Power Control and Trajectory Planning Based Interference Management for UAV-Assisted Wireless Sensor Networks
Wireless sensor networks are generally used to assist in collecting and transmitting data where humans cannot directly explore. But in a scenario with complex terrestrial environment, the ground communication links between sensors become so weak to provide reliable and high-speed services. Unmanned...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 8; S. 3453 - 3464 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Wireless sensor networks are generally used to assist in collecting and transmitting data where humans cannot directly explore. But in a scenario with complex terrestrial environment, the ground communication links between sensors become so weak to provide reliable and high-speed services. Unmanned aerial vehicles (UAVs) can be used as flying relays to enhance connective reliability of terrestrial wireless sensor networks. However, in a UAV-assisted wireless senor network, if the UAV shares the same spectrum with sensors, the interference degrades the quality of communication links when sensors exist in pairs under co-channel conditions. Motivated thereby, we manage the interference by optimizing the transmit power of all communication nodes and planning the trajectory of UAV to achieve the goal of maximizing the sum throughput of the target sensor. Due to the nonconvexity of the optimization problems, we utilize difference of two convex functions (D.C.) programming and successive convex approximation to obtain the suboptimal solutions. Simulation results prove that the minimum signal-to-interference-plus-noise ratio (SINR) required by sensor pairs, flight altitude and maximum transmit power of the UAV can be carefully selected to maximize the sum throughput of target sensor, when the UAV's trajectory is pre-planned. The successive trajectory planning algorithm is also employed to significantly improve the sum throughput. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2019.2962547 |