Vertex Deletion into Bipartite Permutation Graphs
A permutation graph can be defined as an intersection graph of segments whose endpoints lie on two parallel lines ℓ 1 and ℓ 2 , one on each. A bipartite permutation graph is a permutation graph which is bipartite. In this paper we study the parameterized complexity of the bipartite permutation verte...
Uloženo v:
| Vydáno v: | Algorithmica Ročník 84; číslo 8; s. 2271 - 2291 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.08.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 0178-4617, 1432-0541 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A permutation graph can be defined as an intersection graph of segments whose endpoints lie on two parallel lines
ℓ
1
and
ℓ
2
, one on each. A bipartite permutation graph is a permutation graph which is bipartite. In this paper we study the parameterized complexity of the bipartite permutation vertex deletion problem, which asks, for a given
n
-vertex graph, whether we can remove at most
k
vertices to obtain a bipartite permutation graph. This problem is
NP
-complete by the classical result of Lewis and Yannakakis [
20
]. We analyze the structure of the so-called almost bipartite permutation graphs which may contain holes (large induced cycles) in contrast to bipartite permutation graphs. We exploit the structural properties of the shortest hole in a such graph. We use it to obtain an algorithm for the bipartite permutation vertex deletion problem with running time
O
(
9
k
·
n
9
)
, and also give a polynomial-time 9-approximation algorithm. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0178-4617 1432-0541 |
| DOI: | 10.1007/s00453-021-00923-7 |