Fast nonnegative tensor factorization based on accelerated proximal gradient and low-rank approximation

Nonnegative tensor factorization (NTF) has been widely applied in high-dimensional nonnegative tensor data analysis. However, most of the existing algorithms suffer from slow convergence caused by the nonnegativity constraint and hence their practical applications are severely limited. In this study...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 198; s. 148 - 154
Hlavní autori: Zhang, Yu, Zhou, Guoxu, Zhao, Qibin, Cichocki, Andrzej, Wang, Xingyu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 19.07.2016
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Nonnegative tensor factorization (NTF) has been widely applied in high-dimensional nonnegative tensor data analysis. However, most of the existing algorithms suffer from slow convergence caused by the nonnegativity constraint and hence their practical applications are severely limited. In this study, we propose a new algorithm called FastNTF_APG to speed up NTF by combining accelerated proximal gradient and low-rank approximation. Experimental results demonstrate that FastNTF_APG achieves significantly higher computational efficiency than state-of-the-art NTF algorithms.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2015.08.122