Fast nonnegative tensor factorization based on accelerated proximal gradient and low-rank approximation
Nonnegative tensor factorization (NTF) has been widely applied in high-dimensional nonnegative tensor data analysis. However, most of the existing algorithms suffer from slow convergence caused by the nonnegativity constraint and hence their practical applications are severely limited. In this study...
Uložené v:
| Vydané v: | Neurocomputing (Amsterdam) Ročník 198; s. 148 - 154 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
19.07.2016
|
| Predmet: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Nonnegative tensor factorization (NTF) has been widely applied in high-dimensional nonnegative tensor data analysis. However, most of the existing algorithms suffer from slow convergence caused by the nonnegativity constraint and hence their practical applications are severely limited. In this study, we propose a new algorithm called FastNTF_APG to speed up NTF by combining accelerated proximal gradient and low-rank approximation. Experimental results demonstrate that FastNTF_APG achieves significantly higher computational efficiency than state-of-the-art NTF algorithms. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0925-2312 1872-8286 |
| DOI: | 10.1016/j.neucom.2015.08.122 |