MOCOVIDOA: a novel multi-objective coronavirus disease optimization algorithm for solving multi-objective optimization problems

A novel multi-objective Coronavirus disease optimization algorithm (MOCOVIDOA) is presented to solve global optimization problems with up to three objective functions. This algorithm used an archive to store non-dominated POSs during the optimization process. Then, a roulette wheel selection mechani...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 35; číslo 23; s. 17319 - 17347
Hlavní autoři: Khalid, Asmaa M., Hamza, Hanaa M., Mirjalili, Seyedali, Hosny, Khaid M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.08.2023
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A novel multi-objective Coronavirus disease optimization algorithm (MOCOVIDOA) is presented to solve global optimization problems with up to three objective functions. This algorithm used an archive to store non-dominated POSs during the optimization process. Then, a roulette wheel selection mechanism selects the effective archived solutions by simulating the frameshifting technique Coronavirus particles use for replication. We evaluated the efficiency by solving twenty-seven multi-objective (21 benchmarks & 6 real-world engineering design) problems, where the results are compared against five common multi-objective metaheuristics. The comparison uses six evaluation metrics, including IGD, GD, MS, SP, HV, and delta p ( Δ P ). The obtained results and the Wilcoxon rank-sum test show the superiority of this novel algorithm over the existing algorithms and reveal its applicability in solving multi-objective problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-023-08587-w