Synthesis of complex thermally coupled distillation systems including divided wall columns

The design of thermally coupled distillation sequences explicitly including the possibility of divided wall columns (DWC) is described. A DWC with a single wall can be considered thermodynamically equivalent to a fully thermally coupled (FTC) subsystem formed by three separation tasks (a Petlyuk con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal Jg. 59; H. 4; S. 1139 - 1159
Hauptverfasser: Caballero, José A., Grossmann, Ignacio E.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Blackwell Publishing Ltd 01.04.2013
American Institute of Chemical Engineers
Schlagworte:
ISSN:0001-1541, 1547-5905
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The design of thermally coupled distillation sequences explicitly including the possibility of divided wall columns (DWC) is described. A DWC with a single wall can be considered thermodynamically equivalent to a fully thermally coupled (FTC) subsystem formed by three separation tasks (a Petlyuk configuration in the case of three‐component mixtures). It is shown how to systematically identify all the sequences of separation tasks that can produce configurations that include at least a DWC. Feasible sequences that explicitly include DWCs are enforced through a set of logical relationships in terms of Boolean variables. These logical relationships include as feasible alternatives from conventional columns (each column must have a condenser and a reboiler) to FTC systems (only one reboiler and one condenser in the entire system). A comprehensive disjunctive programming formulation for finding the optimal solution is presented. The model is based on the Fenske, Underwood Gilliland equations. However, the disjunctive formulation allows easily the use of any other shortcut, aggregated or even rigorous model without modifying much the structure of the model. Two illustrative examples illustrate the procedure. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1139–1159, 2013
AbstractList The design of thermally coupled distillation sequences explicitly including the possibility of divided wall columns (DWC) is described. A DWC with a single wall can be considered thermodynamically equivalent to a fully thermally coupled (FTC) subsystem formed by three separation tasks (a Petlyuk configuration in the case of three-component mixtures). It is shown how to systematically identify all the sequences of separation tasks that can produce configurations that include at least a DWC. Feasible sequences that explicitly include DWCs are enforced through a set of logical relationships in terms of Boolean variables. These logical relationships include as feasible alternatives from conventional columns (each column must have a condenser and a reboiler) to FTC systems (only one reboiler and one condenser in the entire system). A comprehensive disjunctive programming formulation for finding the optimal solution is presented. The model is based on the Fenske, Underwood Gilliland equations. However, the disjunctive formulation allows easily the use of any other shortcut, aggregated or even rigorous model without modifying much the structure of the model. Two illustrative examples illustrate the procedure. [PUBLICATION ABSTRACT]
The design of thermally coupled distillation sequences explicitly including the possibility of divided wall columns (DWC) is described. A DWC with a single wall can be considered thermodynamically equivalent to a fully thermally coupled (FTC) subsystem formed by three separation tasks (a Petlyuk configuration in the case of three‐component mixtures). It is shown how to systematically identify all the sequences of separation tasks that can produce configurations that include at least a DWC. Feasible sequences that explicitly include DWCs are enforced through a set of logical relationships in terms of Boolean variables. These logical relationships include as feasible alternatives from conventional columns (each column must have a condenser and a reboiler) to FTC systems (only one reboiler and one condenser in the entire system). A comprehensive disjunctive programming formulation for finding the optimal solution is presented. The model is based on the Fenske, Underwood Gilliland equations. However, the disjunctive formulation allows easily the use of any other shortcut, aggregated or even rigorous model without modifying much the structure of the model. Two illustrative examples illustrate the procedure. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1139–1159, 2013
The design of thermally coupled distillation sequences explicitly including the possibility of divided wall columns (DWC) is described. A DWC with a single wall can be considered thermodynamically equivalent to a fully thermally coupled (FTC) subsystem formed by three separation tasks (a Petlyuk configuration in the case of three-component mixtures). It is shown how to systematically identify all the sequences of separation tasks that can produce configurations that include at least a DWC. Feasible sequences that explicitly include DWCs are enforced through a set of logical relationships in terms of Boolean variables. These logical relationships include as feasible alternatives from conventional columns (each column must have a condenser and a reboiler) to FTC systems (only one reboiler and one condenser in the entire system). A comprehensive disjunctive programming formulation for finding the optimal solution is presented. The model is based on the Fenske, Underwood Gilliland equations. However, the disjunctive formulation allows easily the use of any other shortcut, aggregated or even rigorous model without modifying much the structure of the model. Two illustrative examples illustrate the procedure.
Author Caballero, José A.
Grossmann, Ignacio E.
Author_xml – sequence: 1
  givenname: José A.
  surname: Caballero
  fullname: Caballero, José A.
  email: caballer@ua.es
  organization: Dept. Chemical Engineering, University of Alicante, Ap. Correos 99, 03080, Alicante, Spain
– sequence: 2
  givenname: Ignacio E.
  surname: Grossmann
  fullname: Grossmann, Ignacio E.
  organization: Dept. Chemical Engineering, Carnegie Mellon University, PA, 15213, Pittsburgh
BookMark eNqNkUtPxCAYRYnRxPGx8B80caOLKo9Cy9JMfGaiCzUmbkiHUkUpHaHV6b_3c0ZdGE1cES7nfAHuBlr1rTcI7RB8QDCmh6XVB4RJQlfQiPAsT7nEfBWNMMYkhYCso40Yn2BH84KO0P314LtHE21M2jrRbTNzZp5AEprSuQGSHpIqqWzsrHNlZ1ufxCF2pomJ9dr1lfUPcPxqK8DeQALH9Y2PW2itLl0025_rJro9Ob4Zn6WTq9Pz8dEk1VnOaCoJ0VNqeFVoKkrOtOZ8qqkWIsOmmtZG5HUlsJGmpqTGuqh1kQsBG82YzBnbRHvLubPQvvQmdqqxURu4rDdtHxVhmcxEJqn8H8o4zAd09wf61PbBw0OAorjIOCcFUIdLSoc2xmBqpW23-KQulNYpgtVHLQpqUYtawNj_YcyCbcow_Mp-Tn-zzgx_g-rofPxlpEsD6jLzb6MMz0rkLOfq7vJUFZLg65OLiRqzdyZkrc4
CODEN AICEAC
CitedBy_id crossref_primary_10_1016_j_compchemeng_2019_05_028
crossref_primary_10_1007_s10098_017_1477_z
crossref_primary_10_1016_j_applthermaleng_2024_124316
crossref_primary_10_1080_01496395_2015_1112397
crossref_primary_10_1002_aic_15964
crossref_primary_10_1002_cite_201600128
crossref_primary_10_1016_j_compchemeng_2019_106653
crossref_primary_10_1016_j_compchemeng_2019_02_013
crossref_primary_10_1002_aic_17740
crossref_primary_10_1016_j_compchemeng_2022_107922
crossref_primary_10_1002_aic_16731
crossref_primary_10_1016_j_cherd_2019_04_023
crossref_primary_10_1016_j_energy_2018_08_101
crossref_primary_10_1002_aic_14314
crossref_primary_10_1002_aic_14798
crossref_primary_10_1515_revce_2017_0085
crossref_primary_10_1002_aic_16294
crossref_primary_10_1002_aic_16809
crossref_primary_10_1016_j_compchemeng_2021_107475
crossref_primary_10_1016_j_compchemeng_2019_106650
crossref_primary_10_1016_j_seppur_2020_116837
crossref_primary_10_1016_j_compchemeng_2014_03_016
crossref_primary_10_1016_j_compchemeng_2018_10_009
crossref_primary_10_1016_j_cep_2021_108731
crossref_primary_10_1016_j_compchemeng_2019_06_022
crossref_primary_10_1016_j_proeng_2017_03_083
crossref_primary_10_1016_j_compchemeng_2022_107907
crossref_primary_10_1016_j_compchemeng_2019_106520
crossref_primary_10_1002_aic_14137
crossref_primary_10_1002_aic_17328
crossref_primary_10_1016_j_applthermaleng_2025_126753
crossref_primary_10_1021_acs_iecr_5c00037
crossref_primary_10_1016_j_energy_2021_121796
crossref_primary_10_3390_en15207708
crossref_primary_10_1002_aic_16994
crossref_primary_10_1016_j_energy_2016_10_016
crossref_primary_10_1016_j_energy_2020_117788
crossref_primary_10_1016_j_compchemeng_2013_10_015
crossref_primary_10_1016_j_compchemeng_2017_03_024
crossref_primary_10_1002_aic_15060
crossref_primary_10_1155_2022_3915508
crossref_primary_10_1016_j_compchemeng_2019_04_009
crossref_primary_10_1016_j_compchemeng_2020_107072
crossref_primary_10_1002_aic_14324
crossref_primary_10_1016_j_cjche_2016_05_023
crossref_primary_10_1016_j_compchemeng_2015_05_007
crossref_primary_10_1002_aic_18684
crossref_primary_10_1016_j_ces_2021_116766
crossref_primary_10_1002_aic_18801
crossref_primary_10_1016_j_jclepro_2014_06_016
Cites_doi 10.1016/j.compchemeng.2009.05.003
10.1021/ie000315n
10.1007/BF00934810
10.1021/ie950323h
10.1021/ie0341193
10.1021/ie0108649
10.1002/aic.690471211
10.1002/aic.690491118
10.1002/aic.690441124
10.1016/j.compchemeng.2011.06.015
10.1021/ie060030w
10.1002/aic.690490210
10.1016/S0098-1354(02)00220-X
10.1002/ceat.270100112
10.1007/BF00138693
10.1021/ie010863g
10.1021/ie00093a018
10.1023/A:1021039126272
10.1021/ie030640l
10.1016/S1570-7946(02)80056-6
10.1016/j.compchemeng.2004.04.010
10.1016/0098-1354(93)80015-F
10.1016/S0098-1354(99)00003-4
10.1002/aic.10803
10.1021/ie000761a
10.1021/ie802013r
10.1016/S1359-4311(02)00006-6
10.1002/aic.12118
10.1205/cherd06012
10.1021/ie0108651
10.1021/ie00093a017
10.1016/j.compchemeng.2011.06.014
10.1205/026387699526449
10.1002/aic.690320408
10.1016/0255-2701(89)80035-2
ContentType Journal Article
Copyright Copyright © 2012 American Institute of Chemical Engineers (AIChE)
Copyright American Institute of Chemical Engineers Apr 2013
Copyright_xml – notice: Copyright © 2012 American Institute of Chemical Engineers (AIChE)
– notice: Copyright American Institute of Chemical Engineers Apr 2013
DBID BSCLL
AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.13912
DatabaseName Istex
CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Solid State and Superconductivity Abstracts

Technology Research Database
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage 1159
ExternalDocumentID 2928971731
10_1002_aic_13912
AIC13912
ark_67375_WNG_8910SFJL_C
Genre article
Feature
GrantInformation_xml – fundername: Spanish Ministry of Science and Innovation
  funderid: CTQ2009‐14420‐C02
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHQN
AAIHA
AAIKC
AAMMB
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJIA
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PHGZM
PHGZT
PQGLB
PQQKQ
PRG
PROAC
PTHSS
PUEGO
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
3V.
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RBB
RWI
UAO
WRC
WSB
AAYXX
AFFHD
CITATION
O8X
7ST
7U5
8FD
C1K
L7M
SOI
ID FETCH-LOGICAL-c4732-911cb2e5d8c26a53cc55bc2c6640edbfe67fd60e9ef21f0c8fc8766f21c339733
IEDL.DBID DRFUL
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000317466000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-1541
IngestDate Thu Jul 10 22:35:56 EDT 2025
Fri Jul 11 06:59:48 EDT 2025
Mon Nov 10 03:06:13 EST 2025
Sat Nov 29 07:22:21 EST 2025
Tue Nov 18 21:06:20 EST 2025
Wed Jan 22 16:38:25 EST 2025
Tue Sep 09 05:31:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4732-911cb2e5d8c26a53cc55bc2c6640edbfe67fd60e9ef21f0c8fc8766f21c339733
Notes istex:1F8B42C203071B605E8A498FC69F4BC7734DA65C
ArticleID:AIC13912
Spanish Ministry of Science and Innovation - No. CTQ2009-14420-C02
ark:/67375/WNG-8910SFJL-C
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://figshare.com/articles/Synthesis_of_complex_thermally_coupled_distillation_systems_including_divided_wall_columns/6467531
PQID 1320845518
PQPubID 23500
PageCount 21
ParticipantIDs proquest_miscellaneous_1349464929
proquest_miscellaneous_1349435876
proquest_journals_1320845518
crossref_citationtrail_10_1002_aic_13912
crossref_primary_10_1002_aic_13912
wiley_primary_10_1002_aic_13912_AIC13912
istex_primary_ark_67375_WNG_8910SFJL_C
PublicationCentury 2000
PublicationDate April 2013
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: April 2013
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle AIChE journal
PublicationTitleAlternate AIChE J
PublicationYear 2013
Publisher Blackwell Publishing Ltd
American Institute of Chemical Engineers
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Institute of Chemical Engineers
References Drud AS. CONOPT: A System for Large Scale Nonlinear Optimization. Reference Manual. Bagsvaerd, Denmark:ARKI Consulting and Development A/S, 1996.
Rong BG, Kraslawski A, Turunen I. Synthesis and optimal design of thermodynamically equivalent thermally coupled distillation systems. Ind Eng Chem Res. 2004;43:5904-5915.
Agrawal R. Synthesis of distillation column configurations for a multicomponent separation. Ind Eng Chem Res. 1996;35:1059-1071.
Halvorsen IJ, Skogestad S. Minimum energy consumption in multicomponent distillation. 2. Three-product Petlyuk arrangements. Ind Eng Chem Res. 2003;42:605-615.
Carlberg NA, Westerberg AW. Temperature heat diagrams for complex columns .2. underwoods method for side strippers and enrichers. Ind Eng Chem Res. 1989;28:1379-1386.
Mix T, Dweck J, Weinberg M, Armstrong R. Energy conservation in distillation. Chem Eng Prog. 1978;74:49-55.
Agrawal R, Fidkowski ZT. More operable arrangements of fully thermally coupled distillation columns. AIChE J. 1998;44:2565-2568.
Caballero JA, Grossmann IE. Thermodynamically equivalent configurations for thermally coupled distillation. AIChE J. 2003;49:2864-2884.
Caballero JA, Grossmann IE. Structural considerations and modeling in the synthesis of heat-integrated-thermally coupled distillation sequences. Ind Eng Chem Res. 2006;45:8454-8474.
Kondili E, Pantelides CC, Sargent RWH. A General algorithm for short-term scheduling of batch-operations .1. Milp Formulation. Comput Chem Eng. 1993;17:211-227.
Errico M, Rong B-G. Modified simple column configurations for quaternary distillations. Comput Chem Eng. 2012;36:160-173.
Petlyuk FB, Platonov VM, Slavinsk DM. Thermodynamically optimal method for separating multicomponent mixtures. Int Chem Eng. 1965;5:555-561.
Navarro MA, Javaloyes J, Caballero JA, Grossmann IE. Strategies for the robust simulation of thermally coupled distillation sequences. Comput Chem Eng. 2012;36:149-159.
Yuan X, Pibouleau L, Domenech S. Experiments in process synthesis via mixed integer programming. Chem Eng Process 1989;25:99-116.
Halvorsen IJ, Skogestad S. Minimum energy consumption in multicomponent distillation. 3. More than three products and generalized Petlyuk arrangements. Ind Eng Chem Res. 2003;42:616-629.
Yeomans H, Grossmann IE. A systematic modeling framework of superstructure optimization in process synthesis. Comput Chem Eng. 1999;23:709-731.
Agrawal R. More operable fully thermally coupled distribution column configurations for multicomponent distillation. Chem Eng Res Des. 1999;77:543-553.
Kunesh J, Kister H, Lockett M, Fair JR. Distillation: still towering over other options. Chem Eng Prog. Oct. 1995;43-54.
Rong BG, Turunen I. A new method for synthesis of thermodynamically equivalent structures for Petlyuk arrangements. Chem Eng Res Des. 2006;84:1095-1116.
King CJ. Separation Processes. New York:McGraw-Hill, 1980.
Rudd H. Thermal coupling for energy efficiency. Chem Eng-London. 1992;27:S14-S15.
Halvorsen IJ, Skogestad S. Minimum energy consumption in multicomponent distillation. 1. V-min diagram for a two-product column. Ind Eng Chem Res. 2003;42:596-604.
Turton R, Bailei RC, Whiting WB, Shaeiwitz JA. Analysis Synthesis and Design of Chemical Processes. New York:McGraw-Hill, 2003.
Duran MA, Grossmann IE. A Mixed-integer nonlinear-programming algorithm for process systems synthesis. AIChE J. 1986;32:592-606.
Fidkowski ZT, Agrawal R. Multicomponent thermally coupled systems of distillation columns at minimum reflux. AIChE J. 2001;47:2713-2724.
Kaibel G. Distillation columns with vertical partitions. Chem Eng Techol. 1987;10:92-98.
Giridhar A, Agrawal R. Synthesis of distillation configurations: I. Characteristics of a good search space. Comput Chem Eng. 2010;34:73-83.
Fidkowski ZT. Distillation configurations and their energy requirements. AIChE J. 2006;52:2098-2106.
Ivakpour J, Kasiri N. Synthesis of distillation column sequences for nonsharp separations. Ind Eng Chem Res. 2009;48:8635-8649.
Humphrey J. Separation processes: playing a critical role. Chem Eng Prog. 1995;91:43-54.
Carlberg NA, Westerberg AW. Temperature heat diagrams for complex columns. 3. underwoods method for the petlyuk configuration. Ind Eng Chem Res. 1989;28:1386-1397.
Grossmann IE. Review of nonlinear mixed-integer and disjunctive programming techniques. Optim Eng. 2002;3:227-252.
Triantafyllou C, Smith R. The design and optimization of fully thermally coupled distillation-columns. Chem Eng Res Des. 1992;70:118-132.
Rosenthal RE. GAMS - A User's Guide. Washington, DC:GAMS Development Corporation, 2012.
Caballero JA, Grossmann IE. Generalized disjunctive programming model for the optimal synthesis of thermally linked distillation columns. Ind Eng Chem Res. 2001;40:2260-2274.
Sahinidis NV. BARON: A general purpose global optimization software package. J Global Optim. 1996;8:201-205.
Kim JK, Wankat PC. Quaternary distillation systems with less than N-1 columns. Ind Eng Chem Res. 2004;43:3838-3846.
Agrawal R. Multicomponent distillation columns with partitions and multiple reboilers and condensers. Ind Eng Chem Res. 2001;40:4258-4266.
Shah VH, Agrawal R. A matrix method for multicomponent distillation sequences. AIChE J. 2010;56:1759-1775.
Agrawal R. Synthesis of multicomponent distillation column configurations. AIChE J. 2003;49:379-401.
Soave G, Feliu JA. Saving energy in distillation towers by feed splitting. Appl Therm Eng. 2002;22:889-896.
Vecchietti A, Lee S, Grossmann IE. Modeling of discrete/continuous optimization problems: characterization and formulation of disjunctions and their relaxations. Comput Chem Eng. 2003;27:433-448.
Geofrion AM. Generalized benders decomposition. J Optim Theory Appl. 1972;10:237-259.
Underwood A. Fractional distillation of multicomponent mixtures. Chem Eng Prog. 1948;44:603-614.
Caballero JA, Grossmann IE. Design of distillation sequences: from conventional to fully thermally coupled distillation systems. Comput Chem Eng. 2004;28:2307-2329.
2004; 43
2010; 34
2010; 56
2006; 52
1987; 10
1995; 91
2012
1986; 32
2004; 28
1978; 74
1999; 23
2002; 3
1996
1995
2003
2012; 36
1996; 35
2001; 47
1989; 25
2001; 40
1998; 44
2009; 48
1989; 28
1992; 70
1993; 17
2006; 84
2006; 45
2000
1965; 5
2002; 22
1942
1999; 77
2003; 49
2003; 27
1972; 10
1992; 27
1980
1948; 44
1949
2003; 42
1996; 8
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
Kunesh J (e_1_2_10_5_1) 1995
e_1_2_10_42_1
e_1_2_10_40_1
Rudd H (e_1_2_10_10_1) 1992; 27
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_34_1
e_1_2_10_32_1
Triantafyllou C (e_1_2_10_11_1) 1992; 70
e_1_2_10_30_1
Turton R (e_1_2_10_41_1) 2003
Rosenthal RE (e_1_2_10_44_1) 2012
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
King CJ (e_1_2_10_36_1) 1980
Mix T (e_1_2_10_3_1) 1978; 74
Underwood A (e_1_2_10_37_1) 1948; 44
Drud AS (e_1_2_10_45_1) 1996
Bussieck MR (e_1_2_10_47_1) 2000
e_1_2_10_19_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
Petlyuk FB (e_1_2_10_13_1) 1965; 5
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Humphrey J (e_1_2_10_2_1) 1995; 91
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
References_xml – reference: Agrawal R. Multicomponent distillation columns with partitions and multiple reboilers and condensers. Ind Eng Chem Res. 2001;40:4258-4266.
– reference: Humphrey J. Separation processes: playing a critical role. Chem Eng Prog. 1995;91:43-54.
– reference: King CJ. Separation Processes. New York:McGraw-Hill, 1980.
– reference: Kunesh J, Kister H, Lockett M, Fair JR. Distillation: still towering over other options. Chem Eng Prog. Oct. 1995;43-54.
– reference: Giridhar A, Agrawal R. Synthesis of distillation configurations: I. Characteristics of a good search space. Comput Chem Eng. 2010;34:73-83.
– reference: Carlberg NA, Westerberg AW. Temperature heat diagrams for complex columns. 3. underwoods method for the petlyuk configuration. Ind Eng Chem Res. 1989;28:1386-1397.
– reference: Duran MA, Grossmann IE. A Mixed-integer nonlinear-programming algorithm for process systems synthesis. AIChE J. 1986;32:592-606.
– reference: Yuan X, Pibouleau L, Domenech S. Experiments in process synthesis via mixed integer programming. Chem Eng Process 1989;25:99-116.
– reference: Underwood A. Fractional distillation of multicomponent mixtures. Chem Eng Prog. 1948;44:603-614.
– reference: Rosenthal RE. GAMS - A User's Guide. Washington, DC:GAMS Development Corporation, 2012.
– reference: Drud AS. CONOPT: A System for Large Scale Nonlinear Optimization. Reference Manual. Bagsvaerd, Denmark:ARKI Consulting and Development A/S, 1996.
– reference: Shah VH, Agrawal R. A matrix method for multicomponent distillation sequences. AIChE J. 2010;56:1759-1775.
– reference: Vecchietti A, Lee S, Grossmann IE. Modeling of discrete/continuous optimization problems: characterization and formulation of disjunctions and their relaxations. Comput Chem Eng. 2003;27:433-448.
– reference: Halvorsen IJ, Skogestad S. Minimum energy consumption in multicomponent distillation. 2. Three-product Petlyuk arrangements. Ind Eng Chem Res. 2003;42:605-615.
– reference: Carlberg NA, Westerberg AW. Temperature heat diagrams for complex columns .2. underwoods method for side strippers and enrichers. Ind Eng Chem Res. 1989;28:1379-1386.
– reference: Grossmann IE. Review of nonlinear mixed-integer and disjunctive programming techniques. Optim Eng. 2002;3:227-252.
– reference: Kaibel G. Distillation columns with vertical partitions. Chem Eng Techol. 1987;10:92-98.
– reference: Agrawal R. More operable fully thermally coupled distribution column configurations for multicomponent distillation. Chem Eng Res Des. 1999;77:543-553.
– reference: Triantafyllou C, Smith R. The design and optimization of fully thermally coupled distillation-columns. Chem Eng Res Des. 1992;70:118-132.
– reference: Agrawal R, Fidkowski ZT. More operable arrangements of fully thermally coupled distillation columns. AIChE J. 1998;44:2565-2568.
– reference: Rong BG, Turunen I. A new method for synthesis of thermodynamically equivalent structures for Petlyuk arrangements. Chem Eng Res Des. 2006;84:1095-1116.
– reference: Agrawal R. Synthesis of distillation column configurations for a multicomponent separation. Ind Eng Chem Res. 1996;35:1059-1071.
– reference: Rudd H. Thermal coupling for energy efficiency. Chem Eng-London. 1992;27:S14-S15.
– reference: Rong BG, Kraslawski A, Turunen I. Synthesis and optimal design of thermodynamically equivalent thermally coupled distillation systems. Ind Eng Chem Res. 2004;43:5904-5915.
– reference: Kim JK, Wankat PC. Quaternary distillation systems with less than N-1 columns. Ind Eng Chem Res. 2004;43:3838-3846.
– reference: Navarro MA, Javaloyes J, Caballero JA, Grossmann IE. Strategies for the robust simulation of thermally coupled distillation sequences. Comput Chem Eng. 2012;36:149-159.
– reference: Yeomans H, Grossmann IE. A systematic modeling framework of superstructure optimization in process synthesis. Comput Chem Eng. 1999;23:709-731.
– reference: Petlyuk FB, Platonov VM, Slavinsk DM. Thermodynamically optimal method for separating multicomponent mixtures. Int Chem Eng. 1965;5:555-561.
– reference: Errico M, Rong B-G. Modified simple column configurations for quaternary distillations. Comput Chem Eng. 2012;36:160-173.
– reference: Turton R, Bailei RC, Whiting WB, Shaeiwitz JA. Analysis Synthesis and Design of Chemical Processes. New York:McGraw-Hill, 2003.
– reference: Caballero JA, Grossmann IE. Design of distillation sequences: from conventional to fully thermally coupled distillation systems. Comput Chem Eng. 2004;28:2307-2329.
– reference: Fidkowski ZT. Distillation configurations and their energy requirements. AIChE J. 2006;52:2098-2106.
– reference: Halvorsen IJ, Skogestad S. Minimum energy consumption in multicomponent distillation. 3. More than three products and generalized Petlyuk arrangements. Ind Eng Chem Res. 2003;42:616-629.
– reference: Halvorsen IJ, Skogestad S. Minimum energy consumption in multicomponent distillation. 1. V-min diagram for a two-product column. Ind Eng Chem Res. 2003;42:596-604.
– reference: Geofrion AM. Generalized benders decomposition. J Optim Theory Appl. 1972;10:237-259.
– reference: Caballero JA, Grossmann IE. Structural considerations and modeling in the synthesis of heat-integrated-thermally coupled distillation sequences. Ind Eng Chem Res. 2006;45:8454-8474.
– reference: Caballero JA, Grossmann IE. Generalized disjunctive programming model for the optimal synthesis of thermally linked distillation columns. Ind Eng Chem Res. 2001;40:2260-2274.
– reference: Caballero JA, Grossmann IE. Thermodynamically equivalent configurations for thermally coupled distillation. AIChE J. 2003;49:2864-2884.
– reference: Soave G, Feliu JA. Saving energy in distillation towers by feed splitting. Appl Therm Eng. 2002;22:889-896.
– reference: Kondili E, Pantelides CC, Sargent RWH. A General algorithm for short-term scheduling of batch-operations .1. Milp Formulation. Comput Chem Eng. 1993;17:211-227.
– reference: Sahinidis NV. BARON: A general purpose global optimization software package. J Global Optim. 1996;8:201-205.
– reference: Ivakpour J, Kasiri N. Synthesis of distillation column sequences for nonsharp separations. Ind Eng Chem Res. 2009;48:8635-8649.
– reference: Fidkowski ZT, Agrawal R. Multicomponent thermally coupled systems of distillation columns at minimum reflux. AIChE J. 2001;47:2713-2724.
– reference: Agrawal R. Synthesis of multicomponent distillation column configurations. AIChE J. 2003;49:379-401.
– reference: Mix T, Dweck J, Weinberg M, Armstrong R. Energy conservation in distillation. Chem Eng Prog. 1978;74:49-55.
– volume: 5
  start-page: 555
  year: 1965
  end-page: 561
  article-title: Thermodynamically optimal method for separating multicomponent mixtures
  publication-title: Int Chem Eng
– volume: 32
  start-page: 592
  year: 1986
  end-page: 606
  article-title: A Mixed‐integer nonlinear‐programming algorithm for process systems synthesis
  publication-title: AIChE J
– volume: 49
  start-page: 2864
  year: 2003
  end-page: 2884
  article-title: Thermodynamically equivalent configurations for thermally coupled distillation
  publication-title: AIChE J
– volume: 44
  start-page: 2565
  year: 1998
  end-page: 2568
  article-title: More operable arrangements of fully thermally coupled distillation columns
  publication-title: AIChE J
– volume: 23
  start-page: 709
  year: 1999
  end-page: 731
  article-title: A systematic modeling framework of superstructure optimization in process synthesis
  publication-title: Comput Chem Eng
– volume: 28
  start-page: 2307
  year: 2004
  end-page: 2329
  article-title: Design of distillation sequences: from conventional to fully thermally coupled distillation systems
  publication-title: Comput Chem Eng
– volume: 74
  start-page: 49
  year: 1978
  end-page: 55
  article-title: Energy conservation in distillation
  publication-title: Chem Eng Prog
– volume: 45
  start-page: 8454
  year: 2006
  end-page: 8474
  article-title: Structural considerations and modeling in the synthesis of heat‐integrated‐thermally coupled distillation sequences
  publication-title: Ind Eng Chem Res
– volume: 56
  start-page: 1759
  year: 2010
  end-page: 1775
  article-title: A matrix method for multicomponent distillation sequences
  publication-title: AIChE J
– volume: 43
  start-page: 5904
  year: 2004
  end-page: 5915
  article-title: Synthesis and optimal design of thermodynamically equivalent thermally coupled distillation systems
  publication-title: Ind Eng Chem Res
– volume: 91
  start-page: 43
  year: 1995
  end-page: 54
  article-title: Separation processes: playing a critical role
  publication-title: Chem Eng Prog
– volume: 49
  start-page: 379
  year: 2003
  end-page: 401
  article-title: Synthesis of multicomponent distillation column configurations
  publication-title: AIChE J
– year: 2003
– volume: 77
  start-page: 543
  year: 1999
  end-page: 553
  article-title: More operable fully thermally coupled distribution column configurations for multicomponent distillation
  publication-title: Chem Eng Res Des
– year: 1996
– year: 2000
– start-page: 43
  year: 1995
  end-page: 54
  article-title: Distillation: still towering over other options
  publication-title: Chem Eng Prog
– volume: 27
  start-page: 433
  year: 2003
  end-page: 448
  article-title: Modeling of discrete/continuous optimization problems: characterization and formulation of disjunctions and their relaxations
  publication-title: Comput Chem Eng
– volume: 84
  start-page: 1095
  year: 2006
  end-page: 1116
  article-title: A new method for synthesis of thermodynamically equivalent structures for Petlyuk arrangements
  publication-title: Chem Eng Res Des
– volume: 10
  start-page: 92
  year: 1987
  end-page: 98
  article-title: Distillation columns with vertical partitions
  publication-title: Chem Eng Techol
– volume: 35
  start-page: 1059
  year: 1996
  end-page: 1071
  article-title: Synthesis of distillation column configurations for a multicomponent separation
  publication-title: Ind Eng Chem Res
– year: 1942
– volume: 42
  start-page: 596
  year: 2003
  end-page: 604
  article-title: Minimum energy consumption in multicomponent distillation. 1. V‐min diagram for a two‐product column
  publication-title: Ind Eng Chem Res
– volume: 40
  start-page: 4258
  year: 2001
  end-page: 4266
  article-title: Multicomponent distillation columns with partitions and multiple reboilers and condensers
  publication-title: Ind Eng Chem Res
– volume: 27
  start-page: S14
  year: 1992
  end-page: S15
  article-title: Thermal coupling for energy efficiency
  publication-title: Chem Eng‐London
– volume: 48
  start-page: 8635
  year: 2009
  end-page: 8649
  article-title: Synthesis of distillation column sequences for nonsharp separations
  publication-title: Ind Eng Chem Res
– volume: 8
  start-page: 201
  year: 1996
  end-page: 205
  article-title: BARON: A general purpose global optimization software package
  publication-title: J Global Optim
– volume: 10
  start-page: 237
  year: 1972
  end-page: 259
  article-title: Generalized benders decomposition
  publication-title: J Optim Theory Appl
– volume: 22
  start-page: 889
  year: 2002
  end-page: 896
  article-title: Saving energy in distillation towers by feed splitting
  publication-title: Appl Therm Eng
– volume: 25
  start-page: 99
  year: 1989
  end-page: 116
  article-title: Experiments in process synthesis via mixed integer programming
  publication-title: Chem Eng Process
– year: 2012
– volume: 3
  start-page: 227
  year: 2002
  end-page: 252
  article-title: Review of nonlinear mixed‐integer and disjunctive programming techniques
  publication-title: Optim Eng
– volume: 34
  start-page: 73
  year: 2010
  end-page: 83
  article-title: Synthesis of distillation configurations: I. Characteristics of a good search space
  publication-title: Comput Chem Eng
– volume: 36
  start-page: 160
  year: 2012
  end-page: 173
  article-title: Modified simple column configurations for quaternary distillations
  publication-title: Comput Chem Eng
– volume: 44
  start-page: 603
  year: 1948
  end-page: 614
  article-title: Fractional distillation of multicomponent mixtures
  publication-title: Chem Eng Prog
– volume: 70
  start-page: 118
  year: 1992
  end-page: 132
  article-title: The design and optimization of fully thermally coupled distillation‐columns
  publication-title: Chem Eng Res Des
– volume: 28
  start-page: 1386
  year: 1989
  end-page: 1397
  article-title: Temperature heat diagrams for complex columns. 3. underwoods method for the petlyuk configuration
  publication-title: Ind Eng Chem Res
– volume: 43
  start-page: 3838
  year: 2004
  end-page: 3846
  article-title: Quaternary distillation systems with less than N‐1 columns
  publication-title: Ind Eng Chem Res
– year: 1980
– volume: 36
  start-page: 149
  year: 2012
  end-page: 159
  article-title: Strategies for the robust simulation of thermally coupled distillation sequences
  publication-title: Comput Chem Eng
– volume: 42
  start-page: 616
  year: 2003
  end-page: 629
  article-title: Minimum energy consumption in multicomponent distillation. 3. More than three products and generalized Petlyuk arrangements
  publication-title: Ind Eng Chem Res
– year: 1949
– volume: 28
  start-page: 1379
  year: 1989
  end-page: 1386
  article-title: Temperature heat diagrams for complex columns .2. underwoods method for side strippers and enrichers
  publication-title: Ind Eng Chem Res
– volume: 47
  start-page: 2713
  year: 2001
  end-page: 2724
  article-title: Multicomponent thermally coupled systems of distillation columns at minimum reflux
  publication-title: AIChE J
– volume: 52
  start-page: 2098
  year: 2006
  end-page: 2106
  article-title: Distillation configurations and their energy requirements
  publication-title: AIChE J
– volume: 42
  start-page: 605
  year: 2003
  end-page: 615
  article-title: Minimum energy consumption in multicomponent distillation. 2. Three‐product Petlyuk arrangements
  publication-title: Ind Eng Chem Res
– volume: 40
  start-page: 2260
  year: 2001
  end-page: 2274
  article-title: Generalized disjunctive programming model for the optimal synthesis of thermally linked distillation columns
  publication-title: Ind Eng Chem Res
– volume: 17
  start-page: 211
  year: 1993
  end-page: 227
  article-title: A General algorithm for short‐term scheduling of batch‐operations .1. Milp Formulation
  publication-title: Comput Chem Eng
– ident: e_1_2_10_25_1
  doi: 10.1016/j.compchemeng.2009.05.003
– ident: e_1_2_10_30_1
  doi: 10.1021/ie000315n
– ident: e_1_2_10_50_1
  doi: 10.1007/BF00934810
– ident: e_1_2_10_17_1
  doi: 10.1021/ie950323h
– ident: e_1_2_10_22_1
  doi: 10.1021/ie0341193
– ident: e_1_2_10_15_1
  doi: 10.1021/ie0108649
– ident: e_1_2_10_26_1
– volume-title: Recent Advances in Nonlinear Mixed Integer Optimization
  year: 2000
  ident: e_1_2_10_47_1
– volume: 44
  start-page: 603
  year: 1948
  ident: e_1_2_10_37_1
  article-title: Fractional distillation of multicomponent mixtures
  publication-title: Chem Eng Prog
– volume: 91
  start-page: 43
  year: 1995
  ident: e_1_2_10_2_1
  article-title: Separation processes: playing a critical role
  publication-title: Chem Eng Prog
– ident: e_1_2_10_9_1
  doi: 10.1002/aic.690471211
– ident: e_1_2_10_19_1
  doi: 10.1002/aic.690491118
– ident: e_1_2_10_21_1
  doi: 10.1002/aic.690441124
– ident: e_1_2_10_12_1
– ident: e_1_2_10_29_1
  doi: 10.1016/j.compchemeng.2011.06.015
– ident: e_1_2_10_7_1
  doi: 10.1021/ie060030w
– ident: e_1_2_10_24_1
  doi: 10.1002/aic.690490210
– volume: 5
  start-page: 555
  year: 1965
  ident: e_1_2_10_13_1
  article-title: Thermodynamically optimal method for separating multicomponent mixtures
  publication-title: Int Chem Eng
– ident: e_1_2_10_43_1
  doi: 10.1016/S0098-1354(02)00220-X
– volume-title: GAMS ‐ A User's Guide
  year: 2012
  ident: e_1_2_10_44_1
– ident: e_1_2_10_27_1
  doi: 10.1002/ceat.270100112
– volume-title: CONOPT: A System for Large Scale Nonlinear Optimization. Reference Manual
  year: 1996
  ident: e_1_2_10_45_1
– ident: e_1_2_10_46_1
  doi: 10.1007/BF00138693
– ident: e_1_2_10_14_1
  doi: 10.1021/ie010863g
– volume-title: Analysis Synthesis and Design of Chemical Processes
  year: 2003
  ident: e_1_2_10_41_1
– ident: e_1_2_10_39_1
  doi: 10.1021/ie00093a018
– ident: e_1_2_10_42_1
  doi: 10.1023/A:1021039126272
– ident: e_1_2_10_28_1
  doi: 10.1021/ie030640l
– volume-title: Separation Processes
  year: 1980
  ident: e_1_2_10_36_1
– ident: e_1_2_10_33_1
  doi: 10.1016/S1570-7946(02)80056-6
– ident: e_1_2_10_6_1
  doi: 10.1016/j.compchemeng.2004.04.010
– ident: e_1_2_10_34_1
  doi: 10.1016/0098-1354(93)80015-F
– ident: e_1_2_10_35_1
  doi: 10.1016/S0098-1354(99)00003-4
– ident: e_1_2_10_8_1
  doi: 10.1002/aic.10803
– start-page: 43
  year: 1995
  ident: e_1_2_10_5_1
  article-title: Distillation: still towering over other options
  publication-title: Chem Eng Prog
– ident: e_1_2_10_18_1
  doi: 10.1021/ie000761a
– ident: e_1_2_10_31_1
  doi: 10.1021/ie802013r
– ident: e_1_2_10_4_1
  doi: 10.1016/S1359-4311(02)00006-6
– volume: 74
  start-page: 49
  year: 1978
  ident: e_1_2_10_3_1
  article-title: Energy conservation in distillation
  publication-title: Chem Eng Prog
– ident: e_1_2_10_32_1
  doi: 10.1002/aic.12118
– ident: e_1_2_10_23_1
  doi: 10.1205/cherd06012
– volume: 27
  start-page: S14
  year: 1992
  ident: e_1_2_10_10_1
  article-title: Thermal coupling for energy efficiency
  publication-title: Chem Eng‐London
– volume: 70
  start-page: 118
  year: 1992
  ident: e_1_2_10_11_1
  article-title: The design and optimization of fully thermally coupled distillation‐columns
  publication-title: Chem Eng Res Des
– ident: e_1_2_10_16_1
  doi: 10.1021/ie0108651
– ident: e_1_2_10_38_1
  doi: 10.1021/ie00093a017
– ident: e_1_2_10_40_1
  doi: 10.1016/j.compchemeng.2011.06.014
– ident: e_1_2_10_20_1
  doi: 10.1205/026387699526449
– ident: e_1_2_10_48_1
  doi: 10.1002/aic.690320408
– ident: e_1_2_10_49_1
  doi: 10.1016/0255-2701(89)80035-2
SSID ssj0012782
Score 2.347156
Snippet The design of thermally coupled distillation sequences explicitly including the possibility of divided wall columns (DWC) is described. A DWC with a single...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1139
SubjectTerms disjunctive programming problem
Distillation
divided wall column
Equivalence
Mathematical analysis
Mathematical models
mixed integer nonlinear programming problem
Nonlinear programming
Optimization
Separation
superstructure optimization
Tasks
thermally coupled distillation
Thermodynamics
Walls
Title Synthesis of complex thermally coupled distillation systems including divided wall columns
URI https://api.istex.fr/ark:/67375/WNG-8910SFJL-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.13912
https://www.proquest.com/docview/1320845518
https://www.proquest.com/docview/1349435876
https://www.proquest.com/docview/1349464929
Volume 59
WOSCitedRecordID wos000317466000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1547-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012782
  issn: 0001-1541
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5VuzzAQw8OdaGtDEKIl6WJ7TiJ-lRtuxxarRClUPFiOT6kVUMWbbo9_j1jJxtaCQQSb4kzlnzNzBd7_A3AS092yqxQQ8f81g2PUKVYkg4t-gYTcZPGgaf7yySdTrOzs_zjGhys7sI0_BDdhpvXjGCvvYKrot7_RRqqZvoNwhefYbhPcd3yHvSPPo1PJ90hAk2zhiwc_5gRKcQrYqGI7neV77ijvh_Z6ztY8zZiDS5nvPFfjd2E9RZpksNmaWzBmq0ewoNb_IOP4NvJTYUAsJ7VZO5IiC6318RDwu-qLG-wZIklhhhvCMomao403M81mVW6XHrPR8KVLhS7wkpYB81dVT-G0_Hx59G7YZtsYah5yqg3erqgNjGZpkIlTOskKTTVQvDImsJZkTojIptbR2MX6cxpNKQCXzRDTMPYE-hV88puA8ni2DDEHkpFnFuWK-aEyXOdaBfzgvIBvF6NudQtE7lPiFHKhkOZShwuGYZrAC860R8N_cbvhF6Fiesk1OLcx6ulifw6fSszREQn4w8TORrAzmpmZauqtfR3yDPuiekG8Lz7jErmT05UZedLL8NzxJXY4b_ICI5wE_sX1sKfWywP34_Cw9N_F30G92lIxeGjhnagd7FY2l24py8vZvVir137PwFCDgZM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9N7STggY0vURhgEEK8lCW24yQSL1OhbBAqxDaYeLFcf0jVshQ1K2z__c5OGjYJBBJviXOW7LPv_It9_h3Ac092yqxQQ8f81g2P0KRYkg4trg0m4iaNA0_3lyKdTLKjo_zTGrxe3YVp-CG6DTdvGcFfewP3G9Lbv1hD1Uy_QvziUwz3OU6jpAf9N5_Hh0V3ikDTrGELx19mhArxilkoottd5SvrUd-r9uwK2LwMWcOaM974v9Zuws0Wa5KdZnLcgjVb3YYblxgI78C3_fMKIWA9q8nckRBfbs-IB4UnqizPsWSJJYYY7wrKJm6ONOzPNZlVulz6tY-ES10o9hMrYR10eFV9Fw7Hbw9Gu8M23cJQ85RR7_b0lNrEZJoKlTCtk2SqqRaCR9ZMnRWpMyKyuXU0dpHOnEZXKvBFM0Q1jN2DXjWv7H0gWRwbhuhDqYhzy3LFnDB5rhPtYj6lfAAvV0qXuuUi9ykxStmwKFOJ6pJBXQN41ol-bwg4fif0IoxcJ6EWxz5iLU3k18k7mSEm2h-_L-RoAFuroZWtsdbS3yLPuKemG8DT7jOamT87UZWdL70MzxFZYof_IiM4Ak7sX5gMf26x3NkbhYcH_y76BK7tHnwsZLE3-fAQrtOQmMPHEG1B73SxtI9gXf84ndWLx60hXADxJwo8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9N64TgATY-RGEbBiHES1liO04i7WXqFjaoqokxmHixXH9IFSGdmhW2_56zk4ZNAoHEW-KcJfvsO_9in38H8NKTnTIr1MAxv3XDIzQplqQDi2uDibhJ48DT_WmUjsfZ2Vl-vAK7y7swDT9Et-HmLSP4a2_g9ty4nV-soWqq3yB-8SmGezzJBZplb_9DcTrqThFomjVs4fjLjFAhXjILRXSnq3xjPep51V7eAJvXIWtYc4p7_9fadbjbYk2y10yODVix1X24c42B8AF8ObmqEALW05rMHAnx5faSeFD4TZXlFZYssMQQ411B2cTNkYb9uSbTSpcLv_aRcKkLxX5gJayDDq-qH8JpcfBxeDho0y0MNE8Z9W5PT6hNTKapUAnTOkkmmmoheGTNxFmROiMim1tHYxfpzGl0pQJfNENUw9gjWK1mlX0MJItjwxB9KBVxblmumBMmz3WiXcwnlPfh9VLpUrdc5D4lRikbFmUqUV0yqKsPLzrR84aA43dCr8LIdRJq_tVHrKWJ_Dx-KzPERCfFu5Ec9mFzObSyNdZa-lvkGffUdH143n1GM_NnJ6qys4WX4TkiS-zwX2QER8CJ_QuT4c8tlntHw_Dw5N9Fn8Gt4_1Cjo7G75_CbRrycvgQok1YvZgv7Bas6e8X03q-3drBT2zxCbc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+complex+thermally+coupled+distillation+systems+including+divided+wall+columns&rft.jtitle=AIChE+journal&rft.au=Caballero%2C+Jos%C3%A9+A.&rft.au=Grossmann%2C+Ignacio+E.&rft.date=2013-04-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=59&rft.issue=4&rft.spage=1139&rft.epage=1159&rft_id=info:doi/10.1002%2Faic.13912&rft.externalDBID=10.1002%252Faic.13912&rft.externalDocID=AIC13912
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon