Revisiting Kneser’s Theorem for Field Extensions

A Theorem of Hou, Leung and Xiang generalised Kneser’s addition Theorem to field extensions. This theorem was known to be valid only in separable extensions, and it was a conjecture of Hou that it should be valid for all extensions. We give an alternative proof of the theorem that also holds in the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Combinatorica (Budapest. 1981) Ročník 38; číslo 4; s. 759 - 777
Hlavní autori: Bachoc, Christine, Serra, Oriol, Zémor, Gilles
Médium: Journal Article Publikácia
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2018
Springer
Springer Nature B.V
Springer Verlag
Predmet:
ISSN:0209-9683, 1439-6912
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A Theorem of Hou, Leung and Xiang generalised Kneser’s addition Theorem to field extensions. This theorem was known to be valid only in separable extensions, and it was a conjecture of Hou that it should be valid for all extensions. We give an alternative proof of the theorem that also holds in the non-separable case, thus solving Hou’s conjecture. This result is a consequence of a strengthening of Hou et al.’s theorem that is inspired by an addition theorem of Balandraud and is obtained by combinatorial methods transposed and adapted to the extension field setting.
AbstractList A Theorem of Hou, Leung and Xiang generalised Kneser’s addition Theorem to field extensions. This theorem was known to be valid only in separable extensions, and it was a conjecture of Hou that it should be valid for all extensions. We give an alternative proof of the theorem that also holds in the non-separable case, thus solving Hou’s conjecture. This result is a consequence of a strengthening of Hou et al.’s theorem that is inspired by an addition theorem of Balandraud and is obtained by combinatorial methods transposed and adapted to the extension field setting.
A Theorem of Hou, Leung and Xiang generalised Kneser’s addition Theorem to field extensions. This theorem was known to be valid only in separable extensions, and it was a conjecture of Hou that it should be valid for all extensions. We give an alternative proof of the theorem that also holds in the non-separable case, thus solving Hou’s conjecture. This result is a consequence of a strengthening of Hou et al.’s theorem that is inspired by an addition theorem of Balandraud and is obtained by combinatorial methods transposed and adapted to the extension field setting. Peer Reviewed
Audience Academic
Author Bachoc, Christine
Serra, Oriol
Zémor, Gilles
Author_xml – sequence: 1
  givenname: Christine
  surname: Bachoc
  fullname: Bachoc, Christine
  email: Christine.Bachoc@math.u-bordeaux.fr
  organization: Institut de Mathématiques de Bordeaux UMR 5251, université de Bordeaux 351 cours de la Libération
– sequence: 2
  givenname: Oriol
  surname: Serra
  fullname: Serra, Oriol
  organization: Department of Mathematics, Universitat Politècnica de Catalunya and Barcelona Graduate School of Mathematics
– sequence: 3
  givenname: Gilles
  surname: Zémor
  fullname: Zémor, Gilles
  organization: Institut de Mathématiques de Bordeaux UMR 5251, université de Bordeaux 351 cours de la Libération
BackLink https://hal.science/hal-01951358$$DView record in HAL
BookMark eNp9UdFqFDEUDVLB7eoH-Dbgkw9T700yk8njUlpbXBCkPoc0c2ebMpvUZLbYN3_D3_NLmnGkBUEJIeRyTs45OcfsKMRAjL1FOEEA9SEDSC1qwLYWDdc1vGArlELXrUZ-xFbAQde67cQrdpzzLQB0ApsV41_o3mc_-bCrPgXKlH79-JmrqxuKifbVEFN17mnsq7PvE4XsY8iv2cvBjpne_DnX7Ov52dXpRb39_PHydLOtnVRyqkXvsNVNCx002lmUPehrkoNQthiUGtFi32ktUahr6JW2iA77oR005yisWLP3y7s3djR3ye9tejDRenOx2Zp5BqgbFE13jwWLC9blgzOJHCVnp9_op8u8OShuBHRdib9m7xbOXYrfDpQncxsPKZRIBaZVKzSXUFAnC2pnRzI-DHFK1pXV0967UsLgy3yjeAnUYOng2UqKOScanrwjmLkrs3RV7Ldm7srMIuovjvOTncpvFzE__pfJF2YuKmFH6TnEv0mPwgym7Q
CitedBy_id crossref_primary_10_1007_s11856_025_2736_z
crossref_primary_10_1016_j_jcta_2024_106005
crossref_primary_10_1016_j_laa_2024_10_015
crossref_primary_10_1080_03081087_2022_2057903
crossref_primary_10_1016_j_ffa_2022_102153
crossref_primary_10_1016_j_laa_2022_12_011
crossref_primary_10_1007_s10801_023_01275_x
crossref_primary_10_1016_j_ffa_2023_102280
crossref_primary_10_1016_j_laa_2025_07_037
Cites_doi 10.1007/s00493-014-2874-0
10.1016/0022-314X(84)90047-7
10.1017/S0305004117000044
10.1080/03081080802018083
10.1007/BF02787556
10.1017/CBO9780511755149
10.1006/jnth.2002.2793
10.5802/aif.2374
10.1112/blms/26.2.140
10.1007/978-1-4757-3845-2
10.1007/BF01186598
10.1016/j.ejc.2013.05.005
10.1016/j.laa.2007.04.019
10.1016/S1385-7258(56)50032-7
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
Copyright János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018
COPYRIGHT 2018 Springer
Copyright Springer Science & Business Media 2018
info:eu-repo/semantics/openAccess
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: COPYRIGHT 2018 Springer
– notice: Copyright Springer Science & Business Media 2018
– notice: info:eu-repo/semantics/openAccess
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
XX2
1XC
DOI 10.1007/s00493-016-3529-0
DatabaseName CrossRef
Recercat
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList



DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1439-6912
EndPage 777
ExternalDocumentID oai:HAL:hal-01951358v1
oai_recercat_cat_2072_308808
A729115149
10_1007_s00493_016_3529_0
GroupedDBID -52
-5D
-5G
-BR
-EM
-ET
-Y2
-~C
-~X
.86
.DC
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9R
PF-
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WIP
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
XX2
1XC
ID FETCH-LOGICAL-c474t-3dc1695608059ca14d09be4f37a5294911a1d8994137b0d79a11c1df6f92213a3
IEDL.DBID RSV
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443306900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0209-9683
IngestDate Tue Oct 14 20:19:24 EDT 2025
Fri Nov 07 13:44:17 EST 2025
Sun Nov 09 08:53:16 EST 2025
Sat Nov 29 09:54:50 EST 2025
Tue Nov 18 22:36:35 EST 2025
Sat Nov 29 06:43:07 EST 2025
Fri Feb 21 02:25:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 11P70
11T99
12F99
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-3dc1695608059ca14d09be4f37a5294911a1d8994137b0d79a11c1df6f92213a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6041-9554
OpenAccessLink https://recercat.cat/handle/2072/308808
PQID 2097639240
PQPubID 2043757
PageCount 19
ParticipantIDs hal_primary_oai_HAL_hal_01951358v1
csuc_recercat_oai_recercat_cat_2072_308808
proquest_journals_2097639240
gale_infotracacademiconefile_A729115149
crossref_primary_10_1007_s00493_016_3529_0
crossref_citationtrail_10_1007_s00493_016_3529_0
springer_journals_10_1007_s00493_016_3529_0
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Combinatorica (Budapest. 1981)
PublicationTitleAbbrev Combinatorica
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
– name: Springer Verlag
References LangS.Algebra20051063.00002
KempermanJ. H. B.On complexes in a semigroupIndagationes Mathematicae (Proceedings)1956182472547900510.1016/S1385-7258(56)50032-70072.25605
BourbakiN.Éléments de mathématique19590102.25503
KneserM.Summenmengen in lokalkompakten abelesche GruppenMath. Z.195666881108143810.1007/BF011865980073.01702
TaoT.VuV.Additive Combinatorics200610.1017/CBO97805117551491127.11002
Dias da SilvaJ. A.HamidouneY. O.Cyclic spaces for Grassmann derivatives and additive theoryB. Lond. Math. Soc.199426140146127229910.1112/blms/26.2.1400819.11007
EliahouS.LecouveyC.On linear versions of some additive theoremsLinear Multilinear A.20095775977510.1080/030810808020180831263.11015
KárolyiGy.The Erdős-Heilbronn problem in Abelian groupsIsr. J. Math.200413934935910.1007/BF027875561082.11015
LecouveyC.Plünnecke and Kneser type theorems for dimension estimatesCombinatorica201434331358322396810.1007/s00493-014-2874-01324.05196
RuzsaI. Z.An application of graph theory to additive number theoryScientia. Series A: Mathematical Sciences198939710923143770743.05052
BeckV.LecouveyC.Additive combinatorics methods in associative algebras201506914192
BalandraudE.Une Variante de la méthode isoperimétrique de Hamidoune apliquée au théorème de KneserAnn. I. Fourier200858915943242751510.5802/aif.23741143.11039
HouX.On a vector space analogue of Kneser's theoremLinear Algebra Appl.2007426214227234457110.1016/j.laa.2007.04.0191132.12003
OlsonJ. E.On the sum of two sets in a groupJ. Number Theory19841811012073444210.1016/0022-314X(84)90047-70524.10043
PlagneA.SerraO.ZémorG.Yahya Ould Hamidoune's mathematical journey: A critical review of his workEuropean Journal of Combinatorics20133412071222308219310.1016/j.ejc.2013.05.0051292.05002
C. Bachoc, O. Serra and G. Zémor: An analogue of Vosper's Theorem for extension fields, Math. Proc. Cambridge Philos. Soc., to appear.
In memory of Yahya Ould Hamidoune, special issue of European Journal of Combinatorics, Plagne, Serra and Zémor Eds., Vol. 34, 2013.
HouX.LeungK. H.XiangQ.A generalization of an addition theorem of KneserJ. Number Theory20029719193913210.1006/jnth.2002.27931034.11020
NathansonM. B.Additive Number Theory. Inverse problems and the geometry of sumsets199610.1007/978-1-4757-3845-20859.11003
J. H. B. Kemperman (3529_CR11) 1956; 18
I. Z. Ruzsa (3529_CR18) 1989; 3
E. Balandraud (3529_CR2) 2008; 58
X. Hou (3529_CR9) 2002; 97
J. E. Olson (3529_CR16) 1984; 18
N. Bourbaki (3529_CR4) 1959
X. Hou (3529_CR8) 2007; 426
C. Lecouvey (3529_CR14) 2014; 34
A. Plagne (3529_CR17) 2013; 34
3529_CR1
S. Eliahou (3529_CR6) 2009; 57
V. Beck (3529_CR3) 2015
3529_CR7
M. B. Nathanson (3529_CR15) 1996
M. Kneser (3529_CR12) 1956; 66
T. Tao (3529_CR19) 2006
S. Lang (3529_CR13) 2005
Gy. Károlyi (3529_CR10) 2004; 139
J. A. Dias da Silva (3529_CR5) 1994; 26
References_xml – reference: BourbakiN.Éléments de mathématique19590102.25503
– reference: RuzsaI. Z.An application of graph theory to additive number theoryScientia. Series A: Mathematical Sciences198939710923143770743.05052
– reference: HouX.On a vector space analogue of Kneser's theoremLinear Algebra Appl.2007426214227234457110.1016/j.laa.2007.04.0191132.12003
– reference: NathansonM. B.Additive Number Theory. Inverse problems and the geometry of sumsets199610.1007/978-1-4757-3845-20859.11003
– reference: Dias da SilvaJ. A.HamidouneY. O.Cyclic spaces for Grassmann derivatives and additive theoryB. Lond. Math. Soc.199426140146127229910.1112/blms/26.2.1400819.11007
– reference: OlsonJ. E.On the sum of two sets in a groupJ. Number Theory19841811012073444210.1016/0022-314X(84)90047-70524.10043
– reference: PlagneA.SerraO.ZémorG.Yahya Ould Hamidoune's mathematical journey: A critical review of his workEuropean Journal of Combinatorics20133412071222308219310.1016/j.ejc.2013.05.0051292.05002
– reference: BalandraudE.Une Variante de la méthode isoperimétrique de Hamidoune apliquée au théorème de KneserAnn. I. Fourier200858915943242751510.5802/aif.23741143.11039
– reference: LangS.Algebra20051063.00002
– reference: LecouveyC.Plünnecke and Kneser type theorems for dimension estimatesCombinatorica201434331358322396810.1007/s00493-014-2874-01324.05196
– reference: KárolyiGy.The Erdős-Heilbronn problem in Abelian groupsIsr. J. Math.200413934935910.1007/BF027875561082.11015
– reference: TaoT.VuV.Additive Combinatorics200610.1017/CBO97805117551491127.11002
– reference: HouX.LeungK. H.XiangQ.A generalization of an addition theorem of KneserJ. Number Theory20029719193913210.1006/jnth.2002.27931034.11020
– reference: BeckV.LecouveyC.Additive combinatorics methods in associative algebras201506914192
– reference: C. Bachoc, O. Serra and G. Zémor: An analogue of Vosper's Theorem for extension fields, Math. Proc. Cambridge Philos. Soc., to appear.
– reference: KneserM.Summenmengen in lokalkompakten abelesche GruppenMath. Z.195666881108143810.1007/BF011865980073.01702
– reference: EliahouS.LecouveyC.On linear versions of some additive theoremsLinear Multilinear A.20095775977510.1080/030810808020180831263.11015
– reference: In memory of Yahya Ould Hamidoune, special issue of European Journal of Combinatorics, Plagne, Serra and Zémor Eds., Vol. 34, 2013.
– reference: KempermanJ. H. B.On complexes in a semigroupIndagationes Mathematicae (Proceedings)1956182472547900510.1016/S1385-7258(56)50032-70072.25605
– volume: 34
  start-page: 331
  year: 2014
  ident: 3529_CR14
  publication-title: Combinatorica
  doi: 10.1007/s00493-014-2874-0
– volume: 18
  start-page: 110
  year: 1984
  ident: 3529_CR16
  publication-title: J. Number Theory
  doi: 10.1016/0022-314X(84)90047-7
– ident: 3529_CR1
  doi: 10.1017/S0305004117000044
– volume: 57
  start-page: 759
  year: 2009
  ident: 3529_CR6
  publication-title: Linear Multilinear A.
  doi: 10.1080/03081080802018083
– volume: 139
  start-page: 349
  year: 2004
  ident: 3529_CR10
  publication-title: Isr. J. Math.
  doi: 10.1007/BF02787556
– volume-title: Algebra
  year: 2005
  ident: 3529_CR13
– volume-title: Additive Combinatorics
  year: 2006
  ident: 3529_CR19
  doi: 10.1017/CBO9780511755149
– volume: 97
  start-page: 1
  year: 2002
  ident: 3529_CR9
  publication-title: J. Number Theory
  doi: 10.1006/jnth.2002.2793
– volume: 58
  start-page: 915
  year: 2008
  ident: 3529_CR2
  publication-title: Ann. I. Fourier
  doi: 10.5802/aif.2374
– ident: 3529_CR7
– volume-title: Additive combinatorics methods in associative algebras
  year: 2015
  ident: 3529_CR3
– volume: 26
  start-page: 140
  year: 1994
  ident: 3529_CR5
  publication-title: B. Lond. Math. Soc.
  doi: 10.1112/blms/26.2.140
– volume-title: Additive Number Theory. Inverse problems and the geometry of sumsets
  year: 1996
  ident: 3529_CR15
  doi: 10.1007/978-1-4757-3845-2
– volume: 66
  start-page: 88
  year: 1956
  ident: 3529_CR12
  publication-title: Math. Z.
  doi: 10.1007/BF01186598
– volume: 34
  start-page: 1207
  year: 2013
  ident: 3529_CR17
  publication-title: European Journal of Combinatorics
  doi: 10.1016/j.ejc.2013.05.005
– volume-title: Éléments de mathématique
  year: 1959
  ident: 3529_CR4
– volume: 426
  start-page: 214
  year: 2007
  ident: 3529_CR8
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2007.04.019
– volume: 3
  start-page: 97
  year: 1989
  ident: 3529_CR18
  publication-title: Scientia. Series A: Mathematical Sciences
– volume: 18
  start-page: 247
  year: 1956
  ident: 3529_CR11
  publication-title: Indagationes Mathematicae (Proceedings)
  doi: 10.1016/S1385-7258(56)50032-7
SSID ssj0008315
Score 2.3000717
Snippet A Theorem of Hou, Leung and Xiang generalised Kneser’s addition Theorem to field extensions. This theorem was known to be valid only in separable extensions,...
A Theorem of Hou, Leung and Xiang generalised Kneser's addition Theorem to field extensions. This theorem was known to be valid only in separable extensions,...
SourceID hal
csuc
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 759
SubjectTerms 11 Number theory
11P Additive number theory; partitions
12 Field theory and polynomials
12F Field extensions
Addition theorem
Additive combinatorics
Classificació AMS
Combinatorial analysis
Combinatorics
Field theory (Physics)
linear versions
Matemàtiques i estadística
Mathematics
Mathematics and Statistics
Particions (Matemàtica)
Partitions (Mathematics)
Rings and Algebras
Teoria de camps (física)
Teoria de cossos i polinomis
Teoria de nombres
Theorems
Àlgebra
Àrees temàtiques de la UPC
Title Revisiting Kneser’s Theorem for Field Extensions
URI https://link.springer.com/article/10.1007/s00493-016-3529-0
https://www.proquest.com/docview/2097639240
https://recercat.cat/handle/2072/308808
https://hal.science/hal-01951358
Volume 38
WOSCitedRecordID wos000443306900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1439-6912
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008315
  issn: 0209-9683
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_a04f2Qa1aGrUSSkFQFvYryebxEA-hKmI_8G3Z7CYo2FMud9LH_hv99_qXOJNL0lpUsA95SLLJzu7szvyGnQ-Aj5nUWVDKscS7wHTiDSsCNywNqgiSJyENrik2kZ2cmPPz_LSN4647b_fuSLKR1H2wG4FZ8v1JGYKGnKGdvoDazlC9hrPP33rxa9qyBZJT6kmjuqPMh35xTxkNfD3zvWR-eUGOkX-hzn8OShv9M1r-L8pXYKmFm_Fwvj7ewItyvAqvj_tcrfUayLMmwJzcn-NPVI9y8vvnrzpugvbL7zGC2nhEbm7xwY_G2x2X6Tp8HR182T9kbSUF5nWmp0wFL1KyhAyiKe-EDjwvSl2pzCFBGgWeEwEtL9RoWcFDljshvAhVWuVSCuXUWxiMr8flO4g1QgJVcZmjLaRVWeU6NYEX2iWhCF5WEfBuSq1v04xTtYsr2ydIbqbDkmsZTYflEez2n9zMc2w83Rj5ZFEflBPvppbyY_c3dEmeSatQenITwQ5x09JmRSK8a2MOcCiU9soO0bRASIxWYgQfkOF99_TTw-GRpWcUUilUYm5FBFvderDtVq-xO0R0iDI1krbX8f_P60cHsvGs1pvwCqGambsebsFgOpmV72HR304v68l2swPuAN6Q-4E
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_sKVQf1NYWo1VDKRRaFvYryebxkB4nvR6lH9K3ZbObUMGecrkWH_03_Pf8S5zJJfEDW9CHPCTZZGd3dmd-w84HwE4mdRaUcizxLjCdeMOKwA1LgyqC5ElIg2uKTWTTqbm4yI_bOO6683bvjiQbSd0HuxGYJd-flCFoyBna6fc1KixKmH9y-r4Xv6YtWyA5pZ40qjvK_NsvflNGA19f-14yr1ySY-QvqPOPg9JG_4ye_BflT-FxCzfj4XJ9rMG9crYOj476XK31M5AnTYA5uT_Hh1SPcv7967c6boL2y6sYQW08Ije3-OBL4-2Oy3QDzkcHZ2_HrK2kwLzO9IKp4EVKlpBBNOWd0IHnRakrlTkkSKPAcyKg5YUaLSt4yHInhBehSqtcSqGc2oTB7NOsfA6xRkigKi5ztIW0KqtcpybwQrskFMHLKgLeTan1bZpxqnbx0fYJkpvpsORaRtNheQR7_Seflzk27m6MfLKoD8q5dwtL-bH7G7okz6RVKD25iWCXuGlpsyIR3rUxBzgUSntlh2haICRGKzGCbWR43z39dDycWHpGIZVCJeZGRLDVrQfbbvUau0NEhyhTI2n7Hf9_vr51IC_-qfUbWB2fHU3s5N308CU8RNhmlm6IWzBYzK_LV_DA3yw-1PPXzW74Aa7J_mU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9VAEB7qUcQ-1DtNLxpEEJSle0uyeTxoD5XWQ_FG35bNboKFeiwnaelj_0b_Xn9JZ3KSaKUK4kMekmyy95lv2G9mAF5mUmdBKccS7wLTiTesCNywNKgiSJ6ENLg22UQ2nZqDg3y_y3Na92z3_khy4dNAUZpmzdZxqLYGxzcCtsQDShkCiJyhzX5bE4-ezPVPXwdRbLoUBpJTGEqj-mPNm35xTTGNfH3iByl96xuRJH9BoL8dmra6aHL_v3vxAFY6GBqPF-vmISyVs0ew_GGI4Vo_BvmxdTwnWnS8S3kq55fnF3XcOvOX32MEu_GE6G_x9lnLgsfl-wS-TLY_v91hXYYF5nWmG6aCFylZSAZRlndCB54Xpa5U5rBBGgWhEwEtMtR0WcFDljshvAhVWuVSCuXUUxjNfszKVYg1QgVVcZmjjaRVWeU6NYEX2iWhCF5WEfB-eK3vwo9TFowjOwRObofDEuWMhsPyCF4PnxwvYm_8vTDOmUU9Uc69ayzFzR5u6JI8k1ahVOUmglc0s5Y2MTbCu84XAbtC4bDsGE0OhMpoPUbwAid_qJ5-ujPes_SMXC2FSsypiGCjXxu2EwE1VodID9Gnxqa96dfCz9d_7MjaP5V-Dnf3303s3vvp7jrcQzRnFuzEDRg185NyE-740-awnj9rN8YVklsHWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+Kneser%E2%80%99s+Theorem+for+Field+Extensions&rft.jtitle=Combinatorica+%28Budapest.+1981%29&rft.au=Bachoc%2C+Christine&rft.au=Serra%2C+Oriol&rft.au=Z%C3%A9mor%2C+Gilles&rft.date=2018-08-01&rft.pub=Springer+Verlag&rft.issn=0209-9683&rft.eissn=1439-6912&rft.volume=38&rft.issue=4&rft.spage=759&rft.epage=777&rft_id=info:doi/10.1007%2Fs00493-016-3529-0&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01951358v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0209-9683&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0209-9683&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0209-9683&client=summon