A Defective Pentose Phosphate Pathway Reduces Inflammatory Macrophage Responses during Hypercholesterolemia
Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and function remains to be investigated. To investigate the effect of dyslipidemia on immune cell metabolism, we performed in-depth transcriptional, met...
Gespeichert in:
| Veröffentlicht in: | Cell reports (Cambridge) Jg. 25; H. 8; S. 2044 - 2052.e5 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Inc
20.11.2018
Elsevier |
| Schlagworte: | |
| ISSN: | 2211-1247, 2211-1247 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and function remains to be investigated. To investigate the effect of dyslipidemia on immune cell metabolism, we performed in-depth transcriptional, metabolic, and functional characterization of macrophages isolated from hypercholesterolemic mice. Systemic metabolic changes in such mice alter cellular macrophage metabolism and attenuate inflammatory macrophage responses. In addition to diminished maximal mitochondrial respiration, hypercholesterolemia reduces the LPS-mediated induction of the pentose phosphate pathway (PPP) and the Nrf2-mediated oxidative stress response. Our observation that suppression of the PPP diminishes LPS-induced cytokine secretion supports the notion that this pathway contributes to inflammatory macrophage responses. Overall, this study reveals that systemic and cellular metabolism are strongly interconnected, together dictating macrophage phenotype and function.
[Display omitted]
•Systemic metabolism affects immune cell metabolism•Hypercholesterolemia suppresses the PPP and Nrf2 pathway in macrophages•PPP inhibition and hypercholesterolemia deactivate inflammatory macrophage responses•The Nrf2 pathway regulates the PPP in an LXR-independent manner
The link between systemic and cellular metabolism is a neglected aspect in immunometabolism. Baardman et al. show that hypercholesterolemia alters macrophage metabolism and phenotype. The suppressed pentose phosphate pathway (PPP) in those “foam cell” macrophages attenuates inflammatory responses, signifying that systemic and cellular metabolism together regulate macrophage function. |
|---|---|
| AbstractList | Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and function remains to be investigated. To investigate the effect of dyslipidemia on immune cell metabolism, we performed in-depth transcriptional, metabolic, and functional characterization of macrophages isolated from hypercholesterolemic mice. Systemic metabolic changes in such mice alter cellular macrophage metabolism and attenuate inflammatory macrophage responses. In addition to diminished maximal mitochondrial respiration, hypercholesterolemia reduces the LPS-mediated induction of the pentose phosphate pathway (PPP) and the Nrf2-mediated oxidative stress response. Our observation that suppression of the PPP diminishes LPS-induced cytokine secretion supports the notion that this pathway contributes to inflammatory macrophage responses. Overall, this study reveals that systemic and cellular metabolism are strongly interconnected, together dictating macrophage phenotype and function.
[Display omitted]
•Systemic metabolism affects immune cell metabolism•Hypercholesterolemia suppresses the PPP and Nrf2 pathway in macrophages•PPP inhibition and hypercholesterolemia deactivate inflammatory macrophage responses•The Nrf2 pathway regulates the PPP in an LXR-independent manner
The link between systemic and cellular metabolism is a neglected aspect in immunometabolism. Baardman et al. show that hypercholesterolemia alters macrophage metabolism and phenotype. The suppressed pentose phosphate pathway (PPP) in those “foam cell” macrophages attenuates inflammatory responses, signifying that systemic and cellular metabolism together regulate macrophage function. Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and function remains to be investigated. To investigate the effect of dyslipidemia on immune cell metabolism, we performed in-depth transcriptional, metabolic, and functional characterization of macrophages isolated from hypercholesterolemic mice. Systemic metabolic changes in such mice alter cellular macrophage metabolism and attenuate inflammatory macrophage responses. In addition to diminished maximal mitochondrial respiration, hypercholesterolemia reduces the LPS-mediated induction of the pentose phosphate pathway (PPP) and the Nrf2-mediated oxidative stress response. Our observation that suppression of the PPP diminishes LPS-induced cytokine secretion supports the notion that this pathway contributes to inflammatory macrophage responses. Overall, this study reveals that systemic and cellular metabolism are strongly interconnected, together dictating macrophage phenotype and function. Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and function remains to be investigated. To investigate the effect of dyslipidemia on immune cell metabolism, we performed in-depth transcriptional, metabolic, and functional characterization of macrophages isolated from hypercholesterolemic mice. Systemic metabolic changes in such mice alter cellular macrophage metabolism and attenuate inflammatory macrophage responses. In addition to diminished maximal mitochondrial respiration, hypercholesterolemia reduces the LPS-mediated induction of the pentose phosphate pathway (PPP) and the Nrf2-mediated oxidative stress response. Our observation that suppression of the PPP diminishes LPS-induced cytokine secretion supports the notion that this pathway contributes to inflammatory macrophage responses. Overall, this study reveals that systemic and cellular metabolism are strongly interconnected, together dictating macrophage phenotype and function.Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and function remains to be investigated. To investigate the effect of dyslipidemia on immune cell metabolism, we performed in-depth transcriptional, metabolic, and functional characterization of macrophages isolated from hypercholesterolemic mice. Systemic metabolic changes in such mice alter cellular macrophage metabolism and attenuate inflammatory macrophage responses. In addition to diminished maximal mitochondrial respiration, hypercholesterolemia reduces the LPS-mediated induction of the pentose phosphate pathway (PPP) and the Nrf2-mediated oxidative stress response. Our observation that suppression of the PPP diminishes LPS-induced cytokine secretion supports the notion that this pathway contributes to inflammatory macrophage responses. Overall, this study reveals that systemic and cellular metabolism are strongly interconnected, together dictating macrophage phenotype and function. Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and function remains to be investigated. To investigate the effect of dyslipidemia on immune cell metabolism, we performed in-depth transcriptional, metabolic, and functional characterization of macrophages isolated from hypercholesterolemic mice. Systemic metabolic changes in such mice alter cellular macrophage metabolism and attenuate inflammatory macrophage responses. In addition to diminished maximal mitochondrial respiration, hypercholesterolemia reduces the LPS-mediated induction of the pentose phosphate pathway (PPP) and the Nrf2-mediated oxidative stress response. Our observation that suppression of the PPP diminishes LPS-induced cytokine secretion supports the notion that this pathway contributes to inflammatory macrophage responses. Overall, this study reveals that systemic and cellular metabolism are strongly interconnected, together dictating macrophage phenotype and function. : The link between systemic and cellular metabolism is a neglected aspect in immunometabolism. Baardman et al. show that hypercholesterolemia alters macrophage metabolism and phenotype. The suppressed pentose phosphate pathway (PPP) in those “foam cell” macrophages attenuates inflammatory responses, signifying that systemic and cellular metabolism together regulate macrophage function. Keywords: immunometabolism, inflammation, macrophages, hypercholesterolemia, pentose phosphate pathway, Nrf2, meta-inflammation, foam cells, atherosclerosis, cardiovascular disease, metabolic disease |
| Author | Denis, Simone W. van Weeghel, Michel Wüst, Rob C.I. Witte, Maarten E. Neele, Annette E. O’neill, Luke A. de Winther, Menno P.J. Speijer, Dave Van den Bossche, Jan Lutgens, Esther van der Velden, Saskia Houtkooper, Riekelt H. Verberk, Sanne G.S. Ryan, Dylan G. Prange, Koen H.M. Baardman, Jeroen Knatko, Elena V. Dinkova-Kostova, Albena T. |
| Author_xml | – sequence: 1 givenname: Jeroen surname: Baardman fullname: Baardman, Jeroen organization: Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands – sequence: 2 givenname: Sanne G.S. surname: Verberk fullname: Verberk, Sanne G.S. organization: Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands – sequence: 3 givenname: Koen H.M. surname: Prange fullname: Prange, Koen H.M. organization: Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands – sequence: 4 givenname: Michel surname: van Weeghel fullname: van Weeghel, Michel organization: Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands – sequence: 5 givenname: Saskia surname: van der Velden fullname: van der Velden, Saskia organization: Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands – sequence: 6 givenname: Dylan G. surname: Ryan fullname: Ryan, Dylan G. organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland – sequence: 7 givenname: Rob C.I. surname: Wüst fullname: Wüst, Rob C.I. organization: Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands – sequence: 8 givenname: Annette E. surname: Neele fullname: Neele, Annette E. organization: Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands – sequence: 9 givenname: Dave surname: Speijer fullname: Speijer, Dave organization: Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands – sequence: 10 givenname: Simone W. surname: Denis fullname: Denis, Simone W. organization: Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands – sequence: 11 givenname: Maarten E. surname: Witte fullname: Witte, Maarten E. organization: Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands – sequence: 12 givenname: Riekelt H. surname: Houtkooper fullname: Houtkooper, Riekelt H. organization: Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands – sequence: 13 givenname: Luke A. surname: O’neill fullname: O’neill, Luke A. organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland – sequence: 14 givenname: Elena V. surname: Knatko fullname: Knatko, Elena V. organization: Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK – sequence: 15 givenname: Albena T. surname: Dinkova-Kostova fullname: Dinkova-Kostova, Albena T. organization: Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK – sequence: 16 givenname: Esther surname: Lutgens fullname: Lutgens, Esther organization: Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands – sequence: 17 givenname: Menno P.J. surname: de Winther fullname: de Winther, Menno P.J. organization: Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands – sequence: 18 givenname: Jan surname: Van den Bossche fullname: Van den Bossche, Jan email: j.vandenbossche@vumc.nl organization: Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30463003$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUU1v1DAQtVARLaX_AKEcuexiO0684YBUtUBXKipCcLb8Mdn1ksTBdor23zNL2qriQH2Z0fi9N5r3XpKjIQxAyGtGl4yy-t1uaaGLMC45ZSscLWnDn5ETzhlbMC7k0aP-mJyltKP4aspYI16Q45KKuqS0PCE_z4tLaMFmfwvFVxhySFi3IY1bnbHTeftb74tv4CYLqVgPbaf7XucQ98UXbWNA3AbwP41hSIhwU_TDprjajxDtNnSQMkQsvdevyPNWdwnO7uop-fHp4_eLq8X1zef1xfn1wgop8sJQIVm1kqZmTmgoWyqFdKVhpmodZaLhAqA23Li21g2jFNGWCysrbkqLhFOynnVd0Ds1Rt_ruFdBe_V3EOJG6Zi97UA50dQN6FLjQmGdMVZCZZhbVW1V1Yyj1ttZa4zh14THqN4n9L7TA4QpKc5kw7nkDUXomzvoZHpwD4vvzUbA-xmAtqUUoVXWZ519GHLUvlOMqkO4aqfmcNUh3MMUw0Wy-Id8r_8E7cNMAzT81kNUyXoYLDgfMXV0xP9f4A-j28DF |
| CitedBy_id | crossref_primary_10_1002_iub_2179 crossref_primary_10_1083_jcb_201907067 crossref_primary_10_1016_j_expneurol_2020_113310 crossref_primary_10_1016_j_jep_2024_118621 crossref_primary_10_1053_j_jvca_2019_10_005 crossref_primary_10_1186_s12964_025_02350_5 crossref_primary_10_1007_s12264_023_01085_y crossref_primary_10_3389_fimmu_2022_889175 crossref_primary_10_1093_cei_uxac013 crossref_primary_10_1038_s41423_021_00780_y crossref_primary_10_1016_j_ebiom_2019_03_005 crossref_primary_10_1016_j_molmed_2021_09_004 crossref_primary_10_1016_j_pharmthera_2020_107521 crossref_primary_10_1016_j_cmet_2019_01_014 crossref_primary_10_1093_jleuko_qiac011 crossref_primary_10_1016_j_tibs_2024_06_003 crossref_primary_10_1155_2021_5568159 crossref_primary_10_1080_08820139_2024_2302828 crossref_primary_10_1038_s41598_024_54272_w crossref_primary_10_1084_jem_20240852 crossref_primary_10_2174_0929867328666210806105246 crossref_primary_10_1016_j_hbpd_2022_07_004 crossref_primary_10_1038_s41598_024_61493_6 crossref_primary_10_1098_rsob_200105 crossref_primary_10_1038_s41423_021_00791_9 crossref_primary_10_1161_CIRCRESAHA_124_323660 crossref_primary_10_1016_j_ijbiomac_2020_05_270 crossref_primary_10_1016_j_phrs_2021_105576 crossref_primary_10_1007_s11357_022_00555_x crossref_primary_10_1016_j_phrs_2021_105613 crossref_primary_10_1093_cvr_cvae250 crossref_primary_10_1161_CIRCRESAHA_119_315939 crossref_primary_10_3389_fimmu_2021_797091 crossref_primary_10_3390_cells9092081 crossref_primary_10_3389_fcvm_2022_1086136 crossref_primary_10_20900_immunometab20210018 crossref_primary_10_3389_fimmu_2019_01462 crossref_primary_10_4103_ijves_ijves_118_24 crossref_primary_10_1016_j_bbadis_2022_166427 crossref_primary_10_1038_s42255_022_00550_8 crossref_primary_10_1093_ehjopen_oead013 crossref_primary_10_1002_1873_3468_14474 crossref_primary_10_3390_life11010069 crossref_primary_10_1002_1878_0261_13588 crossref_primary_10_1126_sciimmunol_abd6279 crossref_primary_10_1016_j_cmet_2020_07_007 crossref_primary_10_1002_cbf_3934 crossref_primary_10_1128_IAI_00550_19 crossref_primary_10_1134_S0006297924050043 crossref_primary_10_1038_s42255_023_00800_3 crossref_primary_10_1093_cvr_cvz166 crossref_primary_10_1186_s13024_021_00479_8 crossref_primary_10_1096_fj_202300694R crossref_primary_10_3389_fcvm_2022_777822 crossref_primary_10_1111_febs_16191 crossref_primary_10_1016_j_chemosphere_2019_124810 crossref_primary_10_3389_fimmu_2023_1344697 crossref_primary_10_3390_ijms232213902 crossref_primary_10_26508_lsa_202101315 crossref_primary_10_3389_fcvm_2022_829877 crossref_primary_10_3389_fimmu_2021_748325 crossref_primary_10_1016_j_jep_2023_116946 crossref_primary_10_1111_febs_16465 crossref_primary_10_1038_s44161_024_00473_5 crossref_primary_10_1093_eurheartj_ehz283 crossref_primary_10_1038_s41467_020_20141_z crossref_primary_10_3389_fimmu_2022_1051514 crossref_primary_10_3389_fimmu_2022_880286 crossref_primary_10_3390_nu13030823 crossref_primary_10_1093_pnasnexus_pgaf100 crossref_primary_10_3390_cancers12061411 crossref_primary_10_1111_febs_15368 crossref_primary_10_1136_bmjdrc_2019_000751 crossref_primary_10_3389_fimmu_2022_936167 crossref_primary_10_1016_j_mce_2024_112340 crossref_primary_10_1038_s41467_021_26514_2 crossref_primary_10_1097_TA_0000000000004318 crossref_primary_10_1186_s12974_022_02423_z crossref_primary_10_3389_fimmu_2022_934040 crossref_primary_10_3389_fimmu_2021_669920 crossref_primary_10_1039_C9FO00201D crossref_primary_10_1159_000516780 crossref_primary_10_1161_CIRCRESAHA_120_316770 crossref_primary_10_7554_eLife_65109 crossref_primary_10_20900_immunometab20200001 crossref_primary_10_1016_j_clim_2022_109216 crossref_primary_10_20900_immunometab20200006 crossref_primary_10_1007_s10557_024_07545_5 crossref_primary_10_1155_2021_6652775 crossref_primary_10_1016_j_crmeth_2022_100192 crossref_primary_10_3390_cells11030404 crossref_primary_10_1186_s13046_023_02832_9 crossref_primary_10_3390_cancers13123054 crossref_primary_10_1016_j_atherosclerosis_2021_08_010 crossref_primary_10_1038_s41467_023_42918_8 crossref_primary_10_4049_jimmunol_2200178 crossref_primary_10_1007_s10787_024_01550_8 crossref_primary_10_1038_s41422_020_0291_z crossref_primary_10_3390_toxins12100621 crossref_primary_10_1016_j_cmet_2020_09_013 crossref_primary_10_3390_cells9030562 crossref_primary_10_1016_j_cytogfr_2019_11_006 crossref_primary_10_1093_cvr_cvz107 crossref_primary_10_3390_metabo10090372 crossref_primary_10_1017_S2040174423000260 crossref_primary_10_1007_s00109_019_01825_6 crossref_primary_10_4049_jimmunol_2300293 crossref_primary_10_1016_j_tem_2024_08_009 crossref_primary_10_3389_fendo_2020_00062 crossref_primary_10_1002_prp2_638 crossref_primary_10_1038_s42255_023_00863_2 crossref_primary_10_3389_fimmu_2023_1152881 crossref_primary_10_1016_j_mmm_2020_06_017 crossref_primary_10_1038_s41577_020_00478_8 crossref_primary_10_7554_eLife_59166 crossref_primary_10_3389_fimmu_2024_1444964 crossref_primary_10_1038_s41577_021_00584_1 crossref_primary_10_1038_s42255_022_00574_0 crossref_primary_10_1038_s41423_019_0216_2 crossref_primary_10_1038_s41467_021_23900_8 crossref_primary_10_1016_j_addr_2021_113960 crossref_primary_10_1016_j_pharmthera_2022_108208 crossref_primary_10_3390_v15122399 crossref_primary_10_1016_j_molcel_2022_02_028 |
| Cites_doi | 10.1016/j.immuni.2015.08.023 10.1093/eurheartj/ehx144 10.1093/bioinformatics/btp352 10.1093/bioinformatics/bts635 10.1161/CIRCRESAHA.109.215715 10.1038/ni.3796 10.1093/nar/gkv007 10.1371/journal.pone.0021746 10.1016/j.ccr.2012.05.016 10.1128/MCB.01591-09 10.1016/j.cmet.2016.06.004 10.1016/j.cell.2012.06.054 10.1371/journal.pcbi.1005752 10.1038/nri3520 10.1016/j.immuni.2011.12.007 10.1073/pnas.1218599110 10.1186/s13059-014-0550-8 10.1021/acs.jproteome.5b00354 10.1101/gr.2705204 10.1016/j.molcel.2006.11.022 10.3791/53424 10.1002/jcp.21495 10.1016/j.cell.2016.08.064 10.1056/NEJMoa1707914 10.1038/s41586-018-0052-z 10.1084/jem.20160061 10.1038/ncomms11624 10.1093/cvr/cvw176 10.1161/CIRCRESAHA.118.312804 10.1038/nrcardio.2015.92 10.3389/fimmu.2015.00164 10.1161/CIRCRESAHA.117.312509 10.1038/ncb3255 10.1006/bbrc.1997.6943 10.1016/j.molcel.2010.05.004 10.1016/j.it.2017.03.001 10.1038/nature25986 10.1038/nature11986 10.1016/j.celrep.2016.09.008 10.1016/j.immuni.2015.02.005 |
| ContentType | Journal Article |
| Copyright | 2018 The Authors Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2018 The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
| DOI | 10.1016/j.celrep.2018.10.092 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2211-1247 |
| EndPage | 2052.e5 |
| ExternalDocumentID | oai_doaj_org_article_d4969ea3a1584cdbbc7e5b1d85f55612 30463003 10_1016_j_celrep_2018_10_092 S2211124718316966 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Cancer Research UK grantid: 18644 |
| GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c474t-b0471587b61d4ae3f0747d3b1b5fd014924ee6b2bdf6a9100715c24c752b3cae3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 134 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000450794200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2211-1247 |
| IngestDate | Fri Oct 03 12:45:29 EDT 2025 Fri Sep 05 09:53:20 EDT 2025 Mon Jul 21 06:08:15 EDT 2025 Tue Nov 18 22:10:13 EST 2025 Wed Nov 05 20:56:03 EST 2025 Wed May 17 00:03:04 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | meta-inflammation foam cells atherosclerosis cardiovascular disease macrophages immunometabolism inflammation Nrf2 metabolic disease hypercholesterolemia pentose phosphate pathway |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-b0471587b61d4ae3f0747d3b1b5fd014924ee6b2bdf6a9100715c24c752b3cae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/d4969ea3a1584cdbbc7e5b1d85f55612 |
| PMID | 30463003 |
| PQID | 2179227290 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d4969ea3a1584cdbbc7e5b1d85f55612 proquest_miscellaneous_2179227290 pubmed_primary_30463003 crossref_citationtrail_10_1016_j_celrep_2018_10_092 crossref_primary_10_1016_j_celrep_2018_10_092 elsevier_sciencedirect_doi_10_1016_j_celrep_2018_10_092 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-20 |
| PublicationDateYYYYMMDD | 2018-11-20 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell reports (Cambridge) |
| PublicationTitleAlternate | Cell Rep |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Kim, Shim, Lee, Zaitsev, Williams, Kim, Jang, Jang, Yun, Lee (bib11) 2018; 123 Huminiecki, Wolfe (bib7) 2004; 14 Wickham (bib39) 2016 Mitsuishi, Taguchi, Kawatani, Shibata, Nukiwa, Aburatani, Yamamoto, Motohashi (bib22) 2012; 22 Norata, Caligiuri, Chavakis, Matarese, Netea, Nicoletti, O’Neill, Marelli-Berg (bib25) 2015; 43 Thévenot, Roux, Xu, Ezan, Junot (bib34) 2015; 14 Lin, Elf, Shan, Kang, Ji, Zhou, Hitosugi, Zhang, Zhang, Seo (bib15) 2015; 17 Love, Huber, Anders (bib18) 2014; 15 Cochain, Vafadarnejad, Arampatzi, Jaroslav, Winkels, Ley, Wolf, Saliba, Zernecke (bib2) 2018; 122 Mills, Ryan, Prag, Dikovskaya, Menon, Zaslona, Jedrychowski, Costa, Higgins, Hams (bib21) 2018; 556 Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib3) 2013; 29 Ritchie, Phipson, Wu, Hu, Law, Shi, Smyth (bib28) 2015; 43 Itoh, Chiba, Takahashi, Ishii, Igarashi, Katoh, Oyake, Hayashi, Satoh, Hatayama (bib8) 1997; 236 van der Windt, Everts, Chang, Curtis, Freitas, Amiel, Pearce, Pearce (bib38) 2012; 36 Kadl, Meher, Sharma, Lee, Doran, Johnstone, Elliott, Gruber, Han, Chen (bib10) 2010; 107 Reiner (bib26) 2015; 12 Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib14) 2009; 25 Ghisletti, Huang, Ogawa, Pascual, Lin, Willson, Rosenfeld, Glass (bib5) 2007; 25 Wu, Tyml, Wilson (bib40) 2008; 217 Liu, Wang, Li, Chao, Teav, Christen, Di Conza, Cheng, Chou, Vavakova (bib17) 2017; 18 Wüst, de Vries, Wintjes, Rodenburg, Niessen, Stienen (bib41) 2016; 111 Michelucci, Cordes, Ghelfi, Pailot, Reiling, Goldmann, Binz, Wegner, Tallam, Rausell (bib19) 2013; 110 Rogers, Brand, Petrosyan, Ashok, Elorza, Ferrick, Murphy (bib29) 2011; 6 Van den Bossche, Baardman, Otto, van der Velden, Neele, van den Berg, Luque-Martin, Chen, Boshuizen, Ahmed (bib36) 2016; 17 Taguchi, Maher, Suzuki, Kawatani, Motohashi, Yamamoto (bib32) 2010; 30 Nagy, Haschemi (bib24) 2015; 6 Tannahill, Curtis, Adamik, Palsson-McDermott, McGettrick, Goel, Frezza, Bernard, Kelly, Foley (bib33) 2013; 496 Kobayashi, Suzuki, Funayama, Nagashima, Hayashi, Sekine, Tanaka, Moriguchi, Motohashi, Nakayama, Yamamoto (bib12) 2016; 7 Van den Bossche, J., Baardman, J., and de Winther, M.P. (2015). Metabolic characterization of polarized M1 and M2 bone marrow-derived macrophages using real-time extracellular flux analysis. Published online November 28, 2015. 10.3791/53424.other Mills, Kelly, Logan, Costa, Varma, Bryant, Tourlomousis, Däbritz, Gottlieb, Latorre (bib20) 2016; 167 Heinz, Benner, Spann, Bertolino, Lin, Laslo, Cheng, Murre, Singh, Glass (bib6) 2010; 38 Lampropoulou, Sergushichev, Bambouskova, Nair, Vincent, Loginicheva, Cervantes-Barragan, Ma, Huang, Griss (bib13) 2016; 24 Spann, Garmire, McDonald, Myers, Milne, Shibata, Reichart, Fox, Shaked, Heudobler (bib31) 2012; 151 Ridker, Everett, Thuren, MacFadyen, Chang, Ballantyne, Fonseca, Nicolau, Koenig, Anker (bib27) 2017; 377 Jha, Huang, Sergushichev, Lampropoulou, Ivanova, Loginicheva, Chmielewski, Stewart, Ashall, Everts (bib9) 2015; 42 Littlewood-Evans, Sarret, Apfel, Loesle, Dawson, Zhang, Muller, Tigani, Kneuer, Patel (bib16) 2016; 213 Moore, Sheedy, Fisher (bib23) 2013; 13 Bambouskova, Gorvel, Lampropoulou, Sergushichev, Loginicheva, Johnson, Korenfeld, Mathyer, Kim, Huang (bib1) 2018; 556 Ference, Ginsberg, Graham, Ray, Packard, Bruckert, Hegele, Krauss, Raal, Schunkert (bib4) 2017; 38 Rohart, Gautier, Singh, Lê Cao (bib30) 2017; 13 Van den Bossche, O’Neill, Menon (bib37) 2017; 38 Wüst (10.1016/j.celrep.2018.10.092_bib41) 2016; 111 Rohart (10.1016/j.celrep.2018.10.092_bib30) 2017; 13 Norata (10.1016/j.celrep.2018.10.092_bib25) 2015; 43 Mitsuishi (10.1016/j.celrep.2018.10.092_bib22) 2012; 22 Moore (10.1016/j.celrep.2018.10.092_bib23) 2013; 13 Kobayashi (10.1016/j.celrep.2018.10.092_bib12) 2016; 7 Mills (10.1016/j.celrep.2018.10.092_bib21) 2018; 556 Ridker (10.1016/j.celrep.2018.10.092_bib27) 2017; 377 Cochain (10.1016/j.celrep.2018.10.092_bib2) 2018; 122 Li (10.1016/j.celrep.2018.10.092_bib14) 2009; 25 Kim (10.1016/j.celrep.2018.10.092_bib11) 2018; 123 Ritchie (10.1016/j.celrep.2018.10.092_bib28) 2015; 43 Tannahill (10.1016/j.celrep.2018.10.092_bib33) 2013; 496 Heinz (10.1016/j.celrep.2018.10.092_bib6) 2010; 38 Littlewood-Evans (10.1016/j.celrep.2018.10.092_bib16) 2016; 213 Bambouskova (10.1016/j.celrep.2018.10.092_bib1) 2018; 556 Wu (10.1016/j.celrep.2018.10.092_bib40) 2008; 217 Dobin (10.1016/j.celrep.2018.10.092_bib3) 2013; 29 Kadl (10.1016/j.celrep.2018.10.092_bib10) 2010; 107 Nagy (10.1016/j.celrep.2018.10.092_bib24) 2015; 6 Jha (10.1016/j.celrep.2018.10.092_bib9) 2015; 42 Liu (10.1016/j.celrep.2018.10.092_bib17) 2017; 18 van der Windt (10.1016/j.celrep.2018.10.092_bib38) 2012; 36 Van den Bossche (10.1016/j.celrep.2018.10.092_bib36) 2016; 17 Taguchi (10.1016/j.celrep.2018.10.092_bib32) 2010; 30 Love (10.1016/j.celrep.2018.10.092_bib18) 2014; 15 Michelucci (10.1016/j.celrep.2018.10.092_bib19) 2013; 110 Mills (10.1016/j.celrep.2018.10.092_bib20) 2016; 167 10.1016/j.celrep.2018.10.092_bib35 Spann (10.1016/j.celrep.2018.10.092_bib31) 2012; 151 Van den Bossche (10.1016/j.celrep.2018.10.092_bib37) 2017; 38 Ghisletti (10.1016/j.celrep.2018.10.092_bib5) 2007; 25 Lin (10.1016/j.celrep.2018.10.092_bib15) 2015; 17 Wickham (10.1016/j.celrep.2018.10.092_bib39) 2016 Lampropoulou (10.1016/j.celrep.2018.10.092_bib13) 2016; 24 Ference (10.1016/j.celrep.2018.10.092_bib4) 2017; 38 Thévenot (10.1016/j.celrep.2018.10.092_bib34) 2015; 14 Itoh (10.1016/j.celrep.2018.10.092_bib8) 1997; 236 Reiner (10.1016/j.celrep.2018.10.092_bib26) 2015; 12 Huminiecki (10.1016/j.celrep.2018.10.092_bib7) 2004; 14 Rogers (10.1016/j.celrep.2018.10.092_bib29) 2011; 6 |
| References_xml | – volume: 43 start-page: e47 year: 2015 ident: bib28 article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies publication-title: Nucleic Acids Res. – volume: 17 start-page: 684 year: 2016 end-page: 696 ident: bib36 article-title: Mitochondrial dysfunction prevents repolarization of inflammatory macrophages publication-title: Cell Rep. – volume: 13 start-page: e1005752 year: 2017 ident: bib30 article-title: mixOmics: An R package for 'omics feature selection and multiple data integration publication-title: PLoS Comput. Biol. – volume: 25 start-page: 2078 year: 2009 end-page: 2079 ident: bib14 article-title: The sequence alignment/map format and SAMtools publication-title: Bioinformatics – volume: 107 start-page: 737 year: 2010 end-page: 746 ident: bib10 article-title: Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2 publication-title: Circ. Res. – volume: 15 start-page: 550 year: 2014 ident: bib18 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. – volume: 43 start-page: 421 year: 2015 end-page: 434 ident: bib25 article-title: The cellular and molecular basis of translational immunometabolism publication-title: Immunity – volume: 22 start-page: 66 year: 2012 end-page: 79 ident: bib22 article-title: Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming publication-title: Cancer Cell – volume: 14 start-page: 3322 year: 2015 end-page: 3335 ident: bib34 article-title: Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses publication-title: J. Proteome Res. – volume: 556 start-page: 501 year: 2018 end-page: 504 ident: bib1 article-title: Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 inflammatory axis publication-title: Nature – volume: 24 start-page: 158 year: 2016 end-page: 166 ident: bib13 article-title: Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation publication-title: Cell Metab. – volume: 217 start-page: 207 year: 2008 end-page: 214 ident: bib40 article-title: iNOS expression requires NADPH oxidase-dependent redox signaling in microvascular endothelial cells publication-title: J. Cell. Physiol. – volume: 213 start-page: 1655 year: 2016 end-page: 1662 ident: bib16 article-title: GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis publication-title: J. Exp. Med. – volume: 151 start-page: 138 year: 2012 end-page: 152 ident: bib31 article-title: Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses publication-title: Cell – volume: 12 start-page: 565 year: 2015 end-page: 575 ident: bib26 article-title: Management of patients with familial hypercholesterolaemia publication-title: Nat. Rev. Cardiol. – volume: 25 start-page: 57 year: 2007 end-page: 70 ident: bib5 article-title: Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma publication-title: Mol. Cell – volume: 7 start-page: 11624 year: 2016 ident: bib12 article-title: Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription publication-title: Nat. Commun. – volume: 123 start-page: 1127 year: 2018 end-page: 1142 ident: bib11 article-title: Transcriptome Analysis Reveals Non-Foamy Rather than Foamy Plaque Macrophages Are Pro-Inflammatory in Atherosclerotic Murine Models publication-title: Circ. Res. – volume: 17 start-page: 1484 year: 2015 end-page: 1496 ident: bib15 article-title: 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling publication-title: Nat. Cell Biol. – volume: 13 start-page: 709 year: 2013 end-page: 721 ident: bib23 article-title: Macrophages in atherosclerosis: a dynamic balance publication-title: Nat. Rev. Immunol. – volume: 6 start-page: 164 year: 2015 ident: bib24 article-title: Time and demand are two critical dimensions of immunometabolism: the process of macrophage activation and the pentose phosphate pathway publication-title: Front. Immunol. – volume: 36 start-page: 68 year: 2012 end-page: 78 ident: bib38 article-title: Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development publication-title: Immunity – volume: 110 start-page: 7820 year: 2013 end-page: 7825 ident: bib19 article-title: Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production publication-title: Proc. Natl. Acad. Sci. USA – volume: 122 start-page: 1661 year: 2018 end-page: 1674 ident: bib2 article-title: Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis publication-title: Circ. Res. – volume: 377 start-page: 1119 year: 2017 end-page: 1131 ident: bib27 article-title: Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease publication-title: N. Engl. J. Med. – volume: 6 start-page: e21746 year: 2011 ident: bib29 article-title: High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria publication-title: PLoS ONE – volume: 18 start-page: 985 year: 2017 end-page: 994 ident: bib17 article-title: α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming publication-title: Nat. Immunol. – volume: 167 start-page: 457 year: 2016 end-page: 470.e13 ident: bib20 article-title: Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages publication-title: Cell – year: 2016 ident: bib39 article-title: ggplot2: Elegant Graphics for Data Analysis – volume: 111 start-page: 362 year: 2016 end-page: 372 ident: bib41 article-title: Mitochondrial complex I dysfunction and altered NAD(P)H kinetics in rat myocardium in cardiac right ventricular hypertrophy and failure publication-title: Cardiovasc. Res. – volume: 38 start-page: 395 year: 2017 end-page: 406 ident: bib37 article-title: Macrophage immunometabolism: where are we (going)? publication-title: Trends Immunol. – volume: 29 start-page: 15 year: 2013 end-page: 21 ident: bib3 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics – volume: 236 start-page: 313 year: 1997 end-page: 322 ident: bib8 article-title: An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements publication-title: Biochem. Biophys. Res. Commun. – reference: Van den Bossche, J., Baardman, J., and de Winther, M.P. (2015). Metabolic characterization of polarized M1 and M2 bone marrow-derived macrophages using real-time extracellular flux analysis. Published online November 28, 2015. 10.3791/53424.other – volume: 38 start-page: 2459 year: 2017 end-page: 2472 ident: bib4 article-title: Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel publication-title: Eur. Heart J. – volume: 38 start-page: 576 year: 2010 end-page: 589 ident: bib6 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities publication-title: Mol. Cell – volume: 14 start-page: 1870 year: 2004 end-page: 1879 ident: bib7 article-title: Divergence of spatial gene expression profiles following species-specific gene duplications in human and mouse publication-title: Genome Res. – volume: 496 start-page: 238 year: 2013 end-page: 242 ident: bib33 article-title: Succinate is an inflammatory signal that induces IL-1β through HIF-1α publication-title: Nature – volume: 30 start-page: 3016 year: 2010 end-page: 3026 ident: bib32 article-title: Genetic analysis of cytoprotective functions supported by graded expression of Keap1 publication-title: Mol. Cell. Biol. – volume: 42 start-page: 419 year: 2015 end-page: 430 ident: bib9 article-title: Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization publication-title: Immunity – volume: 556 start-page: 113 year: 2018 end-page: 117 ident: bib21 article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1 publication-title: Nature – volume: 43 start-page: 421 year: 2015 ident: 10.1016/j.celrep.2018.10.092_bib25 article-title: The cellular and molecular basis of translational immunometabolism publication-title: Immunity doi: 10.1016/j.immuni.2015.08.023 – volume: 38 start-page: 2459 year: 2017 ident: 10.1016/j.celrep.2018.10.092_bib4 article-title: Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehx144 – volume: 25 start-page: 2078 year: 2009 ident: 10.1016/j.celrep.2018.10.092_bib14 article-title: The sequence alignment/map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 29 start-page: 15 year: 2013 ident: 10.1016/j.celrep.2018.10.092_bib3 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 107 start-page: 737 year: 2010 ident: 10.1016/j.celrep.2018.10.092_bib10 article-title: Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.109.215715 – volume: 18 start-page: 985 year: 2017 ident: 10.1016/j.celrep.2018.10.092_bib17 article-title: α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming publication-title: Nat. Immunol. doi: 10.1038/ni.3796 – volume: 43 start-page: e47 year: 2015 ident: 10.1016/j.celrep.2018.10.092_bib28 article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv007 – volume: 6 start-page: e21746 year: 2011 ident: 10.1016/j.celrep.2018.10.092_bib29 article-title: High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria publication-title: PLoS ONE doi: 10.1371/journal.pone.0021746 – volume: 22 start-page: 66 year: 2012 ident: 10.1016/j.celrep.2018.10.092_bib22 article-title: Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.05.016 – volume: 30 start-page: 3016 year: 2010 ident: 10.1016/j.celrep.2018.10.092_bib32 article-title: Genetic analysis of cytoprotective functions supported by graded expression of Keap1 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01591-09 – volume: 24 start-page: 158 year: 2016 ident: 10.1016/j.celrep.2018.10.092_bib13 article-title: Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.06.004 – volume: 151 start-page: 138 year: 2012 ident: 10.1016/j.celrep.2018.10.092_bib31 article-title: Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses publication-title: Cell doi: 10.1016/j.cell.2012.06.054 – volume: 13 start-page: e1005752 year: 2017 ident: 10.1016/j.celrep.2018.10.092_bib30 article-title: mixOmics: An R package for 'omics feature selection and multiple data integration publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005752 – volume: 13 start-page: 709 year: 2013 ident: 10.1016/j.celrep.2018.10.092_bib23 article-title: Macrophages in atherosclerosis: a dynamic balance publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3520 – year: 2016 ident: 10.1016/j.celrep.2018.10.092_bib39 – volume: 36 start-page: 68 year: 2012 ident: 10.1016/j.celrep.2018.10.092_bib38 article-title: Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development publication-title: Immunity doi: 10.1016/j.immuni.2011.12.007 – volume: 110 start-page: 7820 year: 2013 ident: 10.1016/j.celrep.2018.10.092_bib19 article-title: Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1218599110 – volume: 15 start-page: 550 year: 2014 ident: 10.1016/j.celrep.2018.10.092_bib18 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 14 start-page: 3322 year: 2015 ident: 10.1016/j.celrep.2018.10.092_bib34 article-title: Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.5b00354 – volume: 14 start-page: 1870 issue: 10A year: 2004 ident: 10.1016/j.celrep.2018.10.092_bib7 article-title: Divergence of spatial gene expression profiles following species-specific gene duplications in human and mouse publication-title: Genome Res. doi: 10.1101/gr.2705204 – volume: 25 start-page: 57 year: 2007 ident: 10.1016/j.celrep.2018.10.092_bib5 article-title: Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.11.022 – ident: 10.1016/j.celrep.2018.10.092_bib35 doi: 10.3791/53424 – volume: 217 start-page: 207 year: 2008 ident: 10.1016/j.celrep.2018.10.092_bib40 article-title: iNOS expression requires NADPH oxidase-dependent redox signaling in microvascular endothelial cells publication-title: J. Cell. Physiol. doi: 10.1002/jcp.21495 – volume: 167 start-page: 457 year: 2016 ident: 10.1016/j.celrep.2018.10.092_bib20 article-title: Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages publication-title: Cell doi: 10.1016/j.cell.2016.08.064 – volume: 377 start-page: 1119 year: 2017 ident: 10.1016/j.celrep.2018.10.092_bib27 article-title: Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1707914 – volume: 556 start-page: 501 year: 2018 ident: 10.1016/j.celrep.2018.10.092_bib1 article-title: Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 inflammatory axis publication-title: Nature doi: 10.1038/s41586-018-0052-z – volume: 213 start-page: 1655 year: 2016 ident: 10.1016/j.celrep.2018.10.092_bib16 article-title: GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis publication-title: J. Exp. Med. doi: 10.1084/jem.20160061 – volume: 7 start-page: 11624 year: 2016 ident: 10.1016/j.celrep.2018.10.092_bib12 article-title: Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription publication-title: Nat. Commun. doi: 10.1038/ncomms11624 – volume: 111 start-page: 362 year: 2016 ident: 10.1016/j.celrep.2018.10.092_bib41 article-title: Mitochondrial complex I dysfunction and altered NAD(P)H kinetics in rat myocardium in cardiac right ventricular hypertrophy and failure publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvw176 – volume: 123 start-page: 1127 year: 2018 ident: 10.1016/j.celrep.2018.10.092_bib11 article-title: Transcriptome Analysis Reveals Non-Foamy Rather than Foamy Plaque Macrophages Are Pro-Inflammatory in Atherosclerotic Murine Models publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.118.312804 – volume: 12 start-page: 565 year: 2015 ident: 10.1016/j.celrep.2018.10.092_bib26 article-title: Management of patients with familial hypercholesterolaemia publication-title: Nat. Rev. Cardiol. doi: 10.1038/nrcardio.2015.92 – volume: 6 start-page: 164 year: 2015 ident: 10.1016/j.celrep.2018.10.092_bib24 article-title: Time and demand are two critical dimensions of immunometabolism: the process of macrophage activation and the pentose phosphate pathway publication-title: Front. Immunol. doi: 10.3389/fimmu.2015.00164 – volume: 122 start-page: 1661 year: 2018 ident: 10.1016/j.celrep.2018.10.092_bib2 article-title: Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.117.312509 – volume: 17 start-page: 1484 year: 2015 ident: 10.1016/j.celrep.2018.10.092_bib15 article-title: 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling publication-title: Nat. Cell Biol. doi: 10.1038/ncb3255 – volume: 236 start-page: 313 year: 1997 ident: 10.1016/j.celrep.2018.10.092_bib8 article-title: An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1997.6943 – volume: 38 start-page: 576 year: 2010 ident: 10.1016/j.celrep.2018.10.092_bib6 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.05.004 – volume: 38 start-page: 395 year: 2017 ident: 10.1016/j.celrep.2018.10.092_bib37 article-title: Macrophage immunometabolism: where are we (going)? publication-title: Trends Immunol. doi: 10.1016/j.it.2017.03.001 – volume: 556 start-page: 113 year: 2018 ident: 10.1016/j.celrep.2018.10.092_bib21 article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1 publication-title: Nature doi: 10.1038/nature25986 – volume: 496 start-page: 238 year: 2013 ident: 10.1016/j.celrep.2018.10.092_bib33 article-title: Succinate is an inflammatory signal that induces IL-1β through HIF-1α publication-title: Nature doi: 10.1038/nature11986 – volume: 17 start-page: 684 year: 2016 ident: 10.1016/j.celrep.2018.10.092_bib36 article-title: Mitochondrial dysfunction prevents repolarization of inflammatory macrophages publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.09.008 – volume: 42 start-page: 419 year: 2015 ident: 10.1016/j.celrep.2018.10.092_bib9 article-title: Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization publication-title: Immunity doi: 10.1016/j.immuni.2015.02.005 |
| SSID | ssj0000601194 |
| Score | 2.57235 |
| Snippet | Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and... |
| SourceID | doaj proquest pubmed crossref elsevier |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2044 |
| SubjectTerms | Animals atherosclerosis cardiovascular disease Citric Acid Cycle - drug effects Female foam cells Glycolysis - drug effects hypercholesterolemia Hypercholesterolemia - metabolism Hypercholesterolemia - pathology immunometabolism inflammation Inflammation - pathology Lipopolysaccharides - pharmacology macrophages Macrophages - drug effects Macrophages - metabolism Macrophages - pathology Male meta-inflammation metabolic disease Mice, Inbred C57BL NF-E2-Related Factor 2 - metabolism Nrf2 pentose phosphate pathway Pentose Phosphate Pathway - drug effects |
| Title | A Defective Pentose Phosphate Pathway Reduces Inflammatory Macrophage Responses during Hypercholesterolemia |
| URI | https://dx.doi.org/10.1016/j.celrep.2018.10.092 https://www.ncbi.nlm.nih.gov/pubmed/30463003 https://www.proquest.com/docview/2179227290 https://doaj.org/article/d4969ea3a1584cdbbc7e5b1d85f55612 |
| Volume | 25 |
| WOSCitedRecordID | wos000450794200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagAolLxbtboDIS10DsOHF8bAtVkaBaIUB7s_zULrTZarMt6r9nxk5W7QHthZMlx05GnvE84vE3hLwTVRmjKX3h2jIWoqlC0bpKFrUNjTDOM5l-uP38Is_O2tlMTW-V-sKcsAwPnBfugxeqUcFUhoGpdN5aJ0NtmW_rmCo7ovYtpboVTGUdjFhmeKTMOeZscSHHe3MpucuF81VAuErWvsfkLsXv2KUE33_HPP3L_Uxm6OQx2R38R3qY6X5C7oXuKXmYK0rePCO_D-nHELMSo1MwKMse2vmyv5yDU0mn4O_9MTf0GwK2hp5-7iJIxEU6aadfDZbzmoOCgecpcxZG5GuM9BTC1RVqygSsAM3FwjwnP04-fT8-LYZ6CoUTUqwLW4IlqltpG-aFCVVE8HxfWWbr6DFU4iKExnLrY2MUpk-w2nHhZM1t5WDCC7LTLbuwR6iMXkWIvZiJTETPDV6Ksp41nkOAEtWEVONqajeAjWPNi3M9ZpX90pkHGnmAvcCDCSk2sy4z2MaW8UfIqM1YhMpOHSBAehAgvU2AJkSObNaD15G9CXjVYsvn345SoWFT4kmL6cLyqtcQ5ynOIW4pJ-RlFpcNkQmjDXTp_v8g_hV5hATh5UheviY769VVeEMeuOv1ol8dkPty1h6knfEXMbQRjw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Defective+Pentose+Phosphate+Pathway+Reduces+Inflammatory+Macrophage+Responses+during+Hypercholesterolemia&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Baardman%2C+Jeroen&rft.au=Verberk%2C+Sanne+G+S&rft.au=Prange%2C+Koen+H+M&rft.au=van+Weeghel%2C+Michel&rft.date=2018-11-20&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=25&rft.issue=8&rft.spage=2044&rft_id=info:doi/10.1016%2Fj.celrep.2018.10.092&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |