Vertex Deletion into Bipartite Permutation Graphs

A permutation graph can be defined as an intersection graph of segments whose endpoints lie on two parallel lines ℓ 1 and ℓ 2 , one on each. A bipartite permutation graph is a permutation graph which is bipartite. In this paper we study the parameterized complexity of the bipartite permutation verte...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 84; číslo 8; s. 2271 - 2291
Hlavní autoři: Bożyk, Łukasz, Derbisz, Jan, Krawczyk, Tomasz, Novotná, Jana, Okrasa, Karolina
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.08.2022
Springer Nature B.V
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A permutation graph can be defined as an intersection graph of segments whose endpoints lie on two parallel lines ℓ 1 and ℓ 2 , one on each. A bipartite permutation graph is a permutation graph which is bipartite. In this paper we study the parameterized complexity of the bipartite permutation vertex deletion problem, which asks, for a given n -vertex graph, whether we can remove at most k vertices to obtain a bipartite permutation graph. This problem is NP -complete by the classical result of Lewis and Yannakakis [ 20 ]. We analyze the structure of the so-called almost bipartite permutation graphs which may contain holes (large induced cycles) in contrast to bipartite permutation graphs. We exploit the structural properties of the shortest hole in a such graph. We use it to obtain an algorithm for the bipartite permutation vertex deletion problem with running time O ( 9 k · n 9 ) , and also give a polynomial-time 9-approximation algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-021-00923-7