A Defective Pentose Phosphate Pathway Reduces Inflammatory Macrophage Responses during Hypercholesterolemia

Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and function remains to be investigated. To investigate the effect of dyslipidemia on immune cell metabolism, we performed in-depth transcriptional, met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports (Cambridge) Jg. 25; H. 8; S. 2044 - 2052.e5
Hauptverfasser: Baardman, Jeroen, Verberk, Sanne G.S., Prange, Koen H.M., van Weeghel, Michel, van der Velden, Saskia, Ryan, Dylan G., Wüst, Rob C.I., Neele, Annette E., Speijer, Dave, Denis, Simone W., Witte, Maarten E., Houtkooper, Riekelt H., O’neill, Luke A., Knatko, Elena V., Dinkova-Kostova, Albena T., Lutgens, Esther, de Winther, Menno P.J., Van den Bossche, Jan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 20.11.2018
Elsevier
Schlagworte:
ISSN:2211-1247, 2211-1247
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and function remains to be investigated. To investigate the effect of dyslipidemia on immune cell metabolism, we performed in-depth transcriptional, metabolic, and functional characterization of macrophages isolated from hypercholesterolemic mice. Systemic metabolic changes in such mice alter cellular macrophage metabolism and attenuate inflammatory macrophage responses. In addition to diminished maximal mitochondrial respiration, hypercholesterolemia reduces the LPS-mediated induction of the pentose phosphate pathway (PPP) and the Nrf2-mediated oxidative stress response. Our observation that suppression of the PPP diminishes LPS-induced cytokine secretion supports the notion that this pathway contributes to inflammatory macrophage responses. Overall, this study reveals that systemic and cellular metabolism are strongly interconnected, together dictating macrophage phenotype and function. [Display omitted] •Systemic metabolism affects immune cell metabolism•Hypercholesterolemia suppresses the PPP and Nrf2 pathway in macrophages•PPP inhibition and hypercholesterolemia deactivate inflammatory macrophage responses•The Nrf2 pathway regulates the PPP in an LXR-independent manner The link between systemic and cellular metabolism is a neglected aspect in immunometabolism. Baardman et al. show that hypercholesterolemia alters macrophage metabolism and phenotype. The suppressed pentose phosphate pathway (PPP) in those “foam cell” macrophages attenuates inflammatory responses, signifying that systemic and cellular metabolism together regulate macrophage function.
AbstractList Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and function remains to be investigated. To investigate the effect of dyslipidemia on immune cell metabolism, we performed in-depth transcriptional, metabolic, and functional characterization of macrophages isolated from hypercholesterolemic mice. Systemic metabolic changes in such mice alter cellular macrophage metabolism and attenuate inflammatory macrophage responses. In addition to diminished maximal mitochondrial respiration, hypercholesterolemia reduces the LPS-mediated induction of the pentose phosphate pathway (PPP) and the Nrf2-mediated oxidative stress response. Our observation that suppression of the PPP diminishes LPS-induced cytokine secretion supports the notion that this pathway contributes to inflammatory macrophage responses. Overall, this study reveals that systemic and cellular metabolism are strongly interconnected, together dictating macrophage phenotype and function. [Display omitted] •Systemic metabolism affects immune cell metabolism•Hypercholesterolemia suppresses the PPP and Nrf2 pathway in macrophages•PPP inhibition and hypercholesterolemia deactivate inflammatory macrophage responses•The Nrf2 pathway regulates the PPP in an LXR-independent manner The link between systemic and cellular metabolism is a neglected aspect in immunometabolism. Baardman et al. show that hypercholesterolemia alters macrophage metabolism and phenotype. The suppressed pentose phosphate pathway (PPP) in those “foam cell” macrophages attenuates inflammatory responses, signifying that systemic and cellular metabolism together regulate macrophage function.
Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and function remains to be investigated. To investigate the effect of dyslipidemia on immune cell metabolism, we performed in-depth transcriptional, metabolic, and functional characterization of macrophages isolated from hypercholesterolemic mice. Systemic metabolic changes in such mice alter cellular macrophage metabolism and attenuate inflammatory macrophage responses. In addition to diminished maximal mitochondrial respiration, hypercholesterolemia reduces the LPS-mediated induction of the pentose phosphate pathway (PPP) and the Nrf2-mediated oxidative stress response. Our observation that suppression of the PPP diminishes LPS-induced cytokine secretion supports the notion that this pathway contributes to inflammatory macrophage responses. Overall, this study reveals that systemic and cellular metabolism are strongly interconnected, together dictating macrophage phenotype and function.
Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and function remains to be investigated. To investigate the effect of dyslipidemia on immune cell metabolism, we performed in-depth transcriptional, metabolic, and functional characterization of macrophages isolated from hypercholesterolemic mice. Systemic metabolic changes in such mice alter cellular macrophage metabolism and attenuate inflammatory macrophage responses. In addition to diminished maximal mitochondrial respiration, hypercholesterolemia reduces the LPS-mediated induction of the pentose phosphate pathway (PPP) and the Nrf2-mediated oxidative stress response. Our observation that suppression of the PPP diminishes LPS-induced cytokine secretion supports the notion that this pathway contributes to inflammatory macrophage responses. Overall, this study reveals that systemic and cellular metabolism are strongly interconnected, together dictating macrophage phenotype and function.Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and function remains to be investigated. To investigate the effect of dyslipidemia on immune cell metabolism, we performed in-depth transcriptional, metabolic, and functional characterization of macrophages isolated from hypercholesterolemic mice. Systemic metabolic changes in such mice alter cellular macrophage metabolism and attenuate inflammatory macrophage responses. In addition to diminished maximal mitochondrial respiration, hypercholesterolemia reduces the LPS-mediated induction of the pentose phosphate pathway (PPP) and the Nrf2-mediated oxidative stress response. Our observation that suppression of the PPP diminishes LPS-induced cytokine secretion supports the notion that this pathway contributes to inflammatory macrophage responses. Overall, this study reveals that systemic and cellular metabolism are strongly interconnected, together dictating macrophage phenotype and function.
Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and function remains to be investigated. To investigate the effect of dyslipidemia on immune cell metabolism, we performed in-depth transcriptional, metabolic, and functional characterization of macrophages isolated from hypercholesterolemic mice. Systemic metabolic changes in such mice alter cellular macrophage metabolism and attenuate inflammatory macrophage responses. In addition to diminished maximal mitochondrial respiration, hypercholesterolemia reduces the LPS-mediated induction of the pentose phosphate pathway (PPP) and the Nrf2-mediated oxidative stress response. Our observation that suppression of the PPP diminishes LPS-induced cytokine secretion supports the notion that this pathway contributes to inflammatory macrophage responses. Overall, this study reveals that systemic and cellular metabolism are strongly interconnected, together dictating macrophage phenotype and function. : The link between systemic and cellular metabolism is a neglected aspect in immunometabolism. Baardman et al. show that hypercholesterolemia alters macrophage metabolism and phenotype. The suppressed pentose phosphate pathway (PPP) in those “foam cell” macrophages attenuates inflammatory responses, signifying that systemic and cellular metabolism together regulate macrophage function. Keywords: immunometabolism, inflammation, macrophages, hypercholesterolemia, pentose phosphate pathway, Nrf2, meta-inflammation, foam cells, atherosclerosis, cardiovascular disease, metabolic disease
Author Denis, Simone W.
van Weeghel, Michel
Wüst, Rob C.I.
Witte, Maarten E.
Neele, Annette E.
O’neill, Luke A.
de Winther, Menno P.J.
Speijer, Dave
Van den Bossche, Jan
Lutgens, Esther
van der Velden, Saskia
Houtkooper, Riekelt H.
Verberk, Sanne G.S.
Ryan, Dylan G.
Prange, Koen H.M.
Baardman, Jeroen
Knatko, Elena V.
Dinkova-Kostova, Albena T.
Author_xml – sequence: 1
  givenname: Jeroen
  surname: Baardman
  fullname: Baardman, Jeroen
  organization: Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
– sequence: 2
  givenname: Sanne G.S.
  surname: Verberk
  fullname: Verberk, Sanne G.S.
  organization: Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
– sequence: 3
  givenname: Koen H.M.
  surname: Prange
  fullname: Prange, Koen H.M.
  organization: Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
– sequence: 4
  givenname: Michel
  surname: van Weeghel
  fullname: van Weeghel, Michel
  organization: Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
– sequence: 5
  givenname: Saskia
  surname: van der Velden
  fullname: van der Velden, Saskia
  organization: Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
– sequence: 6
  givenname: Dylan G.
  surname: Ryan
  fullname: Ryan, Dylan G.
  organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
– sequence: 7
  givenname: Rob C.I.
  surname: Wüst
  fullname: Wüst, Rob C.I.
  organization: Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
– sequence: 8
  givenname: Annette E.
  surname: Neele
  fullname: Neele, Annette E.
  organization: Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
– sequence: 9
  givenname: Dave
  surname: Speijer
  fullname: Speijer, Dave
  organization: Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
– sequence: 10
  givenname: Simone W.
  surname: Denis
  fullname: Denis, Simone W.
  organization: Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
– sequence: 11
  givenname: Maarten E.
  surname: Witte
  fullname: Witte, Maarten E.
  organization: Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
– sequence: 12
  givenname: Riekelt H.
  surname: Houtkooper
  fullname: Houtkooper, Riekelt H.
  organization: Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
– sequence: 13
  givenname: Luke A.
  surname: O’neill
  fullname: O’neill, Luke A.
  organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
– sequence: 14
  givenname: Elena V.
  surname: Knatko
  fullname: Knatko, Elena V.
  organization: Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
– sequence: 15
  givenname: Albena T.
  surname: Dinkova-Kostova
  fullname: Dinkova-Kostova, Albena T.
  organization: Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
– sequence: 16
  givenname: Esther
  surname: Lutgens
  fullname: Lutgens, Esther
  organization: Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
– sequence: 17
  givenname: Menno P.J.
  surname: de Winther
  fullname: de Winther, Menno P.J.
  organization: Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
– sequence: 18
  givenname: Jan
  surname: Van den Bossche
  fullname: Van den Bossche, Jan
  email: j.vandenbossche@vumc.nl
  organization: Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30463003$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v1DAQtVARLaX_AKEcuexiO0684YBUtUBXKipCcLb8Mdn1ksTBdor23zNL2qriQH2Z0fi9N5r3XpKjIQxAyGtGl4yy-t1uaaGLMC45ZSscLWnDn5ETzhlbMC7k0aP-mJyltKP4aspYI16Q45KKuqS0PCE_z4tLaMFmfwvFVxhySFi3IY1bnbHTeftb74tv4CYLqVgPbaf7XucQ98UXbWNA3AbwP41hSIhwU_TDprjajxDtNnSQMkQsvdevyPNWdwnO7uop-fHp4_eLq8X1zef1xfn1wgop8sJQIVm1kqZmTmgoWyqFdKVhpmodZaLhAqA23Li21g2jFNGWCysrbkqLhFOynnVd0Ds1Rt_ruFdBe_V3EOJG6Zi97UA50dQN6FLjQmGdMVZCZZhbVW1V1Yyj1ttZa4zh14THqN4n9L7TA4QpKc5kw7nkDUXomzvoZHpwD4vvzUbA-xmAtqUUoVXWZ519GHLUvlOMqkO4aqfmcNUh3MMUw0Wy-Id8r_8E7cNMAzT81kNUyXoYLDgfMXV0xP9f4A-j28DF
CitedBy_id crossref_primary_10_1002_iub_2179
crossref_primary_10_1083_jcb_201907067
crossref_primary_10_1016_j_expneurol_2020_113310
crossref_primary_10_1016_j_jep_2024_118621
crossref_primary_10_1053_j_jvca_2019_10_005
crossref_primary_10_1186_s12964_025_02350_5
crossref_primary_10_1007_s12264_023_01085_y
crossref_primary_10_3389_fimmu_2022_889175
crossref_primary_10_1093_cei_uxac013
crossref_primary_10_1038_s41423_021_00780_y
crossref_primary_10_1016_j_ebiom_2019_03_005
crossref_primary_10_1016_j_molmed_2021_09_004
crossref_primary_10_1016_j_pharmthera_2020_107521
crossref_primary_10_1016_j_cmet_2019_01_014
crossref_primary_10_1093_jleuko_qiac011
crossref_primary_10_1016_j_tibs_2024_06_003
crossref_primary_10_1155_2021_5568159
crossref_primary_10_1080_08820139_2024_2302828
crossref_primary_10_1038_s41598_024_54272_w
crossref_primary_10_1084_jem_20240852
crossref_primary_10_2174_0929867328666210806105246
crossref_primary_10_1016_j_hbpd_2022_07_004
crossref_primary_10_1038_s41598_024_61493_6
crossref_primary_10_1098_rsob_200105
crossref_primary_10_1038_s41423_021_00791_9
crossref_primary_10_1161_CIRCRESAHA_124_323660
crossref_primary_10_1016_j_ijbiomac_2020_05_270
crossref_primary_10_1016_j_phrs_2021_105576
crossref_primary_10_1007_s11357_022_00555_x
crossref_primary_10_1016_j_phrs_2021_105613
crossref_primary_10_1093_cvr_cvae250
crossref_primary_10_1161_CIRCRESAHA_119_315939
crossref_primary_10_3389_fimmu_2021_797091
crossref_primary_10_3390_cells9092081
crossref_primary_10_3389_fcvm_2022_1086136
crossref_primary_10_20900_immunometab20210018
crossref_primary_10_3389_fimmu_2019_01462
crossref_primary_10_4103_ijves_ijves_118_24
crossref_primary_10_1016_j_bbadis_2022_166427
crossref_primary_10_1038_s42255_022_00550_8
crossref_primary_10_1093_ehjopen_oead013
crossref_primary_10_1002_1873_3468_14474
crossref_primary_10_3390_life11010069
crossref_primary_10_1002_1878_0261_13588
crossref_primary_10_1126_sciimmunol_abd6279
crossref_primary_10_1016_j_cmet_2020_07_007
crossref_primary_10_1002_cbf_3934
crossref_primary_10_1128_IAI_00550_19
crossref_primary_10_1134_S0006297924050043
crossref_primary_10_1038_s42255_023_00800_3
crossref_primary_10_1093_cvr_cvz166
crossref_primary_10_1186_s13024_021_00479_8
crossref_primary_10_1096_fj_202300694R
crossref_primary_10_3389_fcvm_2022_777822
crossref_primary_10_1111_febs_16191
crossref_primary_10_1016_j_chemosphere_2019_124810
crossref_primary_10_3389_fimmu_2023_1344697
crossref_primary_10_3390_ijms232213902
crossref_primary_10_26508_lsa_202101315
crossref_primary_10_3389_fcvm_2022_829877
crossref_primary_10_3389_fimmu_2021_748325
crossref_primary_10_1016_j_jep_2023_116946
crossref_primary_10_1111_febs_16465
crossref_primary_10_1038_s44161_024_00473_5
crossref_primary_10_1093_eurheartj_ehz283
crossref_primary_10_1038_s41467_020_20141_z
crossref_primary_10_3389_fimmu_2022_1051514
crossref_primary_10_3389_fimmu_2022_880286
crossref_primary_10_3390_nu13030823
crossref_primary_10_1093_pnasnexus_pgaf100
crossref_primary_10_3390_cancers12061411
crossref_primary_10_1111_febs_15368
crossref_primary_10_1136_bmjdrc_2019_000751
crossref_primary_10_3389_fimmu_2022_936167
crossref_primary_10_1016_j_mce_2024_112340
crossref_primary_10_1038_s41467_021_26514_2
crossref_primary_10_1097_TA_0000000000004318
crossref_primary_10_1186_s12974_022_02423_z
crossref_primary_10_3389_fimmu_2022_934040
crossref_primary_10_3389_fimmu_2021_669920
crossref_primary_10_1039_C9FO00201D
crossref_primary_10_1159_000516780
crossref_primary_10_1161_CIRCRESAHA_120_316770
crossref_primary_10_7554_eLife_65109
crossref_primary_10_20900_immunometab20200001
crossref_primary_10_1016_j_clim_2022_109216
crossref_primary_10_20900_immunometab20200006
crossref_primary_10_1007_s10557_024_07545_5
crossref_primary_10_1155_2021_6652775
crossref_primary_10_1016_j_crmeth_2022_100192
crossref_primary_10_3390_cells11030404
crossref_primary_10_1186_s13046_023_02832_9
crossref_primary_10_3390_cancers13123054
crossref_primary_10_1016_j_atherosclerosis_2021_08_010
crossref_primary_10_1038_s41467_023_42918_8
crossref_primary_10_4049_jimmunol_2200178
crossref_primary_10_1007_s10787_024_01550_8
crossref_primary_10_1038_s41422_020_0291_z
crossref_primary_10_3390_toxins12100621
crossref_primary_10_1016_j_cmet_2020_09_013
crossref_primary_10_3390_cells9030562
crossref_primary_10_1016_j_cytogfr_2019_11_006
crossref_primary_10_1093_cvr_cvz107
crossref_primary_10_3390_metabo10090372
crossref_primary_10_1017_S2040174423000260
crossref_primary_10_1007_s00109_019_01825_6
crossref_primary_10_4049_jimmunol_2300293
crossref_primary_10_1016_j_tem_2024_08_009
crossref_primary_10_3389_fendo_2020_00062
crossref_primary_10_1002_prp2_638
crossref_primary_10_1038_s42255_023_00863_2
crossref_primary_10_3389_fimmu_2023_1152881
crossref_primary_10_1016_j_mmm_2020_06_017
crossref_primary_10_1038_s41577_020_00478_8
crossref_primary_10_7554_eLife_59166
crossref_primary_10_3389_fimmu_2024_1444964
crossref_primary_10_1038_s41577_021_00584_1
crossref_primary_10_1038_s42255_022_00574_0
crossref_primary_10_1038_s41423_019_0216_2
crossref_primary_10_1038_s41467_021_23900_8
crossref_primary_10_1016_j_addr_2021_113960
crossref_primary_10_1016_j_pharmthera_2022_108208
crossref_primary_10_3390_v15122399
crossref_primary_10_1016_j_molcel_2022_02_028
Cites_doi 10.1016/j.immuni.2015.08.023
10.1093/eurheartj/ehx144
10.1093/bioinformatics/btp352
10.1093/bioinformatics/bts635
10.1161/CIRCRESAHA.109.215715
10.1038/ni.3796
10.1093/nar/gkv007
10.1371/journal.pone.0021746
10.1016/j.ccr.2012.05.016
10.1128/MCB.01591-09
10.1016/j.cmet.2016.06.004
10.1016/j.cell.2012.06.054
10.1371/journal.pcbi.1005752
10.1038/nri3520
10.1016/j.immuni.2011.12.007
10.1073/pnas.1218599110
10.1186/s13059-014-0550-8
10.1021/acs.jproteome.5b00354
10.1101/gr.2705204
10.1016/j.molcel.2006.11.022
10.3791/53424
10.1002/jcp.21495
10.1016/j.cell.2016.08.064
10.1056/NEJMoa1707914
10.1038/s41586-018-0052-z
10.1084/jem.20160061
10.1038/ncomms11624
10.1093/cvr/cvw176
10.1161/CIRCRESAHA.118.312804
10.1038/nrcardio.2015.92
10.3389/fimmu.2015.00164
10.1161/CIRCRESAHA.117.312509
10.1038/ncb3255
10.1006/bbrc.1997.6943
10.1016/j.molcel.2010.05.004
10.1016/j.it.2017.03.001
10.1038/nature25986
10.1038/nature11986
10.1016/j.celrep.2016.09.008
10.1016/j.immuni.2015.02.005
ContentType Journal Article
Copyright 2018 The Authors
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.celrep.2018.10.092
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 2052.e5
ExternalDocumentID oai_doaj_org_article_d4969ea3a1584cdbbc7e5b1d85f55612
30463003
10_1016_j_celrep_2018_10_092
S2211124718316966
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Cancer Research UK
  grantid: 18644
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c474t-b0471587b61d4ae3f0747d3b1b5fd014924ee6b2bdf6a9100715c24c752b3cae3
IEDL.DBID DOA
ISICitedReferencesCount 134
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000450794200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2211-1247
IngestDate Fri Oct 03 12:45:29 EDT 2025
Fri Sep 05 09:53:20 EDT 2025
Mon Jul 21 06:08:15 EDT 2025
Tue Nov 18 22:10:13 EST 2025
Wed Nov 05 20:56:03 EST 2025
Wed May 17 00:03:04 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords meta-inflammation
foam cells
atherosclerosis
cardiovascular disease
macrophages
immunometabolism
inflammation
Nrf2
metabolic disease
hypercholesterolemia
pentose phosphate pathway
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-b0471587b61d4ae3f0747d3b1b5fd014924ee6b2bdf6a9100715c24c752b3cae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/d4969ea3a1584cdbbc7e5b1d85f55612
PMID 30463003
PQID 2179227290
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_d4969ea3a1584cdbbc7e5b1d85f55612
proquest_miscellaneous_2179227290
pubmed_primary_30463003
crossref_citationtrail_10_1016_j_celrep_2018_10_092
crossref_primary_10_1016_j_celrep_2018_10_092
elsevier_sciencedirect_doi_10_1016_j_celrep_2018_10_092
PublicationCentury 2000
PublicationDate 2018-11-20
PublicationDateYYYYMMDD 2018-11-20
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Kim, Shim, Lee, Zaitsev, Williams, Kim, Jang, Jang, Yun, Lee (bib11) 2018; 123
Huminiecki, Wolfe (bib7) 2004; 14
Wickham (bib39) 2016
Mitsuishi, Taguchi, Kawatani, Shibata, Nukiwa, Aburatani, Yamamoto, Motohashi (bib22) 2012; 22
Norata, Caligiuri, Chavakis, Matarese, Netea, Nicoletti, O’Neill, Marelli-Berg (bib25) 2015; 43
Thévenot, Roux, Xu, Ezan, Junot (bib34) 2015; 14
Lin, Elf, Shan, Kang, Ji, Zhou, Hitosugi, Zhang, Zhang, Seo (bib15) 2015; 17
Love, Huber, Anders (bib18) 2014; 15
Cochain, Vafadarnejad, Arampatzi, Jaroslav, Winkels, Ley, Wolf, Saliba, Zernecke (bib2) 2018; 122
Mills, Ryan, Prag, Dikovskaya, Menon, Zaslona, Jedrychowski, Costa, Higgins, Hams (bib21) 2018; 556
Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib3) 2013; 29
Ritchie, Phipson, Wu, Hu, Law, Shi, Smyth (bib28) 2015; 43
Itoh, Chiba, Takahashi, Ishii, Igarashi, Katoh, Oyake, Hayashi, Satoh, Hatayama (bib8) 1997; 236
van der Windt, Everts, Chang, Curtis, Freitas, Amiel, Pearce, Pearce (bib38) 2012; 36
Kadl, Meher, Sharma, Lee, Doran, Johnstone, Elliott, Gruber, Han, Chen (bib10) 2010; 107
Reiner (bib26) 2015; 12
Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib14) 2009; 25
Ghisletti, Huang, Ogawa, Pascual, Lin, Willson, Rosenfeld, Glass (bib5) 2007; 25
Wu, Tyml, Wilson (bib40) 2008; 217
Liu, Wang, Li, Chao, Teav, Christen, Di Conza, Cheng, Chou, Vavakova (bib17) 2017; 18
Wüst, de Vries, Wintjes, Rodenburg, Niessen, Stienen (bib41) 2016; 111
Michelucci, Cordes, Ghelfi, Pailot, Reiling, Goldmann, Binz, Wegner, Tallam, Rausell (bib19) 2013; 110
Rogers, Brand, Petrosyan, Ashok, Elorza, Ferrick, Murphy (bib29) 2011; 6
Van den Bossche, Baardman, Otto, van der Velden, Neele, van den Berg, Luque-Martin, Chen, Boshuizen, Ahmed (bib36) 2016; 17
Taguchi, Maher, Suzuki, Kawatani, Motohashi, Yamamoto (bib32) 2010; 30
Nagy, Haschemi (bib24) 2015; 6
Tannahill, Curtis, Adamik, Palsson-McDermott, McGettrick, Goel, Frezza, Bernard, Kelly, Foley (bib33) 2013; 496
Kobayashi, Suzuki, Funayama, Nagashima, Hayashi, Sekine, Tanaka, Moriguchi, Motohashi, Nakayama, Yamamoto (bib12) 2016; 7
Van den Bossche, J., Baardman, J., and de Winther, M.P. (2015). Metabolic characterization of polarized M1 and M2 bone marrow-derived macrophages using real-time extracellular flux analysis. Published online November 28, 2015. 10.3791/53424.other
Mills, Kelly, Logan, Costa, Varma, Bryant, Tourlomousis, Däbritz, Gottlieb, Latorre (bib20) 2016; 167
Heinz, Benner, Spann, Bertolino, Lin, Laslo, Cheng, Murre, Singh, Glass (bib6) 2010; 38
Lampropoulou, Sergushichev, Bambouskova, Nair, Vincent, Loginicheva, Cervantes-Barragan, Ma, Huang, Griss (bib13) 2016; 24
Spann, Garmire, McDonald, Myers, Milne, Shibata, Reichart, Fox, Shaked, Heudobler (bib31) 2012; 151
Ridker, Everett, Thuren, MacFadyen, Chang, Ballantyne, Fonseca, Nicolau, Koenig, Anker (bib27) 2017; 377
Jha, Huang, Sergushichev, Lampropoulou, Ivanova, Loginicheva, Chmielewski, Stewart, Ashall, Everts (bib9) 2015; 42
Littlewood-Evans, Sarret, Apfel, Loesle, Dawson, Zhang, Muller, Tigani, Kneuer, Patel (bib16) 2016; 213
Moore, Sheedy, Fisher (bib23) 2013; 13
Bambouskova, Gorvel, Lampropoulou, Sergushichev, Loginicheva, Johnson, Korenfeld, Mathyer, Kim, Huang (bib1) 2018; 556
Ference, Ginsberg, Graham, Ray, Packard, Bruckert, Hegele, Krauss, Raal, Schunkert (bib4) 2017; 38
Rohart, Gautier, Singh, Lê Cao (bib30) 2017; 13
Van den Bossche, O’Neill, Menon (bib37) 2017; 38
Wüst (10.1016/j.celrep.2018.10.092_bib41) 2016; 111
Rohart (10.1016/j.celrep.2018.10.092_bib30) 2017; 13
Norata (10.1016/j.celrep.2018.10.092_bib25) 2015; 43
Mitsuishi (10.1016/j.celrep.2018.10.092_bib22) 2012; 22
Moore (10.1016/j.celrep.2018.10.092_bib23) 2013; 13
Kobayashi (10.1016/j.celrep.2018.10.092_bib12) 2016; 7
Mills (10.1016/j.celrep.2018.10.092_bib21) 2018; 556
Ridker (10.1016/j.celrep.2018.10.092_bib27) 2017; 377
Cochain (10.1016/j.celrep.2018.10.092_bib2) 2018; 122
Li (10.1016/j.celrep.2018.10.092_bib14) 2009; 25
Kim (10.1016/j.celrep.2018.10.092_bib11) 2018; 123
Ritchie (10.1016/j.celrep.2018.10.092_bib28) 2015; 43
Tannahill (10.1016/j.celrep.2018.10.092_bib33) 2013; 496
Heinz (10.1016/j.celrep.2018.10.092_bib6) 2010; 38
Littlewood-Evans (10.1016/j.celrep.2018.10.092_bib16) 2016; 213
Bambouskova (10.1016/j.celrep.2018.10.092_bib1) 2018; 556
Wu (10.1016/j.celrep.2018.10.092_bib40) 2008; 217
Dobin (10.1016/j.celrep.2018.10.092_bib3) 2013; 29
Kadl (10.1016/j.celrep.2018.10.092_bib10) 2010; 107
Nagy (10.1016/j.celrep.2018.10.092_bib24) 2015; 6
Jha (10.1016/j.celrep.2018.10.092_bib9) 2015; 42
Liu (10.1016/j.celrep.2018.10.092_bib17) 2017; 18
van der Windt (10.1016/j.celrep.2018.10.092_bib38) 2012; 36
Van den Bossche (10.1016/j.celrep.2018.10.092_bib36) 2016; 17
Taguchi (10.1016/j.celrep.2018.10.092_bib32) 2010; 30
Love (10.1016/j.celrep.2018.10.092_bib18) 2014; 15
Michelucci (10.1016/j.celrep.2018.10.092_bib19) 2013; 110
Mills (10.1016/j.celrep.2018.10.092_bib20) 2016; 167
10.1016/j.celrep.2018.10.092_bib35
Spann (10.1016/j.celrep.2018.10.092_bib31) 2012; 151
Van den Bossche (10.1016/j.celrep.2018.10.092_bib37) 2017; 38
Ghisletti (10.1016/j.celrep.2018.10.092_bib5) 2007; 25
Lin (10.1016/j.celrep.2018.10.092_bib15) 2015; 17
Wickham (10.1016/j.celrep.2018.10.092_bib39) 2016
Lampropoulou (10.1016/j.celrep.2018.10.092_bib13) 2016; 24
Ference (10.1016/j.celrep.2018.10.092_bib4) 2017; 38
Thévenot (10.1016/j.celrep.2018.10.092_bib34) 2015; 14
Itoh (10.1016/j.celrep.2018.10.092_bib8) 1997; 236
Reiner (10.1016/j.celrep.2018.10.092_bib26) 2015; 12
Huminiecki (10.1016/j.celrep.2018.10.092_bib7) 2004; 14
Rogers (10.1016/j.celrep.2018.10.092_bib29) 2011; 6
References_xml – volume: 43
  start-page: e47
  year: 2015
  ident: bib28
  article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res.
– volume: 17
  start-page: 684
  year: 2016
  end-page: 696
  ident: bib36
  article-title: Mitochondrial dysfunction prevents repolarization of inflammatory macrophages
  publication-title: Cell Rep.
– volume: 13
  start-page: e1005752
  year: 2017
  ident: bib30
  article-title: mixOmics: An R package for 'omics feature selection and multiple data integration
  publication-title: PLoS Comput. Biol.
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  ident: bib14
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
– volume: 107
  start-page: 737
  year: 2010
  end-page: 746
  ident: bib10
  article-title: Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2
  publication-title: Circ. Res.
– volume: 15
  start-page: 550
  year: 2014
  ident: bib18
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
– volume: 43
  start-page: 421
  year: 2015
  end-page: 434
  ident: bib25
  article-title: The cellular and molecular basis of translational immunometabolism
  publication-title: Immunity
– volume: 22
  start-page: 66
  year: 2012
  end-page: 79
  ident: bib22
  article-title: Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming
  publication-title: Cancer Cell
– volume: 14
  start-page: 3322
  year: 2015
  end-page: 3335
  ident: bib34
  article-title: Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses
  publication-title: J. Proteome Res.
– volume: 556
  start-page: 501
  year: 2018
  end-page: 504
  ident: bib1
  article-title: Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 inflammatory axis
  publication-title: Nature
– volume: 24
  start-page: 158
  year: 2016
  end-page: 166
  ident: bib13
  article-title: Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation
  publication-title: Cell Metab.
– volume: 217
  start-page: 207
  year: 2008
  end-page: 214
  ident: bib40
  article-title: iNOS expression requires NADPH oxidase-dependent redox signaling in microvascular endothelial cells
  publication-title: J. Cell. Physiol.
– volume: 213
  start-page: 1655
  year: 2016
  end-page: 1662
  ident: bib16
  article-title: GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis
  publication-title: J. Exp. Med.
– volume: 151
  start-page: 138
  year: 2012
  end-page: 152
  ident: bib31
  article-title: Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses
  publication-title: Cell
– volume: 12
  start-page: 565
  year: 2015
  end-page: 575
  ident: bib26
  article-title: Management of patients with familial hypercholesterolaemia
  publication-title: Nat. Rev. Cardiol.
– volume: 25
  start-page: 57
  year: 2007
  end-page: 70
  ident: bib5
  article-title: Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma
  publication-title: Mol. Cell
– volume: 7
  start-page: 11624
  year: 2016
  ident: bib12
  article-title: Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription
  publication-title: Nat. Commun.
– volume: 123
  start-page: 1127
  year: 2018
  end-page: 1142
  ident: bib11
  article-title: Transcriptome Analysis Reveals Non-Foamy Rather than Foamy Plaque Macrophages Are Pro-Inflammatory in Atherosclerotic Murine Models
  publication-title: Circ. Res.
– volume: 17
  start-page: 1484
  year: 2015
  end-page: 1496
  ident: bib15
  article-title: 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling
  publication-title: Nat. Cell Biol.
– volume: 13
  start-page: 709
  year: 2013
  end-page: 721
  ident: bib23
  article-title: Macrophages in atherosclerosis: a dynamic balance
  publication-title: Nat. Rev. Immunol.
– volume: 6
  start-page: 164
  year: 2015
  ident: bib24
  article-title: Time and demand are two critical dimensions of immunometabolism: the process of macrophage activation and the pentose phosphate pathway
  publication-title: Front. Immunol.
– volume: 36
  start-page: 68
  year: 2012
  end-page: 78
  ident: bib38
  article-title: Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development
  publication-title: Immunity
– volume: 110
  start-page: 7820
  year: 2013
  end-page: 7825
  ident: bib19
  article-title: Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 122
  start-page: 1661
  year: 2018
  end-page: 1674
  ident: bib2
  article-title: Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis
  publication-title: Circ. Res.
– volume: 377
  start-page: 1119
  year: 2017
  end-page: 1131
  ident: bib27
  article-title: Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
  publication-title: N. Engl. J. Med.
– volume: 6
  start-page: e21746
  year: 2011
  ident: bib29
  article-title: High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria
  publication-title: PLoS ONE
– volume: 18
  start-page: 985
  year: 2017
  end-page: 994
  ident: bib17
  article-title: α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming
  publication-title: Nat. Immunol.
– volume: 167
  start-page: 457
  year: 2016
  end-page: 470.e13
  ident: bib20
  article-title: Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages
  publication-title: Cell
– year: 2016
  ident: bib39
  article-title: ggplot2: Elegant Graphics for Data Analysis
– volume: 111
  start-page: 362
  year: 2016
  end-page: 372
  ident: bib41
  article-title: Mitochondrial complex I dysfunction and altered NAD(P)H kinetics in rat myocardium in cardiac right ventricular hypertrophy and failure
  publication-title: Cardiovasc. Res.
– volume: 38
  start-page: 395
  year: 2017
  end-page: 406
  ident: bib37
  article-title: Macrophage immunometabolism: where are we (going)?
  publication-title: Trends Immunol.
– volume: 29
  start-page: 15
  year: 2013
  end-page: 21
  ident: bib3
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
– volume: 236
  start-page: 313
  year: 1997
  end-page: 322
  ident: bib8
  article-title: An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements
  publication-title: Biochem. Biophys. Res. Commun.
– reference: Van den Bossche, J., Baardman, J., and de Winther, M.P. (2015). Metabolic characterization of polarized M1 and M2 bone marrow-derived macrophages using real-time extracellular flux analysis. Published online November 28, 2015. 10.3791/53424.other
– volume: 38
  start-page: 2459
  year: 2017
  end-page: 2472
  ident: bib4
  article-title: Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel
  publication-title: Eur. Heart J.
– volume: 38
  start-page: 576
  year: 2010
  end-page: 589
  ident: bib6
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
– volume: 14
  start-page: 1870
  year: 2004
  end-page: 1879
  ident: bib7
  article-title: Divergence of spatial gene expression profiles following species-specific gene duplications in human and mouse
  publication-title: Genome Res.
– volume: 496
  start-page: 238
  year: 2013
  end-page: 242
  ident: bib33
  article-title: Succinate is an inflammatory signal that induces IL-1β through HIF-1α
  publication-title: Nature
– volume: 30
  start-page: 3016
  year: 2010
  end-page: 3026
  ident: bib32
  article-title: Genetic analysis of cytoprotective functions supported by graded expression of Keap1
  publication-title: Mol. Cell. Biol.
– volume: 42
  start-page: 419
  year: 2015
  end-page: 430
  ident: bib9
  article-title: Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization
  publication-title: Immunity
– volume: 556
  start-page: 113
  year: 2018
  end-page: 117
  ident: bib21
  article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1
  publication-title: Nature
– volume: 43
  start-page: 421
  year: 2015
  ident: 10.1016/j.celrep.2018.10.092_bib25
  article-title: The cellular and molecular basis of translational immunometabolism
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.08.023
– volume: 38
  start-page: 2459
  year: 2017
  ident: 10.1016/j.celrep.2018.10.092_bib4
  article-title: Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehx144
– volume: 25
  start-page: 2078
  year: 2009
  ident: 10.1016/j.celrep.2018.10.092_bib14
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 29
  start-page: 15
  year: 2013
  ident: 10.1016/j.celrep.2018.10.092_bib3
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 107
  start-page: 737
  year: 2010
  ident: 10.1016/j.celrep.2018.10.092_bib10
  article-title: Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.109.215715
– volume: 18
  start-page: 985
  year: 2017
  ident: 10.1016/j.celrep.2018.10.092_bib17
  article-title: α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3796
– volume: 43
  start-page: e47
  year: 2015
  ident: 10.1016/j.celrep.2018.10.092_bib28
  article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv007
– volume: 6
  start-page: e21746
  year: 2011
  ident: 10.1016/j.celrep.2018.10.092_bib29
  article-title: High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0021746
– volume: 22
  start-page: 66
  year: 2012
  ident: 10.1016/j.celrep.2018.10.092_bib22
  article-title: Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.05.016
– volume: 30
  start-page: 3016
  year: 2010
  ident: 10.1016/j.celrep.2018.10.092_bib32
  article-title: Genetic analysis of cytoprotective functions supported by graded expression of Keap1
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01591-09
– volume: 24
  start-page: 158
  year: 2016
  ident: 10.1016/j.celrep.2018.10.092_bib13
  article-title: Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.06.004
– volume: 151
  start-page: 138
  year: 2012
  ident: 10.1016/j.celrep.2018.10.092_bib31
  article-title: Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses
  publication-title: Cell
  doi: 10.1016/j.cell.2012.06.054
– volume: 13
  start-page: e1005752
  year: 2017
  ident: 10.1016/j.celrep.2018.10.092_bib30
  article-title: mixOmics: An R package for 'omics feature selection and multiple data integration
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005752
– volume: 13
  start-page: 709
  year: 2013
  ident: 10.1016/j.celrep.2018.10.092_bib23
  article-title: Macrophages in atherosclerosis: a dynamic balance
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3520
– year: 2016
  ident: 10.1016/j.celrep.2018.10.092_bib39
– volume: 36
  start-page: 68
  year: 2012
  ident: 10.1016/j.celrep.2018.10.092_bib38
  article-title: Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.12.007
– volume: 110
  start-page: 7820
  year: 2013
  ident: 10.1016/j.celrep.2018.10.092_bib19
  article-title: Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1218599110
– volume: 15
  start-page: 550
  year: 2014
  ident: 10.1016/j.celrep.2018.10.092_bib18
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 14
  start-page: 3322
  year: 2015
  ident: 10.1016/j.celrep.2018.10.092_bib34
  article-title: Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.5b00354
– volume: 14
  start-page: 1870
  issue: 10A
  year: 2004
  ident: 10.1016/j.celrep.2018.10.092_bib7
  article-title: Divergence of spatial gene expression profiles following species-specific gene duplications in human and mouse
  publication-title: Genome Res.
  doi: 10.1101/gr.2705204
– volume: 25
  start-page: 57
  year: 2007
  ident: 10.1016/j.celrep.2018.10.092_bib5
  article-title: Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.11.022
– ident: 10.1016/j.celrep.2018.10.092_bib35
  doi: 10.3791/53424
– volume: 217
  start-page: 207
  year: 2008
  ident: 10.1016/j.celrep.2018.10.092_bib40
  article-title: iNOS expression requires NADPH oxidase-dependent redox signaling in microvascular endothelial cells
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.21495
– volume: 167
  start-page: 457
  year: 2016
  ident: 10.1016/j.celrep.2018.10.092_bib20
  article-title: Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.064
– volume: 377
  start-page: 1119
  year: 2017
  ident: 10.1016/j.celrep.2018.10.092_bib27
  article-title: Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1707914
– volume: 556
  start-page: 501
  year: 2018
  ident: 10.1016/j.celrep.2018.10.092_bib1
  article-title: Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 inflammatory axis
  publication-title: Nature
  doi: 10.1038/s41586-018-0052-z
– volume: 213
  start-page: 1655
  year: 2016
  ident: 10.1016/j.celrep.2018.10.092_bib16
  article-title: GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20160061
– volume: 7
  start-page: 11624
  year: 2016
  ident: 10.1016/j.celrep.2018.10.092_bib12
  article-title: Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11624
– volume: 111
  start-page: 362
  year: 2016
  ident: 10.1016/j.celrep.2018.10.092_bib41
  article-title: Mitochondrial complex I dysfunction and altered NAD(P)H kinetics in rat myocardium in cardiac right ventricular hypertrophy and failure
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvw176
– volume: 123
  start-page: 1127
  year: 2018
  ident: 10.1016/j.celrep.2018.10.092_bib11
  article-title: Transcriptome Analysis Reveals Non-Foamy Rather than Foamy Plaque Macrophages Are Pro-Inflammatory in Atherosclerotic Murine Models
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.118.312804
– volume: 12
  start-page: 565
  year: 2015
  ident: 10.1016/j.celrep.2018.10.092_bib26
  article-title: Management of patients with familial hypercholesterolaemia
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/nrcardio.2015.92
– volume: 6
  start-page: 164
  year: 2015
  ident: 10.1016/j.celrep.2018.10.092_bib24
  article-title: Time and demand are two critical dimensions of immunometabolism: the process of macrophage activation and the pentose phosphate pathway
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2015.00164
– volume: 122
  start-page: 1661
  year: 2018
  ident: 10.1016/j.celrep.2018.10.092_bib2
  article-title: Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.117.312509
– volume: 17
  start-page: 1484
  year: 2015
  ident: 10.1016/j.celrep.2018.10.092_bib15
  article-title: 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3255
– volume: 236
  start-page: 313
  year: 1997
  ident: 10.1016/j.celrep.2018.10.092_bib8
  article-title: An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1997.6943
– volume: 38
  start-page: 576
  year: 2010
  ident: 10.1016/j.celrep.2018.10.092_bib6
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 38
  start-page: 395
  year: 2017
  ident: 10.1016/j.celrep.2018.10.092_bib37
  article-title: Macrophage immunometabolism: where are we (going)?
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2017.03.001
– volume: 556
  start-page: 113
  year: 2018
  ident: 10.1016/j.celrep.2018.10.092_bib21
  article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1
  publication-title: Nature
  doi: 10.1038/nature25986
– volume: 496
  start-page: 238
  year: 2013
  ident: 10.1016/j.celrep.2018.10.092_bib33
  article-title: Succinate is an inflammatory signal that induces IL-1β through HIF-1α
  publication-title: Nature
  doi: 10.1038/nature11986
– volume: 17
  start-page: 684
  year: 2016
  ident: 10.1016/j.celrep.2018.10.092_bib36
  article-title: Mitochondrial dysfunction prevents repolarization of inflammatory macrophages
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.09.008
– volume: 42
  start-page: 419
  year: 2015
  ident: 10.1016/j.celrep.2018.10.092_bib9
  article-title: Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.02.005
SSID ssj0000601194
Score 2.57235
Snippet Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2044
SubjectTerms Animals
atherosclerosis
cardiovascular disease
Citric Acid Cycle - drug effects
Female
foam cells
Glycolysis - drug effects
hypercholesterolemia
Hypercholesterolemia - metabolism
Hypercholesterolemia - pathology
immunometabolism
inflammation
Inflammation - pathology
Lipopolysaccharides - pharmacology
macrophages
Macrophages - drug effects
Macrophages - metabolism
Macrophages - pathology
Male
meta-inflammation
metabolic disease
Mice, Inbred C57BL
NF-E2-Related Factor 2 - metabolism
Nrf2
pentose phosphate pathway
Pentose Phosphate Pathway - drug effects
Title A Defective Pentose Phosphate Pathway Reduces Inflammatory Macrophage Responses during Hypercholesterolemia
URI https://dx.doi.org/10.1016/j.celrep.2018.10.092
https://www.ncbi.nlm.nih.gov/pubmed/30463003
https://www.proquest.com/docview/2179227290
https://doaj.org/article/d4969ea3a1584cdbbc7e5b1d85f55612
Volume 25
WOSCitedRecordID wos000450794200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZJSCGX0ne3j6BCrm5tWbKsY9okpIeGpaSwN6Enu23iDetNS_59ZyR7SQ5lLz0ZZEkeNKN5WKNvCDmKRglbKVc0thQFF14VCn_kc1FWxoHNsHVMxSbkxUU7m6npvVJfmBOW4YHzwn3yXDUqmNpUYCqdt9bJALP7VsRU2RG1bynVvWAq62DEMsMjZcYwZ4txOd6bS8ldLlytAsJVVu1HTO5S7IFdSvD9D8zTv9zPZIbOnpDHg_9IjzPdT8lO6J6RR7mi5N1z8uuYnoSYlRidgkFZ9vCcL_ubOTiVdAr-3h9zR78jYGvo6dcugkRcp5N2-s1gOa85KBh4nzJnoUe-xkjPIVxdoaZMwArwuF6YF-TH2enll_NiqKdQOC75urAlWCLRSttUnptQRwTP97WtrIgeQyXGQ2gssz42RmH6RCUc404KZmsHA16SvW7ZhdeEWiEtaAcD3pPixojW-cq70DjwD52LakLqcTW1G8DGsebFlR6zyn7qzAONPMBW4MGEFJtRNxlsY0v_z8ioTV-Eyk4NIEB6ECC9TYAmRI5s1oPXkb0JmGqx5fMfRqnQsCnxpMV0YXnba4jzFGMQt5QT8iqLy4bIhNEGuvTN_yD-LTlAgvByJCvfkb316ja8J_vu93rRrw7Jrpy1h2ln_AWrKRFQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Defective+Pentose+Phosphate+Pathway+Reduces+Inflammatory+Macrophage+Responses+during+Hypercholesterolemia&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Baardman%2C+Jeroen&rft.au=Verberk%2C+Sanne+G.S.&rft.au=Prange%2C+Koen+H.M.&rft.au=van+Weeghel%2C+Michel&rft.date=2018-11-20&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=25&rft.issue=8&rft.spage=2044&rft.epage=2052.e5&rft_id=info:doi/10.1016%2Fj.celrep.2018.10.092&rft.externalDocID=S2211124718316966
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon