Optimizing Variational Quantum Algorithms Using Pontryagin’s Minimum Principle

We use Pontryagin’s minimum principle to optimize variational quantum algorithms. We show that for a fixed computation time, the optimal evolution has a bang-bang (square pulse) form, both for closed and open quantum systems with Markovian decoherence. Our findings support the choice of evolution an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Physical review. X Ročník 7; číslo 2; s. 021027
Hlavní autori: Yang, Zhi-Cheng, Rahmani, Armin, Shabani, Alireza, Neven, Hartmut, Chamon, Claudio
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: College Park American Physical Society 18.05.2017
Predmet:
ISSN:2160-3308, 2160-3308
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We use Pontryagin’s minimum principle to optimize variational quantum algorithms. We show that for a fixed computation time, the optimal evolution has a bang-bang (square pulse) form, both for closed and open quantum systems with Markovian decoherence. Our findings support the choice of evolution ansatz in the recently proposed quantum approximate optimization algorithm. Focusing on the Sherrington-Kirkpatrick spin glass as an example, we find a system-size independent distribution of the duration of pulses, with characteristic time scale set by the inverse of the coupling constants in the Hamiltonian. The optimality of the bang-bang protocols and the characteristic time scale of the pulses provide an efficient parametrization of the protocol and inform the search for effective hybrid (classical and quantum) schemes for tackling combinatorial optimization problems. Furthermore, we find that the success rates of our optimal bang-bang protocols remain high even in the presence of weak external noise and coupling to a thermal bath.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
FG02-06ER46316
ISSN:2160-3308
2160-3308
DOI:10.1103/PhysRevX.7.021027