBhiW--HmCswifoy9iICpTPGTL-i1eXnvV3vw82uTCM9u6w_oQNjtBqzx7Dt2uZ7hNYLcrCPQOGRFqlEkOzzCiVxzZVLgxDY0WE8W7PmwBEC4bENuLs1CNkmixkpQlACQIoqQCUxAG87645rqVJrhy91oIjaczULFkgI4A33Wk0MJQ1SgtXntIYSo4Lo1UAT2tIdrcLY2WQg4cB6CWwdgNIvHz5THF4UImYI6_XpDUZwIcW14vv9e9pPL96Gq_h9vZkNEyGg_HOC7gjab1VtUdrsDo_OXUv4aY9mx_OTl5VK5fBz-vG-1_eOHox
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB5VBVVceD8WChgJTmAVe72xfUCoSoiImqaRCKjist11bLVSmi1NWtS_xq9jZh-J0oreeuASbbTebLz5PPNN5vMMwFv_0Urh8sAl0mOulMp4lonAg3OtMA5y3KpK5vf1YGD29-1wDf40e2FIVtnYxNJQjwtH_5FvIbM3CbIPobdCLYsYdrqfT35x6iBFmdamnUYFkR1_8RvDt9mnXgd_63dSdr-M2l953WGAO6WTOc-UlLkI-JrlsQ7o-mxwBs2X9Bi4WZWMPakvc99yJohg8Uhk6LIT7YwVjooeoPm_pTHGJDnhMPm5yGDopKoAbazmwhhbb9ipt-1JqmsrY06MBxnuqlO8wnSvCjYvZW1LZ9i99z8_xvtwt6bgbLtaMw9gzU8fwsZuLTJ4BMU2GxTnfsLKhqEkpSrRy6ht3ISVGgu2h5b2GD-kX-Cbb4cYw_AR-ji2S8LlC4aRwOWri8Daez96HS4soz09rD1ivWO05rPH8P1GpvsE1qfF1D8DhgRbZRJDttwqNdYuUz6OY-tEgnFwK9gIRAOM1NVF26l3yCRdlpsmMKUIprQEU6ojeL-45qQqWXLt6M0GKGltvmbpEiURvFmcRsND2aRs6oszGkNJc2GNiuBpBc_F7WKtLHLzOAKzAtzFACpqvnpmenRYFjdHvm-oBmUEHxqML7_Xv6fx_PppvIYNhHna7w12XsAdSUuvlCRtwvr89My_hNvufH40O31VLmIGBzcN97-nyYL7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Classification+Model+Using+Optimal+Long+Short-Term+Memory+for+Classification+of+COVID-19+from+CT+Images&rft.jtitle=Journal+of+digital+imaging&rft.au=Vinothini%2C+R&rft.au=Niranjana%2C+G&rft.au=Yakub%2C+Fitri&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0897-1889&rft.eissn=1618-727X&rft.volume=36&rft.issue=6&rft.spage=2480&rft.epage=2493&rft_id=info:doi/10.1007%2Fs10278-023-00852-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-1889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-1889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-1889&client=summon