Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment
In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previ...
Saved in:
| Published in: | Nature medicine Vol. 30; no. 6; pp. 1655 - 1666 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Nature Publishing Group US
01.06.2024
Nature Publishing Group |
| Subjects: | |
| ISSN: | 1078-8956, 1546-170X, 1546-170X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGE
SNV
uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGE
CNV
also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGE
SNV
enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition.
Detection of circulating tumor DNA using MRD-EDGE, a machine-learning-guided single-nucleotide variant and copy-number variant detection platform for signal enrichment, enables monitoring of minimal residual disease and immunotherapy response in settings of low tumor burden. |
|---|---|
| AbstractList | In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGESNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGECNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGESNV enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition.In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGESNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGECNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGESNV enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition. In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole genome sequencing (WGS). We now introduce MRD-EDGE, a machine learning-guided WGS ctDNA single nucleotide variant (SNV) and copy number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGESNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300X compared to previous WGS error suppression. MRD-EDGECNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGESNV enables plasma-only (non tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune checkpoint inhibition (ICI). In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGE SNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGE CNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGE SNV enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition. Detection of circulating tumor DNA using MRD-EDGE, a machine-learning-guided single-nucleotide variant and copy-number variant detection platform for signal enrichment, enables monitoring of minimal residual disease and immunotherapy response in settings of low tumor burden. In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGE uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGE also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGE enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition. In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGESNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGECNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGESNV enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition.Detection of circulating tumor DNA using MRD-EDGE, a machine-learning-guided single-nucleotide variant and copy-number variant detection platform for signal enrichment, enables monitoring of minimal residual disease and immunotherapy response in settings of low tumor burden. |
| Author | Winterkorn, Lara Gelmon, Karen Shah, Minita Turajlic, Samra Halmos, Daniel Henriksen, Tenna Vesterman Therkildsen, Christina Potenski, Catherine Postow, Michael A. Robine, Nicolas Schiffman, Joshua S. Lohrisch, Caroline Deshpande, Aditya Aparicio, Sam Frydendahl, Amanda Imielinski, Marcin Maher, Colleen Villa, Diego Brand, Ryan Altorki, Nasser K. den Brok, Wendie Kong, Esther Wolchok, Jedd D. Zhang, Mingxuan Shenkier, Tamara Mungall, Andrew J. Cheng, Alexandre Pellan Liao, Will Nors, Jesper Berger, Michael F. Steinsnyder, Zoe Callahan, Margaret K. Langanay, Theophile Marton, Melissa Øgaard, Nadia Widman, Adam J. Arora, Anushri Bass, Jake Rajagopalan, Srinivas Malbari, Murtaza S. Moore, Richard Saxena, Ashish Krause, Kate Jensen, Sarah Østrup Spain, Lavinia Landau, Dan A. Shah, Ronak H. Andersen, Claus Lindbjerg Andersen, Laura Manaa, Dina Cerda, Viviana Hooper, William F. Rasmussen, Mads Heilskov Simmons, Christine Frederick, Dennie T. Boland, Genevieve Khamnei, Cole C. Quentin, Jean Lai, Daniel Sotelo, Jesus Zaikova, Elena |
| Author_xml | – sequence: 1 givenname: Adam J. orcidid: 0000-0001-7953-0677 surname: Widman fullname: Widman, Adam J. email: widmana@mskcc.org organization: New York Genome Center, Memorial Sloan Kettering Cancer Center – sequence: 2 givenname: Minita surname: Shah fullname: Shah, Minita organization: New York Genome Center – sequence: 3 givenname: Amanda orcidid: 0000-0001-9552-5421 surname: Frydendahl fullname: Frydendahl, Amanda organization: Department of Molecular Medicine, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University – sequence: 4 givenname: Daniel surname: Halmos fullname: Halmos, Daniel organization: New York Genome Center, Weill Cornell Medicine – sequence: 5 givenname: Cole C. surname: Khamnei fullname: Khamnei, Cole C. organization: New York Genome Center, Weill Cornell Medicine – sequence: 6 givenname: Nadia surname: Øgaard fullname: Øgaard, Nadia organization: Department of Molecular Medicine, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University – sequence: 7 givenname: Srinivas surname: Rajagopalan fullname: Rajagopalan, Srinivas organization: New York Genome Center, Weill Cornell Medicine – sequence: 8 givenname: Anushri surname: Arora fullname: Arora, Anushri organization: New York Genome Center, Weill Cornell Medicine – sequence: 9 givenname: Aditya surname: Deshpande fullname: Deshpande, Aditya organization: New York Genome Center, Weill Cornell Medicine – sequence: 10 givenname: William F. surname: Hooper fullname: Hooper, William F. organization: New York Genome Center – sequence: 11 givenname: Jean surname: Quentin fullname: Quentin, Jean organization: New York Genome Center, Weill Cornell Medicine – sequence: 12 givenname: Jake orcidid: 0000-0001-8703-8877 surname: Bass fullname: Bass, Jake organization: New York Genome Center, Weill Cornell Medicine – sequence: 13 givenname: Mingxuan surname: Zhang fullname: Zhang, Mingxuan organization: New York Genome Center, Weill Cornell Medicine – sequence: 14 givenname: Theophile surname: Langanay fullname: Langanay, Theophile organization: New York Genome Center, Weill Cornell Medicine – sequence: 15 givenname: Laura orcidid: 0009-0001-0223-3401 surname: Andersen fullname: Andersen, Laura organization: Department of Molecular Medicine, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University – sequence: 16 givenname: Zoe surname: Steinsnyder fullname: Steinsnyder, Zoe organization: New York Genome Center – sequence: 17 givenname: Will orcidid: 0000-0001-7574-4694 surname: Liao fullname: Liao, Will organization: New York Genome Center – sequence: 18 givenname: Mads Heilskov orcidid: 0000-0001-5723-6303 surname: Rasmussen fullname: Rasmussen, Mads Heilskov organization: Department of Molecular Medicine, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University – sequence: 19 givenname: Tenna Vesterman surname: Henriksen fullname: Henriksen, Tenna Vesterman organization: Department of Molecular Medicine, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University – sequence: 20 givenname: Sarah Østrup orcidid: 0000-0001-6044-3362 surname: Jensen fullname: Jensen, Sarah Østrup organization: Department of Molecular Medicine, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University – sequence: 21 givenname: Jesper orcidid: 0000-0002-9104-7263 surname: Nors fullname: Nors, Jesper organization: Department of Molecular Medicine, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University – sequence: 22 givenname: Christina orcidid: 0000-0002-2833-6986 surname: Therkildsen fullname: Therkildsen, Christina organization: Gastro Unit, Copenhagen University Hospital, Amager – Hvidovre Hospital – sequence: 23 givenname: Jesus surname: Sotelo fullname: Sotelo, Jesus organization: New York Genome Center, Weill Cornell Medicine – sequence: 24 givenname: Ryan orcidid: 0000-0001-6412-6647 surname: Brand fullname: Brand, Ryan organization: New York Genome Center, Weill Cornell Medicine – sequence: 25 givenname: Joshua S. orcidid: 0000-0002-1028-1438 surname: Schiffman fullname: Schiffman, Joshua S. organization: New York Genome Center, Weill Cornell Medicine – sequence: 26 givenname: Ronak H. orcidid: 0000-0001-9042-6213 surname: Shah fullname: Shah, Ronak H. organization: Memorial Sloan Kettering Cancer Center – sequence: 27 givenname: Alexandre Pellan orcidid: 0000-0002-3667-0992 surname: Cheng fullname: Cheng, Alexandre Pellan organization: New York Genome Center, Weill Cornell Medicine – sequence: 28 givenname: Colleen orcidid: 0000-0003-1117-9272 surname: Maher fullname: Maher, Colleen organization: Memorial Sloan Kettering Cancer Center, Parker Institute for Cancer Immunotherapy – sequence: 29 givenname: Lavinia surname: Spain fullname: Spain, Lavinia organization: Cancer Dynamics Laboratory, The Francis Crick Institute, Renal and Skin Unit, The Royal Marsden NHS Foundation Trust – sequence: 30 givenname: Kate surname: Krause fullname: Krause, Kate organization: Mass General Cancer Center, Massachusetts General Hospital – sequence: 31 givenname: Dennie T. orcidid: 0000-0003-3355-5267 surname: Frederick fullname: Frederick, Dennie T. organization: Mass General Cancer Center, Massachusetts General Hospital – sequence: 32 givenname: Wendie surname: den Brok fullname: den Brok, Wendie organization: Department of Medical Oncology, BC Cancer Agency – sequence: 33 givenname: Caroline surname: Lohrisch fullname: Lohrisch, Caroline organization: Department of Medical Oncology, BC Cancer Agency – sequence: 34 givenname: Tamara surname: Shenkier fullname: Shenkier, Tamara organization: Department of Medical Oncology, BC Cancer Agency – sequence: 35 givenname: Christine surname: Simmons fullname: Simmons, Christine organization: Department of Medical Oncology, BC Cancer Agency – sequence: 36 givenname: Diego orcidid: 0000-0002-4625-3009 surname: Villa fullname: Villa, Diego organization: Department of Medical Oncology, BC Cancer Agency – sequence: 37 givenname: Andrew J. orcidid: 0000-0002-0905-2742 surname: Mungall fullname: Mungall, Andrew J. organization: Michael Smith Genome Sciences Centre – sequence: 38 givenname: Richard surname: Moore fullname: Moore, Richard organization: Michael Smith Genome Sciences Centre – sequence: 39 givenname: Elena orcidid: 0000-0002-2422-3108 surname: Zaikova fullname: Zaikova, Elena organization: Department of Molecular Oncology, BC Cancer Agency – sequence: 40 givenname: Viviana surname: Cerda fullname: Cerda, Viviana organization: Department of Molecular Oncology, BC Cancer Agency – sequence: 41 givenname: Esther orcidid: 0000-0002-1315-4311 surname: Kong fullname: Kong, Esther organization: Department of Molecular Oncology, BC Cancer Agency – sequence: 42 givenname: Daniel orcidid: 0000-0001-9203-6323 surname: Lai fullname: Lai, Daniel organization: Department of Molecular Oncology, BC Cancer Agency – sequence: 43 givenname: Murtaza S. surname: Malbari fullname: Malbari, Murtaza S. organization: Weill Cornell Medicine – sequence: 44 givenname: Melissa surname: Marton fullname: Marton, Melissa organization: New York Genome Center – sequence: 45 givenname: Dina surname: Manaa fullname: Manaa, Dina organization: New York Genome Center – sequence: 46 givenname: Lara surname: Winterkorn fullname: Winterkorn, Lara organization: New York Genome Center – sequence: 47 givenname: Karen surname: Gelmon fullname: Gelmon, Karen organization: Department of Medical Oncology, BC Cancer Agency – sequence: 48 givenname: Margaret K. orcidid: 0000-0002-9087-0012 surname: Callahan fullname: Callahan, Margaret K. organization: Memorial Sloan Kettering Cancer Center – sequence: 49 givenname: Genevieve orcidid: 0000-0002-7522-6173 surname: Boland fullname: Boland, Genevieve organization: Mass General Cancer Center, Massachusetts General Hospital – sequence: 50 givenname: Catherine surname: Potenski fullname: Potenski, Catherine organization: New York Genome Center, Weill Cornell Medicine – sequence: 51 givenname: Jedd D. orcidid: 0000-0001-6718-2222 surname: Wolchok fullname: Wolchok, Jedd D. organization: Memorial Sloan Kettering Cancer Center – sequence: 52 givenname: Ashish surname: Saxena fullname: Saxena, Ashish organization: Weill Cornell Medicine – sequence: 53 givenname: Samra orcidid: 0000-0001-8846-136X surname: Turajlic fullname: Turajlic, Samra organization: Cancer Dynamics Laboratory, The Francis Crick Institute, Renal and Skin Unit, The Royal Marsden NHS Foundation Trust – sequence: 54 givenname: Marcin orcidid: 0000-0002-2211-4741 surname: Imielinski fullname: Imielinski, Marcin organization: New York Genome Center, Perlmutter Cancer Center, NYU Grossman School of Medicine – sequence: 55 givenname: Michael F. orcidid: 0000-0003-3882-5000 surname: Berger fullname: Berger, Michael F. organization: Memorial Sloan Kettering Cancer Center – sequence: 56 givenname: Sam orcidid: 0000-0002-0487-9599 surname: Aparicio fullname: Aparicio, Sam organization: Department of Molecular Oncology, BC Cancer Agency, Department of Pathology and Laboratory Medicine, University of British Columbia – sequence: 57 givenname: Nasser K. orcidid: 0000-0001-9754-9945 surname: Altorki fullname: Altorki, Nasser K. organization: Weill Cornell Medicine – sequence: 58 givenname: Michael A. orcidid: 0000-0002-3367-7961 surname: Postow fullname: Postow, Michael A. organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine – sequence: 59 givenname: Nicolas orcidid: 0000-0001-5698-8183 surname: Robine fullname: Robine, Nicolas organization: New York Genome Center – sequence: 60 givenname: Claus Lindbjerg orcidid: 0000-0002-7406-2103 surname: Andersen fullname: Andersen, Claus Lindbjerg organization: Department of Molecular Medicine, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University – sequence: 61 givenname: Dan A. orcidid: 0000-0003-2346-9541 surname: Landau fullname: Landau, Dan A. email: dlandau@nygenome.org organization: New York Genome Center, Weill Cornell Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38877116$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9rFTEUxYNU7B_9Ai5kwI2b2GSSSSYbQYraQqEbC92FO5k776XMJM9kpuC3N9PXVu2iq4Sb3zk5l3NMDkIMSMh7zj5zJtrTLHljOGW1pEwwyah8RY54IxXlmt0clDvTLW1Now7Jcc63jBWsMW_IoWhbrTlXR2S4HucEGUP2s7_DajdCnoB2ZdRXUwx-jsmHTRWHal6mmKpuST2GasnrdAK39QHpiJBCGdDN4vsizH4TYKwwJO-2E4b5LXk9wJjx3cN5Qq6_f_t5dk4vr35cnH29pE5qOdPaDdqgGbjQ3ADr6h5RoBIIquWcIw7GQIvgOtezHhQKqLkWHShnRKNAnJAve9_d0k3Yu_J1gtHukp8g_bYRvP3_Jfit3cQ7qxVXXIpi8OnBIMVfC-bZTj47HEcIGJdsBVOtlkYbXtCPz9DbuKSy9z1llDFKr9SHfxM9RXmsoAD1HnAp5pxweEI4s2vPdt-zLT3b-56tLKL2mcj5GWYf1638-LJU7KV5tzaL6W_sF1R_ADS7v98 |
| CitedBy_id | crossref_primary_10_1016_j_apsb_2025_05_036 crossref_primary_10_1007_s00262_024_03887_z crossref_primary_10_1186_s13046_025_03348_0 crossref_primary_10_1016_j_ejca_2024_114314 crossref_primary_10_1186_s12575_025_00287_0 crossref_primary_10_1177_10760296251339421 crossref_primary_10_1038_s41467_024_55428_y crossref_primary_10_3389_fonc_2024_1486310 crossref_primary_10_1038_s41592_025_02648_9 crossref_primary_10_1007_s10238_025_01858_x crossref_primary_10_1080_14737159_2025_2531065 crossref_primary_10_1016_j_annonc_2025_01_021 crossref_primary_10_1016_j_abb_2025_110599 crossref_primary_10_1080_17501911_2025_2500907 crossref_primary_10_1101_gr_278413_123 crossref_primary_10_1097_JS9_0000000000002206 crossref_primary_10_3390_ijms26051889 crossref_primary_10_1073_pnas_2426890122 crossref_primary_10_1016_j_jlb_2025_100301 crossref_primary_10_37349_etat_2025_1002333 crossref_primary_10_3389_fonc_2025_1492880 crossref_primary_10_1007_s13167_025_00413_8 crossref_primary_10_3390_ijms252413349 crossref_primary_10_3390_ijms252413669 crossref_primary_10_1016_S1470_2045_25_00139_1 crossref_primary_10_1016_j_annonc_2024_12_006 crossref_primary_10_1038_s41392_025_02243_6 crossref_primary_10_1038_s41585_025_01023_9 crossref_primary_10_1016_j_annonc_2025_03_008 crossref_primary_10_2340_1651_226X_2025_43320 crossref_primary_10_3390_foods13172665 crossref_primary_10_1016_j_jtho_2024_07_014 crossref_primary_10_3390_genes16010071 crossref_primary_10_1038_s44276_025_00135_4 crossref_primary_10_3748_wjg_v31_i11_104170 crossref_primary_10_1016_j_cca_2025_120385 crossref_primary_10_1016_j_mcp_2025_102024 crossref_primary_10_1038_s41571_025_01033_x crossref_primary_10_1245_s10434_025_17601_5 |
| Cites_doi | 10.1038/nbt.2203 10.1016/S1470-2045(21)00149-2 10.1200/PO.21.00182 10.1038/nbt.3520 10.21873/anticanres.11360 10.1038/s41467-017-00965-y 10.1126/science.aav1898 10.1126/scitranslmed.aat4921 10.1002/gcc.22539 10.1038/nature11247 10.1101/861054 10.1001/jamaoncol.2019.3616 10.1126/scitranslmed.aaz8084 10.1093/nar/gkw520 10.1038/ng.2760 10.1002/1878-0261.13294 10.1016/j.cell.2015.12.050 10.1200/JCO.21.01570 10.1038/nbt.1518 10.2196/resprot.6346 10.1038/s41467-021-25432-7 10.1093/bioinformatics/btw389 10.1101/2022.05.29.493900 10.1056/NEJMoa2200075 10.1101/cshperspect.a026625 10.1002/cpbi.17 10.1016/j.semcancer.2013.01.001 10.1126/science.aag0299 10.4321/S1130-01082005000100002 10.1038/s41467-021-24109-5 10.1016/j.annonc.2020.11.007 10.1101/237578 10.1186/1471-2105-15-182 10.1038/s41591-022-02115-4 10.1038/s41586-019-1272-6 10.1038/nature12477 10.1126/sciadv.abc4308 10.5281/zenodo.5512044 10.1001/jamaoncol.2019.0528 10.1038/nmeth.1906 10.1158/1078-0432.CCR-21-2404 10.1038/s41591-020-0915-3 10.1038/s41551-022-00855-9 10.1038/nmeth.3582 10.1016/j.cell.2020.09.001 10.1093/annonc/mdu479 10.3390/cancers12061482 10.1016/j.ccell.2018.03.007 10.7554/eLife.71569 10.1038/s41587-021-01070-8 10.1016/j.jmoldx.2014.12.006 10.5281/zenodo.7234506 10.1038/s41586-020-2308-7 10.1038/nature14221 10.1016/j.cell.2015.11.050 10.1038/s41586-021-03642-9 10.1158/2159-8290.CD-20-0047 10.1158/1538-7445.AM2022-5114 10.1371/journal.pgen.1006162 10.1101/847681 10.18632/oncotarget.25053 10.1126/scitranslmed.aan2415 10.1038/s43018-020-0096-5 10.1158/1078-0432.CCR-21-1283 10.1016/j.cell.2019.02.051 10.1038/s41586-019-1907-7 10.1038/s41588-023-01446-3 10.1093/bioinformatics/btp324 10.1056/NEJMoa1709684 10.1136/gutjnl-2014-308859 10.1038/s41587-021-00981-w 10.1093/clinchem/hvab274 10.1038/nm.3519 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s), under exclusive licence to Springer Nature America, Inc. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s), under exclusive licence to Springer Nature America, Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U7 7U9 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M2P M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
| DOI | 10.1038/s41591-024-03040-4 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Proquest Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1546-170X |
| EndPage | 1666 |
| ExternalDocumentID | PMC7616143 38877116 10_1038_s41591_024_03040_4 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Melanoma Research Alliance (MRA) grantid: 1039927 funderid: https://doi.org/10.13039/100005190 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: CA263301-01A1 funderid: https://doi.org/10.13039/100000054 – fundername: Melanoma Research Alliance (MRA) grantid: 1039927 – fundername: Wellcome Trust – fundername: NCI NIH HHS grantid: R01 CA266619 – fundername: Cancer Research UK grantid: CC2044 – fundername: NCI NIH HHS grantid: U01 CA247439 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: CA263301-01A1 – fundername: NCI NIH HHS grantid: K08 CA263301 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: Cancer Research UK grantid: 29911 – fundername: NCI NIH HHS grantid: T32 CA079443 |
| GroupedDBID | --- .-4 .55 .GJ 0R~ 123 1CY 29M 2FS 36B 39C 3O- 3V. 4.4 53G 5BI 5M7 5RE 5S5 70F 7X7 85S 88A 88E 88I 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AARCD AAYOK AAYZH AAZLF ABAWZ ABCQX ABDBF ABDPE ABEFU ABJNI ABLJU ABOCM ABUWG ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGCDD AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAO IEA IH2 IHR IHW INH INR IOF IOV ISR ITC J5H L7B LGEZI LK8 LOTEE M0L M1P M2O M2P M7P MK0 N9A NADUK NNMJJ NXXTH O9- ODYON P2P PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT RVV SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TSG TUS UKHRP UQL X7M XJT YHZ ZGI ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFFHD AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION NFIDA PHGZM PHGZT PJZUB PPXIY PQGLB XRW AETEA AGGLG CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U7 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c474t-2cf79e9f13719a0b2dee3e63ea68111eef99a8eacbcd0da6e3a2173ba6c9356a3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001247911100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1078-8956 1546-170X |
| IngestDate | Tue Nov 04 02:05:35 EST 2025 Thu Oct 02 17:56:22 EDT 2025 Mon Oct 06 17:25:26 EDT 2025 Wed Dec 10 14:04:41 EST 2025 Sat Nov 29 06:02:36 EST 2025 Tue Nov 18 20:02:46 EST 2025 Fri Feb 21 02:37:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | 2024. The Author(s), under exclusive licence to Springer Nature America, Inc. This work is licensed under a BY 4.0 International license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-2cf79e9f13719a0b2dee3e63ea68111eef99a8eacbcd0da6e3a2173ba6c9356a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors co-supervised These authors contributed equally |
| ORCID | 0000-0002-2833-6986 0000-0002-9104-7263 0000-0001-6044-3362 0000-0001-9042-6213 0000-0002-7522-6173 0000-0002-2422-3108 0000-0003-3355-5267 0000-0002-1028-1438 0000-0001-6412-6647 0000-0001-7574-4694 0000-0003-1117-9272 0000-0002-1315-4311 0000-0001-9203-6323 0000-0002-0487-9599 0000-0002-7406-2103 0000-0001-5698-8183 0000-0001-8846-136X 0000-0002-2211-4741 0000-0003-3882-5000 0000-0001-5723-6303 0000-0002-3667-0992 0000-0001-6718-2222 0000-0001-7953-0677 0000-0002-0905-2742 0000-0002-3367-7961 0000-0003-2346-9541 0000-0001-8703-8877 0000-0001-9552-5421 0000-0002-4625-3009 0000-0001-9754-9945 0009-0001-0223-3401 0000-0002-9087-0012 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7616143 |
| PMID | 38877116 |
| PQID | 3069699671 |
| PQPubID | 33975 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7616143 proquest_miscellaneous_3068749791 proquest_journals_3069699671 pubmed_primary_38877116 crossref_primary_10_1038_s41591_024_03040_4 crossref_citationtrail_10_1038_s41591_024_03040_4 springer_journals_10_1038_s41591_024_03040_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Nature medicine |
| PublicationTitleAbbrev | Nat Med |
| PublicationTitleAlternate | Nat Med |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group US Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
| References | SnyderMWKircherMHillAJDazaRMShendureJCell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-originCell201616457681:CAS:528:DC%2BC28XhtFShsbs%3D267714854715266 Weber, S. et al. Dynamic changes of circulating tumor DNA predict clinical outcome in patients with advanced non–small-cell lung cancer treated with immune checkpoint inhibitors. JCO Precis. Oncol.https://doi.org/10.1200/PO.21.00182 (2021). Imielinski, M. et al. fragCounter: GC and mappability corrected fragment coverage for paired end whole genome sequencing. GitHubhttps://github.com/mskilab-org/fragCounter (2018). UnderhillHRFragment length of circulating tumor DNAPLoS Genet.201612e1006162274280494948782 AvanziniSA mathematical model of ctDNA shedding predicts tumor detection sizeSci. Adv.20206eabc4308333108477732186 Illumina. TruSeq DNA PCR-Free Reference Guide (Illumina, 2017). Benjamin, D. et al. Calling somatic SNVs and indels with Mutect2. Preprint at bioRxivhttps://doi.org/10.1101/861054 (2019). MagbanuaMJMCirculating tumor DNA in neoadjuvant-treated breast cancer reflects response and survivalAnn. Oncol.2021322292391:CAS:528:DC%2BB38XhvVKrtbs%3D33232761 ShawJSerial postoperative ctDNA monitoring of breast cancer recurrenceJ. Clin. Orthod.202240562 Phallen, J. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aan2415 (2017). KotaniDMolecular residual disease and efficacy of adjuvant chemotherapy in patients with colorectal cancerNat. Med.2023291271341:CAS:528:DC%2BB3sXhslKht7Y%3D366468029873552 ReinertTAnalysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgeryGut2016656256341:CAS:528:DC%2BC2sXivV2mt7k%3D25654990 KarczewskiKJThe mutational constraint spectrum quantified from variation in 141,456 humansNature20205814344431:CAS:528:DC%2BB3cXhtVanu7jF324616547334197 AlexandrovLBMutational signatures associated with tobacco smoking in human cancerScience20163546186221:CAS:528:DC%2BC28XhslKgt7vK278112756141049 AdalsteinssonVAScalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumorsNat. Commun.20178291093935673918 NabetBYNoninvasive early identification of therapeutic benefit from immune checkpoint inhibitionCell20201833633761:CAS:528:DC%2BB3cXhvFyqt7%2FM330072677572899 ReinertTAnalysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancerJAMA Oncol.2019511241131310706916512280 TanACAbstract 5114: ultra-sensitive detection of minimal residual disease (MRD) through whole genome sequencing (WGS) using an AI-based error suppression model in resected early-stage non-small cell lung cancer (NSCLC)Cancer Res.2022825114 AmemiyaHMKundajeABoyleAPThe ENCODE blacklist: identification of problematic regions of the genomeSci. Rep.20199312493616597582 JiangPPreferred end coordinates and somatic variants as signatures of circulating tumor DNA associated with hepatocellular carcinomaProc. Natl Acad. Sci. USA2018115E10925E109331:CAS:528:DC%2BC1cXit1SgtLrM303738226243268 RasmussenLProtocol outlines for parts 1 and 2 of the prospective endoscopy III study for the early detection of colorectal cancer: validation of a concept based on blood biomarkersJMIR Res. Protoc.20165e182276248155039335 Chowell, D. et al. Improved prediction of immune checkpoint blockade efficacy across multiple cancer types. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01070-8 (2021). Kurtz, D. M. et al. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00981-w (2021). HaradhvalaNJMutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repairCell20161645385491:CAS:528:DC%2BC28XhsVKitbg%3D268061294753048 RozowskyJPeakSeq enables systematic scoring of ChIP-seq experiments relative to controlsNat. Biotechnol.20092766751:CAS:528:DC%2BD1MXhtVOrtQ%3D%3D191226512924752 Cindy YangSYPan-cancer analysis of longitudinal metastatic tumors reveals genomic alterations and immune landscape dynamics associated with pembrolizumab sensitivityNat. Commun.2021121:CAS:528:DC%2BB3MXhvFSrtL7M344467288390680 CarterSLAbsolute quantification of somatic DNA alterations in human cancerNat. Biotechnol.2012304134211:CAS:528:DC%2BC38Xmt1Gktb4%3D225440224383288 CristianoSGenome-wide cell-free DNA fragmentation in patients with cancerNature20195703853891:CAS:528:DC%2BC1MXhtVOgt7fI311428406774252 HenriksenTVError characterization and statistical modeling improves circulating tumor DNA detection by droplet digital PCRClin. Chem.20226865766735030248 Alcántara TorresMDNA aneuploidy in colorectal adenomas. Role in the adenoma-carcinoma sequenceRev. Esp. Enferm. Dig.20059771515801893 Zhang, Q. et al. Prognostic and predictive impact of circulating tumor DNA in patients with advanced cancers treated with immune checkpoint blockade. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-20-0047 (2020). WooYHLiW-HDNA replication timing and selection shape the landscape of nucleotide variation in cancer genomesNat. Commun.2012322893128 BruhmDCSingle-molecule genome-wide mutation profiles of cell-free DNA for non-invasive detection of cancerNat. Genet.202355130113101:CAS:528:DC%2BB3sXhsFOitbfF3750072810412448 PolakPCell-of-origin chromatin organization shapes the mutational landscape of cancerNature20155183603641:CAS:528:DC%2BC2MXjtVSktbo%3D256935674405175 TieJCirculating tumor DNA analysis guiding adjuvant therapy in stage II colon cancerN. Engl. J. Med.2022386226122721:CAS:528:DC%2BB38Xit1ersL3K356573209701133 Zivich, P., Davidson-Pilon, C., Reger, D., Diong, J. & The Gitter Badger. pzivich/zEpid: v.0.9.0. Zenodohttps://doi.org/10.5281/zenodo.7234506 (2020). Haque, I. S. & Elemento, O. Challenges in using ctDNA to achieve early detection of cancer. Preprint at bioRxivhttps://doi.org/10.1101/237578 (2017). Deshpande, A., Walradt, T., Hu, Y., Koren, A. & Imielinski, M. Robust foreground detection in somatic copy number data. Preprint at bioRxivhttps://doi.org/10.1101/847681 (2019). BaiXEarly use of high-dose glucocorticoid for the management of irAE is associated with poorer survival in patients with advanced melanoma treated with anti-PD-1 monotherapyClin. Cancer Res.202127599360001:CAS:528:DC%2BB3MXislKgtrnF343765369401488 Postow, M. A. et al. Adaptive dosing of nivolumab + ipilimumab immunotherapy based upon early, interim radiographic assessment in advanced melanoma (The ADAPT-IT Study). J. Clin. Oncol. https://doi.org/10.1200/JCO.21.01570 (2021). Davidson-Pilon, C. lifelines, survival analysis in Python. Zenodohttps://doi.org/10.5281/zenodo.5512044 (2021). ZviranAGenome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoringNat. Med.202026111411241:CAS:528:DC%2BB3cXhtVGmtbrN324833608108131 NewmanAMIntegrated digital error suppression for improved detection of circulating tumor DNANat. Biotechnol.2016345475551:CAS:528:DC%2BC28XkvV2itb8%3D270187994907374 WolffRKMutation analysis of adenomas and carcinomas of the colon: early and late driversGenes Chromosomes Cancer2018573663761:CAS:528:DC%2BC1cXosVajsLs%3D295755365951744 KageyamaS-IRadiotherapy increases plasma levels of tumoral cell-free DNA in non-small cell lung cancer patientsOncotarget201891936819378297212095922403 Almogy, G. et al. Cost-efficient whole genome-sequencing using novel mostly natural sequencing-by-synthesis chemistry and open fluidics platform. Preprint at bioRxivhttps://doi.org/10.1101/2022.05.29.493900 (2022). ShenRSeshanVEFACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencingNucleic Acids Res.201644e131272700795027494 ErnstJKellisMChromHMM: automating chromatin-state discovery and characterizationNat. Methods201292152161:CAS:528:DC%2BC38XivV2rtLk%3D223739073577932 LinYIntensity-modulated radiation therapy for definitive treatment of cervical cancer: a meta-analysisRadiat. Oncol.201813302171656137729 MouliereFEnhanced detection of circulating tumor DNA by fragment size analysisSci. Transl. Med.201810eaat4921304048636483061 Wan, J. C. M. et al. ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaz8084 (2020). LiHDurbinRFast and accurate short read alignment with Burrows–Wheeler transformBioinformatics200925175417601:CAS:528:DC%2BD1MXot1Cjtbo%3D194511682705234 GalanopoulosMComparative study of mutations in single nucleotide polymorphism loci of KRAS and BRAF genes in patients who underwent screening colonoscopy, with and without premalignant intestinal polypsAnticancer Res.2017376516571:CAS:528:DC%2BC1cXitlaitL7M28179313 Dentro, S. C., Wedge, D. C. & Van Loo, P. Principles of reconstructing the subclonal architecture of cancers. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a026625 (2017). DonleyNThayerMJDNA replication timing, genome stability and cancer: late and/or delayed DNA replication timing is associated with increased genomic instabilitySemin. Cancer Biol.20132380891:CAS:528:DC%2BC3sXit1Oisbo%3D233279853615080 JiangHLeiRDingS-WZhuSSkewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end readsBMC Bioinform.201415182 Junca, A. et al. Detection of colorectal cancer and advanced adenoma by liquid biopsy (Decalib Study): the ddPCR challenge. Cancershttps://doi.org/10.3390/cancers12061482 (2020). Renaud, G. et al. Unsupervised detection of fragment length signatures of circulating tumor DNA using non-negative matrix factorization. eLifehttps://doi.org/10.7554/eLife.71569 (2022). TieJCirculating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancerJAMA Oncol.2019517101717316218016802034 ChengDTMemorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor mole AM Taylor (3040_CR29) 2018; 33 TV Henriksen (3040_CR80) 2022; 16 SL Carter (3040_CR32) 2012; 30 HR Underhill (3040_CR20) 2016; 12 A Gonzalez-Perez (3040_CR23) 2019; 177 MR Corces (3040_CR73) 2018; 362 J Tie (3040_CR40) 2019; 5 3040_CR70 S Cristiano (3040_CR33) 2019; 570 AM Newman (3040_CR15) 2016; 34 3040_CR30 AC Tan (3040_CR39) 2022; 82 3040_CR76 3040_CR9 3040_CR78 LB Alexandrov (3040_CR19) 2016; 354 KJ Karczewski (3040_CR68) 2020; 581 3040_CR36 H Li (3040_CR63) 2009; 25 J Ernst (3040_CR74) 2012; 9 SV Bratman (3040_CR2) 2020; 1 X Bai (3040_CR57) 2021; 27 L Rasmussen (3040_CR47) 2016; 5 G Gydush (3040_CR17) 2022; 6 N Donley (3040_CR26) 2013; 23 SY Cindy Yang (3040_CR51) 2021; 12 AM Newman (3040_CR5) 2014; 20 F Favero (3040_CR67) 2015; 26 ENCODE Project Consortium. (3040_CR71) 2012; 489 A Rose Brannon (3040_CR7) 2021; 12 YH Woo (3040_CR24) 2012; 3 J Tie (3040_CR3) 2022; 386 A Zviran (3040_CR14) 2020; 26 LB Alexandrov (3040_CR18) 2013; 500 J Guo (3040_CR22) 2020; 21 HM Amemiya (3040_CR69) 2019; 9 3040_CR61 VA Adalsteinsson (3040_CR53) 2017; 8 JD Wolchok (3040_CR56) 2017; 377 TI Zack (3040_CR37) 2013; 45 B van de Geijn (3040_CR77) 2015; 12 RK Wolff (3040_CR50) 2018; 57 T Reinert (3040_CR38) 2019; 5 MJM Magbanua (3040_CR8) 2021; 32 S-I Kageyama (3040_CR42) 2018; 9 EA Bergmann (3040_CR65) 2016; 32 DT Cheng (3040_CR81) 2015; 17 D Kotani (3040_CR10) 2023; 29 K Arora (3040_CR66) 2019; 9 F Mouliere (3040_CR21) 2018; 10 BY Nabet (3040_CR6) 2020; 183 M Alcántara Torres (3040_CR48) 2005; 97 3040_CR52 3040_CR11 3040_CR55 T Reinert (3040_CR62) 2016; 65 3040_CR54 3040_CR12 DC Bruhm (3040_CR28) 2023; 55 3040_CR59 3040_CR58 M Gerstung (3040_CR60) 2020; 578 3040_CR16 MW Snyder (3040_CR34) 2016; 164 M Galanopoulos (3040_CR46) 2017; 37 NJ Haradhvala (3040_CR25) 2016; 164 NNM Myint (3040_CR44) 2018; 9 P Jiang (3040_CR35) 2018; 115 J Rozowsky (3040_CR72) 2009; 27 KM Raine (3040_CR31) 2016; 56 J Shaw (3040_CR43) 2022; 40 S Avanzini (3040_CR13) 2020; 6 P Polak (3040_CR27) 2015; 518 K Xiong (3040_CR75) 2019; 10 Y Lin (3040_CR49) 2018; 13 3040_CR4 3040_CR1 TV Henriksen (3040_CR79) 2022; 68 3040_CR84 3040_CR83 H Jiang (3040_CR64) 2014; 15 NK Altorki (3040_CR41) 2021; 22 3040_CR45 R Shen (3040_CR82) 2016; 44 |
| References_xml | – reference: Henriksen, T. V. et al. Circulating tumor DNA in stage III colorectal cancer, beyond minimal residual disease detection, towards assessment of adjuvant therapy efficacy and clinical behavior of recurrences. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-21-2404 (2021). – reference: UnderhillHRFragment length of circulating tumor DNAPLoS Genet.201612e1006162274280494948782 – reference: BergmannEAChenB-JAroraKVacicVZodyMCConpair: concordance and contamination estimator for matched tumor-normal pairsBioinformatics201632319631981:CAS:528:DC%2BC2sXht1ajtbjP273546995048070 – reference: BratmanSVPersonalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumabNat. Cancer202018738811:CAS:528:DC%2BB38XjsFeisLg%3D35121950 – reference: AlexandrovLBSignatures of mutational processes in human cancerNature20135004154211:CAS:528:DC%2BC3sXhtlWjur7M239455923776390 – reference: Almogy, G. et al. Cost-efficient whole genome-sequencing using novel mostly natural sequencing-by-synthesis chemistry and open fluidics platform. Preprint at bioRxivhttps://doi.org/10.1101/2022.05.29.493900 (2022). – reference: MagbanuaMJMCirculating tumor DNA in neoadjuvant-treated breast cancer reflects response and survivalAnn. Oncol.2021322292391:CAS:528:DC%2BB38XhvVKrtbs%3D33232761 – reference: AlexandrovLBMutational signatures associated with tobacco smoking in human cancerScience20163546186221:CAS:528:DC%2BC28XhslKgt7vK278112756141049 – reference: ShawJSerial postoperative ctDNA monitoring of breast cancer recurrenceJ. Clin. Orthod.202240562 – reference: ShenRSeshanVEFACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencingNucleic Acids Res.201644e131272700795027494 – reference: RozowskyJPeakSeq enables systematic scoring of ChIP-seq experiments relative to controlsNat. Biotechnol.20092766751:CAS:528:DC%2BD1MXhtVOrtQ%3D%3D191226512924752 – reference: Zivich, P., Davidson-Pilon, C., Reger, D., Diong, J. & The Gitter Badger. pzivich/zEpid: v.0.9.0. Zenodohttps://doi.org/10.5281/zenodo.7234506 (2020). – reference: Wan, J. C. M. et al. ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaz8084 (2020). – reference: Junca, A. et al. Detection of colorectal cancer and advanced adenoma by liquid biopsy (Decalib Study): the ddPCR challenge. Cancershttps://doi.org/10.3390/cancers12061482 (2020). – reference: TaylorAMGenomic and functional approaches to understanding cancer aneuploidyCancer Cell201833676689.e31:CAS:528:DC%2BC1cXmvVGrur0%3D296224636028190 – reference: NewmanAMAn ultrasensitive method for quantitating circulating tumor DNA with broad patient coverageNat. Med.2014205485541:CAS:528:DC%2BC2cXls1Kjt70%3D247053334016134 – reference: SnyderMWKircherMHillAJDazaRMShendureJCell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-originCell201616457681:CAS:528:DC%2BC28XhtFShsbs%3D267714854715266 – reference: HaradhvalaNJMutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repairCell20161645385491:CAS:528:DC%2BC28XhsVKitbg%3D268061294753048 – reference: AdalsteinssonVAScalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumorsNat. Commun.20178291093935673918 – reference: AvanziniSA mathematical model of ctDNA shedding predicts tumor detection sizeSci. Adv.20206eabc4308333108477732186 – reference: AltorkiNKNeoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: a single-centre, randomised phase 2 trialLancet Oncol.2021228248351:CAS:528:DC%2BB3MXhsFCgt7vK34015311 – reference: ReinertTAnalysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancerJAMA Oncol.2019511241131310706916512280 – reference: RasmussenLProtocol outlines for parts 1 and 2 of the prospective endoscopy III study for the early detection of colorectal cancer: validation of a concept based on blood biomarkersJMIR Res. Protoc.20165e182276248155039335 – reference: RaineKMAscatNgs: identifying somatically acquired copy-number alterations from whole-genome sequencing dataCurr. Protoc. Bioinform.20165615.9.115.9.17 – reference: JiangHLeiRDingS-WZhuSSkewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end readsBMC Bioinform.201415182 – reference: HenriksenTVComparing single-target and multitarget approaches for postoperative circulating tumour DNA detection in stage II-III colorectal cancer patientsMol. Oncol.202216365436651:CAS:528:DC%2BB38XisVKjt73M358954389580876 – reference: Benjamin, D. et al. Calling somatic SNVs and indels with Mutect2. Preprint at bioRxivhttps://doi.org/10.1101/861054 (2019). – reference: WooYHLiW-HDNA replication timing and selection shape the landscape of nucleotide variation in cancer genomesNat. Commun.2012322893128 – reference: LinYIntensity-modulated radiation therapy for definitive treatment of cervical cancer: a meta-analysisRadiat. Oncol.201813302171656137729 – reference: GydushGMassively parallel enrichment of low-frequency alleles enables duplex sequencing at low depthNat. Biomed. Eng.202262572661:CAS:528:DC%2BB38XhsVSqt77K353014509089460 – reference: TanACAbstract 5114: ultra-sensitive detection of minimal residual disease (MRD) through whole genome sequencing (WGS) using an AI-based error suppression model in resected early-stage non-small cell lung cancer (NSCLC)Cancer Res.2022825114 – reference: ENCODE Project Consortium.An integrated encyclopedia of DNA elements in the human genomeNature20124895774 – reference: Powles, T. et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Naturehttps://doi.org/10.1038/s41586-021-03642-9 (2021). – reference: WolchokJDOverall survival with combined nivolumab and ipilimumab in advanced melanomaN. Engl. J. Med.2017377134513561:CAS:528:DC%2BC2sXhs1Git73I288897925706778 – reference: Alcántara TorresMDNA aneuploidy in colorectal adenomas. Role in the adenoma-carcinoma sequenceRev. Esp. Enferm. Dig.20059771515801893 – reference: KarczewskiKJThe mutational constraint spectrum quantified from variation in 141,456 humansNature20205814344431:CAS:528:DC%2BB3cXhtVanu7jF324616547334197 – reference: JiangPPreferred end coordinates and somatic variants as signatures of circulating tumor DNA associated with hepatocellular carcinomaProc. Natl Acad. Sci. USA2018115E10925E109331:CAS:528:DC%2BC1cXit1SgtLrM303738226243268 – reference: Haque, I. S. & Elemento, O. Challenges in using ctDNA to achieve early detection of cancer. Preprint at bioRxivhttps://doi.org/10.1101/237578 (2017). – reference: BruhmDCSingle-molecule genome-wide mutation profiles of cell-free DNA for non-invasive detection of cancerNat. Genet.202355130113101:CAS:528:DC%2BB3sXhsFOitbfF3750072810412448 – reference: Illumina. TruSeq DNA PCR-Free Reference Guide (Illumina, 2017). – reference: Davidson-Pilon, C. lifelines, survival analysis in Python. Zenodohttps://doi.org/10.5281/zenodo.5512044 (2021). – reference: HenriksenTVError characterization and statistical modeling improves circulating tumor DNA detection by droplet digital PCRClin. Chem.20226865766735030248 – reference: CarterSLAbsolute quantification of somatic DNA alterations in human cancerNat. Biotechnol.2012304134211:CAS:528:DC%2BC38Xmt1Gktb4%3D225440224383288 – reference: KageyamaS-IRadiotherapy increases plasma levels of tumoral cell-free DNA in non-small cell lung cancer patientsOncotarget201891936819378297212095922403 – reference: Kurtz, D. M. et al. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00981-w (2021). – reference: ZviranAGenome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoringNat. Med.202026111411241:CAS:528:DC%2BB3cXhtVGmtbrN324833608108131 – reference: TieJCirculating tumor DNA analysis guiding adjuvant therapy in stage II colon cancerN. Engl. J. Med.2022386226122721:CAS:528:DC%2BB38Xit1ersL3K356573209701133 – reference: Chowell, D. et al. Improved prediction of immune checkpoint blockade efficacy across multiple cancer types. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01070-8 (2021). – reference: PolakPCell-of-origin chromatin organization shapes the mutational landscape of cancerNature20155183603641:CAS:528:DC%2BC2MXjtVSktbo%3D256935674405175 – reference: ZackTIPan-cancer patterns of somatic copy number alterationNat. Genet.201345113411401:CAS:528:DC%2BC3sXhsFWms7vL240718523966983 – reference: Imielinski, M. et al. fragCounter: GC and mappability corrected fragment coverage for paired end whole genome sequencing. GitHubhttps://github.com/mskilab-org/fragCounter (2018). – reference: FaveroFSequenza: allele-specific copy number and mutation profiles from tumor sequencing dataAnn. Oncol.20152664701:STN:280:DC%2BC2M3gvFOqtA%3D%3D25319062 – reference: CorcesMRThe chromatin accessibility landscape of primary human cancersScience2018362eaav1898303613416408149 – reference: Deshpande, A., Walradt, T., Hu, Y., Koren, A. & Imielinski, M. Robust foreground detection in somatic copy number data. Preprint at bioRxivhttps://doi.org/10.1101/847681 (2019). – reference: NewmanAMIntegrated digital error suppression for improved detection of circulating tumor DNANat. Biotechnol.2016345475551:CAS:528:DC%2BC28XkvV2itb8%3D270187994907374 – reference: NabetBYNoninvasive early identification of therapeutic benefit from immune checkpoint inhibitionCell20201833633761:CAS:528:DC%2BB3cXhvFyqt7%2FM330072677572899 – reference: LiHDurbinRFast and accurate short read alignment with Burrows–Wheeler transformBioinformatics200925175417601:CAS:528:DC%2BD1MXot1Cjtbo%3D194511682705234 – reference: Rose BrannonAEnhanced specificity of clinical high-sensitivity tumor mutation profiling in cell-free DNA via paired normal sequencing using MSK-ACCESSNat. Commun.2021121:CAS:528:DC%2BB3MXhsFKns7zJ341452828213710 – reference: ReinertTAnalysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgeryGut2016656256341:CAS:528:DC%2BC2sXivV2mt7k%3D25654990 – reference: Renaud, G. et al. Unsupervised detection of fragment length signatures of circulating tumor DNA using non-negative matrix factorization. eLifehttps://doi.org/10.7554/eLife.71569 (2022). – reference: ChengDTMemorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncologyJ. Mol. Diagn.2015172512641:CAS:528:DC%2BC2MXlt1aitLc%3D258018215808190 – reference: ErnstJKellisMChromHMM: automating chromatin-state discovery and characterizationNat. Methods201292152161:CAS:528:DC%2BC38XivV2rtLk%3D223739073577932 – reference: van de GeijnBMcVickerGGiladYPritchardJKWASP: allele-specific software for robust molecular quantitative trait locus discoveryNat. Methods20151210611063263669874626402 – reference: MouliereFEnhanced detection of circulating tumor DNA by fragment size analysisSci. Transl. Med.201810eaat4921304048636483061 – reference: AroraKDeep whole-genome sequencing of 3 cancer cell lines on 2 sequencing platformsSci. Rep.201991:CAS:528:DC%2BC1MXisVarurbK318367836911065 – reference: Cindy YangSYPan-cancer analysis of longitudinal metastatic tumors reveals genomic alterations and immune landscape dynamics associated with pembrolizumab sensitivityNat. Commun.2021121:CAS:528:DC%2BB3MXhvFSrtL7M344467288390680 – reference: DonleyNThayerMJDNA replication timing, genome stability and cancer: late and/or delayed DNA replication timing is associated with increased genomic instabilitySemin. Cancer Biol.20132380891:CAS:528:DC%2BC3sXit1Oisbo%3D233279853615080 – reference: MyintNNMCirculating tumor DNA in patients with colorectal adenomas: assessment of detectability and genetic heterogeneityCell Death Dis.20189301665316117318 – reference: CristianoSGenome-wide cell-free DNA fragmentation in patients with cancerNature20195703853891:CAS:528:DC%2BC1MXhtVOgt7fI311428406774252 – reference: Phallen, J. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aan2415 (2017). – reference: BaiXEarly use of high-dose glucocorticoid for the management of irAE is associated with poorer survival in patients with advanced melanoma treated with anti-PD-1 monotherapyClin. Cancer Res.202127599360001:CAS:528:DC%2BB3MXislKgtrnF343765369401488 – reference: GalanopoulosMComparative study of mutations in single nucleotide polymorphism loci of KRAS and BRAF genes in patients who underwent screening colonoscopy, with and without premalignant intestinal polypsAnticancer Res.2017376516571:CAS:528:DC%2BC1cXitlaitL7M28179313 – reference: Weber, S. et al. Dynamic changes of circulating tumor DNA predict clinical outcome in patients with advanced non–small-cell lung cancer treated with immune checkpoint inhibitors. JCO Precis. Oncol.https://doi.org/10.1200/PO.21.00182 (2021). – reference: GerstungMThe evolutionary history of 2,658 cancersNature20205781221281:CAS:528:DC%2BB3cXktlClsLw%3D320250137054212 – reference: GuoJQuantitative characterization of tumor cell-free DNA shorteningBMC Genomics2020211:CAS:528:DC%2BB3cXhsVWhsrrL326507157350596 – reference: Dentro, S. C., Wedge, D. C. & Van Loo, P. Principles of reconstructing the subclonal architecture of cancers. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a026625 (2017). – reference: WolffRKMutation analysis of adenomas and carcinomas of the colon: early and late driversGenes Chromosomes Cancer2018573663761:CAS:528:DC%2BC1cXosVajsLs%3D295755365951744 – reference: XiongKMaJRevealing Hi-C subcompartments by imputing inter-chromosomal chromatin interactionsNat. Commun.201910316999856838123 – reference: KotaniDMolecular residual disease and efficacy of adjuvant chemotherapy in patients with colorectal cancerNat. Med.2023291271341:CAS:528:DC%2BB3sXhslKht7Y%3D366468029873552 – reference: Postow, M. A. et al. Adaptive dosing of nivolumab + ipilimumab immunotherapy based upon early, interim radiographic assessment in advanced melanoma (The ADAPT-IT Study). J. Clin. Oncol. https://doi.org/10.1200/JCO.21.01570 (2021). – reference: Zhang, Q. et al. Prognostic and predictive impact of circulating tumor DNA in patients with advanced cancers treated with immune checkpoint blockade. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-20-0047 (2020). – reference: AmemiyaHMKundajeABoyleAPThe ENCODE blacklist: identification of problematic regions of the genomeSci. Rep.20199312493616597582 – reference: TieJCirculating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancerJAMA Oncol.2019517101717316218016802034 – reference: Gonzalez-PerezASabarinathanRLopez-BigasNLocal determinants of the mutational landscape of the human genomeCell20191771011141:CAS:528:DC%2BC1MXlvVWgtLY%3D30901533 – volume: 30 start-page: 413 year: 2012 ident: 3040_CR32 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2203 – volume: 22 start-page: 824 year: 2021 ident: 3040_CR41 publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(21)00149-2 – ident: 3040_CR54 doi: 10.1200/PO.21.00182 – volume: 34 start-page: 547 year: 2016 ident: 3040_CR15 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3520 – volume: 37 start-page: 651 year: 2017 ident: 3040_CR46 publication-title: Anticancer Res. doi: 10.21873/anticanres.11360 – volume: 8 year: 2017 ident: 3040_CR53 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00965-y – volume: 362 start-page: eaav1898 year: 2018 ident: 3040_CR73 publication-title: Science doi: 10.1126/science.aav1898 – volume: 10 start-page: eaat4921 year: 2018 ident: 3040_CR21 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aat4921 – volume: 57 start-page: 366 year: 2018 ident: 3040_CR50 publication-title: Genes Chromosomes Cancer doi: 10.1002/gcc.22539 – volume: 489 start-page: 57 year: 2012 ident: 3040_CR71 publication-title: Nature doi: 10.1038/nature11247 – ident: 3040_CR70 doi: 10.1101/861054 – volume: 5 start-page: 1710 year: 2019 ident: 3040_CR40 publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2019.3616 – ident: 3040_CR16 doi: 10.1126/scitranslmed.aaz8084 – volume: 44 start-page: e131 year: 2016 ident: 3040_CR82 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw520 – volume: 45 start-page: 1134 year: 2013 ident: 3040_CR37 publication-title: Nat. Genet. doi: 10.1038/ng.2760 – volume: 9 year: 2018 ident: 3040_CR44 publication-title: Cell Death Dis. – volume: 9 year: 2019 ident: 3040_CR69 publication-title: Sci. Rep. – volume: 16 start-page: 3654 year: 2022 ident: 3040_CR80 publication-title: Mol. Oncol. doi: 10.1002/1878-0261.13294 – volume: 164 start-page: 538 year: 2016 ident: 3040_CR25 publication-title: Cell doi: 10.1016/j.cell.2015.12.050 – ident: 3040_CR52 doi: 10.1200/JCO.21.01570 – volume: 27 start-page: 66 year: 2009 ident: 3040_CR72 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1518 – volume: 5 start-page: e182 year: 2016 ident: 3040_CR47 publication-title: JMIR Res. Protoc. doi: 10.2196/resprot.6346 – volume: 12 year: 2021 ident: 3040_CR51 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25432-7 – volume: 32 start-page: 3196 year: 2016 ident: 3040_CR65 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw389 – ident: 3040_CR58 doi: 10.1101/2022.05.29.493900 – volume: 386 start-page: 2261 year: 2022 ident: 3040_CR3 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2200075 – ident: 3040_CR78 doi: 10.1101/cshperspect.a026625 – volume: 56 start-page: 15.9.1 year: 2016 ident: 3040_CR31 publication-title: Curr. Protoc. Bioinform. doi: 10.1002/cpbi.17 – volume: 23 start-page: 80 year: 2013 ident: 3040_CR26 publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2013.01.001 – volume: 354 start-page: 618 year: 2016 ident: 3040_CR19 publication-title: Science doi: 10.1126/science.aag0299 – volume: 3 year: 2012 ident: 3040_CR24 publication-title: Nat. Commun. – volume: 97 start-page: 7 year: 2005 ident: 3040_CR48 publication-title: Rev. Esp. Enferm. Dig. doi: 10.4321/S1130-01082005000100002 – volume: 12 year: 2021 ident: 3040_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24109-5 – volume: 32 start-page: 229 year: 2021 ident: 3040_CR8 publication-title: Ann. Oncol. doi: 10.1016/j.annonc.2020.11.007 – ident: 3040_CR12 doi: 10.1101/237578 – volume: 15 start-page: 182 year: 2014 ident: 3040_CR64 publication-title: BMC Bioinform. doi: 10.1186/1471-2105-15-182 – volume: 29 start-page: 127 year: 2023 ident: 3040_CR10 publication-title: Nat. Med. doi: 10.1038/s41591-022-02115-4 – volume: 570 start-page: 385 year: 2019 ident: 3040_CR33 publication-title: Nature doi: 10.1038/s41586-019-1272-6 – volume: 500 start-page: 415 year: 2013 ident: 3040_CR18 publication-title: Nature doi: 10.1038/nature12477 – volume: 6 start-page: eabc4308 year: 2020 ident: 3040_CR13 publication-title: Sci. Adv. doi: 10.1126/sciadv.abc4308 – ident: 3040_CR83 doi: 10.5281/zenodo.5512044 – volume: 5 start-page: 1124 year: 2019 ident: 3040_CR38 publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2019.0528 – volume: 9 start-page: 215 year: 2012 ident: 3040_CR74 publication-title: Nat. Methods doi: 10.1038/nmeth.1906 – volume: 9 year: 2019 ident: 3040_CR66 publication-title: Sci. Rep. – ident: 3040_CR9 doi: 10.1158/1078-0432.CCR-21-2404 – volume: 26 start-page: 1114 year: 2020 ident: 3040_CR14 publication-title: Nat. Med. doi: 10.1038/s41591-020-0915-3 – volume: 6 start-page: 257 year: 2022 ident: 3040_CR17 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-022-00855-9 – volume: 12 start-page: 1061 year: 2015 ident: 3040_CR77 publication-title: Nat. Methods doi: 10.1038/nmeth.3582 – volume: 183 start-page: 363 year: 2020 ident: 3040_CR6 publication-title: Cell doi: 10.1016/j.cell.2020.09.001 – volume: 26 start-page: 64 year: 2015 ident: 3040_CR67 publication-title: Ann. Oncol. doi: 10.1093/annonc/mdu479 – ident: 3040_CR45 doi: 10.3390/cancers12061482 – volume: 21 year: 2020 ident: 3040_CR22 publication-title: BMC Genomics – volume: 33 start-page: 676 year: 2018 ident: 3040_CR29 publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.03.007 – ident: 3040_CR36 doi: 10.7554/eLife.71569 – ident: 3040_CR59 doi: 10.1038/s41587-021-01070-8 – volume: 17 start-page: 251 year: 2015 ident: 3040_CR81 publication-title: J. Mol. Diagn. doi: 10.1016/j.jmoldx.2014.12.006 – ident: 3040_CR84 doi: 10.5281/zenodo.7234506 – volume: 581 start-page: 434 year: 2020 ident: 3040_CR68 publication-title: Nature doi: 10.1038/s41586-020-2308-7 – volume: 518 start-page: 360 year: 2015 ident: 3040_CR27 publication-title: Nature doi: 10.1038/nature14221 – volume: 164 start-page: 57 year: 2016 ident: 3040_CR34 publication-title: Cell doi: 10.1016/j.cell.2015.11.050 – ident: 3040_CR1 doi: 10.1038/s41586-021-03642-9 – ident: 3040_CR76 – ident: 3040_CR55 doi: 10.1158/2159-8290.CD-20-0047 – volume: 82 start-page: 5114 year: 2022 ident: 3040_CR39 publication-title: Cancer Res. doi: 10.1158/1538-7445.AM2022-5114 – volume: 12 start-page: e1006162 year: 2016 ident: 3040_CR20 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006162 – ident: 3040_CR30 doi: 10.1101/847681 – volume: 115 start-page: E10925 year: 2018 ident: 3040_CR35 publication-title: Proc. Natl Acad. Sci. USA – volume: 9 start-page: 19368 year: 2018 ident: 3040_CR42 publication-title: Oncotarget doi: 10.18632/oncotarget.25053 – ident: 3040_CR4 doi: 10.1126/scitranslmed.aan2415 – volume: 1 start-page: 873 year: 2020 ident: 3040_CR2 publication-title: Nat. Cancer doi: 10.1038/s43018-020-0096-5 – volume: 27 start-page: 5993 year: 2021 ident: 3040_CR57 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-21-1283 – volume: 10 year: 2019 ident: 3040_CR75 publication-title: Nat. Commun. – volume: 177 start-page: 101 year: 2019 ident: 3040_CR23 publication-title: Cell doi: 10.1016/j.cell.2019.02.051 – volume: 578 start-page: 122 year: 2020 ident: 3040_CR60 publication-title: Nature doi: 10.1038/s41586-019-1907-7 – volume: 55 start-page: 1301 year: 2023 ident: 3040_CR28 publication-title: Nat. Genet. doi: 10.1038/s41588-023-01446-3 – volume: 25 start-page: 1754 year: 2009 ident: 3040_CR63 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 377 start-page: 1345 year: 2017 ident: 3040_CR56 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1709684 – volume: 65 start-page: 625 year: 2016 ident: 3040_CR62 publication-title: Gut doi: 10.1136/gutjnl-2014-308859 – ident: 3040_CR11 doi: 10.1038/s41587-021-00981-w – volume: 68 start-page: 657 year: 2022 ident: 3040_CR79 publication-title: Clin. Chem. doi: 10.1093/clinchem/hvab274 – volume: 40 start-page: 562 year: 2022 ident: 3040_CR43 publication-title: J. Clin. Orthod. – ident: 3040_CR61 – volume: 20 start-page: 548 year: 2014 ident: 3040_CR5 publication-title: Nat. Med. doi: 10.1038/nm.3519 – volume: 13 year: 2018 ident: 3040_CR49 publication-title: Radiat. Oncol. |
| SSID | ssj0003059 |
| Score | 2.618197 |
| Snippet | In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1655 |
| SubjectTerms | 631/208/69 692/699/67 Aneuploidy Biomarkers, Tumor - blood Biomarkers, Tumor - genetics Biomedical and Life Sciences Biomedicine Cancer Research Circulating Tumor DNA - blood Circulating Tumor DNA - genetics Colorectal cancer Colorectal Neoplasms - blood Colorectal Neoplasms - genetics Colorectal Neoplasms - pathology Deep learning Deoxyribonucleic acid DNA DNA Copy Number Variations Enrichment Gene sequencing Genomes Humans Immunotherapy Infectious Diseases Learning algorithms Lung cancer Lung Neoplasms - blood Lung Neoplasms - genetics Lung Neoplasms - pathology Machine Learning Melanoma Metabolic Diseases Minimal residual disease Molecular Medicine Monitoring Neoplasm, Residual - genetics Neoplasms - blood Neoplasms - genetics Neoplasms - pathology Neoplasms - therapy Neurosciences Nucleotides Polymorphism, Single Nucleotide Solid tumors Telemedicine Tumor Burden Tumors Whole Genome Sequencing |
| Title | Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment |
| URI | https://link.springer.com/article/10.1038/s41591-024-03040-4 https://www.ncbi.nlm.nih.gov/pubmed/38877116 https://www.proquest.com/docview/3069699671 https://www.proquest.com/docview/3068749791 https://pubmed.ncbi.nlm.nih.gov/PMC7616143 |
| Volume | 30 |
| WOSCitedRecordID | wos001247911100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1546-170X dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: M7P dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1546-170X dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: 7X7 dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1546-170X dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Research Library customDbUrl: eissn: 1546-170X dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: M2O dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1546-170X dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: M2P dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDRAvfAwYgVEFiTewlthubD8hQJt4WYkQk_oWOY7TVVqT0rST-O85O26mMrEXXvzis2zrzndn3893AO-5Siu8V1CCtqjEC4qxRFk87hrpK8ZrPtaJLzYhJhM5nao8PLh1AVa51YleUVetcW_kJ-jaqgydc5F-Wv4irmqUi66GEhp7cICeTeogXec0HzQxyrLqMYeSSLwIhE8zCZMnHRouh_mhnLjgYEL4rmG65W3eBk3-FTn1Bunsyf9u5Sk8Dq5o_LmXnWdwzzaH8KAvTvn7EB6eh7D7c6gvrnAxncO6O-0YL9HlXmjiLGAVL7xWcGuM2zpebxbtKi7954jYgepn8cLjNS0JBSpmZLaZVzjQQUdwfhTgubl0j5Qv4OLs9OfXbyQUaCCGC74m1NRCWVWnTKRKJyWtrGU2Y1ZnEnWotbVSWqJqL02VVDqzTOMNiJU6M4qNM81ewn7TNvYVxIbKVHM0HKyWnJVScq4EehPVmJdUCRpBuuVOYUL2cldE46rwUXQmi56jBXK08BwteAQfhjHLPnfHndTHW24V4Rx3xQ2rIng3dOMJdGEV3dh242mkwNUqpDnqZWSYjqEOF2maRSB2pGcgcNm9d3ua-aXP8i0ydMY5i-DjVs5ulvXvXby-exdv4BH1Mu-ekY5hf73a2Ldw31yv591qBHtiKnwrR3Dw5XSS_xi5E_Xdt7lrRf4HiG0mvg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoULj0IhUMBIcAKrie2N7QNCCKhatV310Eq9pU7ibFfqJstmF9Q_xW9k7DyqpaK3Hjhn8rDzzcv-PAPwTugox7yCUfRFKSYomaXaoroblM-5KMTAhL7ZhBwO1cmJPlyB391ZGEer7GyiN9R5lbk18i0MbXWMwbmMPk9_UNc1yu2udi00Gljs2YtfmLLVn3a_4f99z9j296OvO7TtKkAzIcWcsqyQ2uoi4jLSJkxZbi23MbcmVqj41hZaG4X2KM3yMDex5QbDdp6aONN8EBuOz70Ft4WrLOaoguywt_yoO7rhOCqqMPFoD-mEXG3V6Cgdx4gJ6jYjQyqWHeGV6PYqSfOvnVrvALcf_m9T9wgetKE2-dLoxmNYseU63G2ab16sw9pBSyt4AsXxOQ6-dlx-Z_3JFFOKiaHOw-dk4q2emxNSFWS-mFQzkvrDH8QdGhiRieejWto24BjR0WKc442OGoPvRwUdZ2duEfYpHN_IeDdgtaxK-xxIxlRkBDpGXijBU6WE0BKjpXwgUqYlCyDq0JBkbXV21yTkPPEsAa6SBkEJIijxCEpEAB_6e6ZNbZJrpTc7dCStnaqTS2gE8La_jBbGbRuZ0lYLL6Mkfq1GmWcNJvvXcfRRMoriAOQSWnsBV718-Uo5PvNVzGWMyYbgAXzscH35Wf8exYvrR_EG7u0cHewn-7vDvZdwn3l9c0tmm7A6ny3sK7iT_ZyP69lrr7kETm8a738Ag62BaA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHUx74TJugQFGgiewmsRubD8gBGwV06CqEJP2FpzE6SqtSde0oP01fh3HzmUqE3vbA885TmznOzf7sw_AK66CDPOKkKIvSjBBSQ1VBtVdo3zGeM4H2nfFJsRoJI-P1XgDfrdnYSytsrWJzlBnZWrXyPsY2qoIg3MR9POGFjHeG76fn1FbQcrutLblNGqIHJrzX5i-Ve8O9vBfvw7D4f73T59pU2GAplzwJQ3TXCij8oCJQGk_CTNjmImY0ZFEI2BMrpSWaJuSNPMzHRmmMYRniY5SxQaRZvjeG7ApMMjgPdj8uD8af-v8AGqSqhmPkkpMQ5ojOz6T_QrdpmUchZzarUmf8nW3eCnWvUzZ_Gvf1rnD4Z3_eSLvwu0mCCcfaq25Bxum2IFbdVnO8x3Y-toQDu5DfnSKE1FZlr_1C2SOycZMU-v7MzJz9tDODylzslzNygVJ3LEQYo8TTMjMMVUNbUpzTOhkNc2woSXN4PdRdafpiV2efQBH1zLeh9ArysI8BpKGMtAcXSbLJWeJlJwrgXFUNuBJqEToQdAiI06be9tt-ZDT2PEHmIxrNMWIptihKeYevOnazOtbS66U3m2REjcWrIovYOLBy-4x2h67oaQLU66cjBTYW4Uyj2p8dp9j6L1EEEQeiDXkdgL2XvP1J8X0xN1vLiJMQzjz4G2L8Ytu_XsUT64exQvYQpjHXw5Gh09hO3SqZ9fSdqG3XKzMM7iZ_lxOq8XzRo0J_LhuwP8BsCaLgg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrasensitive+plasma-based+monitoring+of+tumor+burden+using+machine+learning-guided+signal+enrichment&rft.jtitle=Nature+medicine&rft.au=Widman%2C+Adam+J.&rft.au=Shah%2C+Minita&rft.au=Frydendahl%2C+Amanda&rft.au=Halmos%2C+Daniel&rft.date=2024-06-01&rft.issn=1078-8956&rft.eissn=1546-170X&rft.volume=30&rft.issue=6&rft.spage=1655&rft.epage=1666&rft_id=info:doi/10.1038%2Fs41591-024-03040-4&rft_id=info%3Apmid%2F38877116&rft.externalDocID=PMC7616143 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon |