The organization of intrinsic computation: complexity-entropy diagrams and the diversity of natural information processing

Intrinsic computation refers to how dynamical systems store, structure, and transform historical and spatial information. By graphing a measure of structural complexity against a measure of randomness, complexity-entropy diagrams display the different kinds of intrinsic computation across an entire...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chaos (Woodbury, N.Y.) Ročník 18; číslo 4; s. 043106
Hlavní autoři: Feldman, David P, McTague, Carl S, Crutchfield, James P
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.12.2008
Témata:
ISSN:1089-7682, 1089-7682
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Intrinsic computation refers to how dynamical systems store, structure, and transform historical and spatial information. By graphing a measure of structural complexity against a measure of randomness, complexity-entropy diagrams display the different kinds of intrinsic computation across an entire class of systems. Here, we use complexity-entropy diagrams to analyze intrinsic computation in a broad array of deterministic nonlinear and linear stochastic processes, including maps of the interval, cellular automata, and Ising spin systems in one and two dimensions, Markov chains, and probabilistic minimal finite-state machines. Since complexity-entropy diagrams are a function only of observed configurations, they can be used to compare systems without reference to system coordinates or parameters. It has been known for some time that in special cases complexity-entropy diagrams reveal that high degrees of information processing are associated with phase transitions in the underlying process space, the so-called "edge of chaos." Generally, though, complexity-entropy diagrams differ substantially in character, demonstrating a genuine diversity of distinct kinds of intrinsic computation.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1089-7682
1089-7682
DOI:10.1063/1.2991106