ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds
Bacterial infection has been a great threat to dermal wounds, especially to difficult-to-heal diabetic wounds. It is known that reactive oxygen species (ROS) generated by wounds or bacterial infection could further impede wound healing. Here, a type of ROS-scavenging hydrogel is developed by using p...
Uloženo v:
| Vydáno v: | Biomaterials Ročník 258; s. 120286 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier Ltd
01.11.2020
|
| Témata: | |
| ISSN: | 0142-9612, 1878-5905, 1878-5905 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Bacterial infection has been a great threat to dermal wounds, especially to difficult-to-heal diabetic wounds. It is known that reactive oxygen species (ROS) generated by wounds or bacterial infection could further impede wound healing. Here, a type of ROS-scavenging hydrogel is developed by using polyvinyl alcohol (PVA) cross-linked by a ROS-responsive linker. The obtained hydrogel could act as an effective ROS-scavenging agent to promote the wound closure by decreasing the ROS level and up-regulating M2 phenotype macrophages around the wound. Importantly, such hydrogel formed in the wound could allow release of therapeutics, including mupirocin to kill bacteria, and granulocyte-macrophage colony-stimulating factor (GM-CSF) to accelerate the wound closure, in responsive to endogenous ROS existing in the wound microenvironment. Remarkably, our drug-loaded ROS-scavenging hydrogel could be employed to effectively treat various types of wounds including difficult-to-heal diabetic wounds with bacterial infection. Therefore, this work presents an effective strategy based on ROS-scavenging hydrogel for wound healing under various kinds of complications.
[Display omitted] |
|---|---|
| AbstractList | Bacterial infection has been a great threat to dermal wounds, especially to difficult-to-heal diabetic wounds. It is known that reactive oxygen species (ROS) generated by wounds or bacterial infection could further impede wound healing. Here, a type of ROS-scavenging hydrogel is developed by using polyvinyl alcohol (PVA) cross-linked by a ROS-responsive linker. The obtained hydrogel could act as an effective ROS-scavenging agent to promote the wound closure by decreasing the ROS level and up-regulating M2 phenotype macrophages around the wound. Importantly, such hydrogel formed in the wound could allow release of therapeutics, including mupirocin to kill bacteria, and granulocyte-macrophage colony-stimulating factor (GM-CSF) to accelerate the wound closure, in responsive to endogenous ROS existing in the wound microenvironment. Remarkably, our drug-loaded ROS-scavenging hydrogel could be employed to effectively treat various types of wounds including difficult-to-heal diabetic wounds with bacterial infection. Therefore, this work presents an effective strategy based on ROS-scavenging hydrogel for wound healing under various kinds of complications. Bacterial infection has been a great threat to dermal wounds, especially to difficult-to-heal diabetic wounds. It is known that reactive oxygen species (ROS) generated by wounds or bacterial infection could further impede wound healing. Here, a type of ROS-scavenging hydrogel is developed by using polyvinyl alcohol (PVA) cross-linked by a ROS-responsive linker. The obtained hydrogel could act as an effective ROS-scavenging agent to promote the wound closure by decreasing the ROS level and up-regulating M2 phenotype macrophages around the wound. Importantly, such hydrogel formed in the wound could allow release of therapeutics, including mupirocin to kill bacteria, and granulocyte-macrophage colony-stimulating factor (GM-CSF) to accelerate the wound closure, in responsive to endogenous ROS existing in the wound microenvironment. Remarkably, our drug-loaded ROS-scavenging hydrogel could be employed to effectively treat various types of wounds including difficult-to-heal diabetic wounds with bacterial infection. Therefore, this work presents an effective strategy based on ROS-scavenging hydrogel for wound healing under various kinds of complications. [Display omitted] Bacterial infection has been a great threat to dermal wounds, especially to difficult-to-heal diabetic wounds. It is known that reactive oxygen species (ROS) generated by wounds or bacterial infection could further impede wound healing. Here, a type of ROS-scavenging hydrogel is developed by using polyvinyl alcohol (PVA) cross-linked by a ROS-responsive linker. The obtained hydrogel could act as an effective ROS-scavenging agent to promote the wound closure by decreasing the ROS level and up-regulating M2 phenotype macrophages around the wound. Importantly, such hydrogel formed in the wound could allow release of therapeutics, including mupirocin to kill bacteria, and granulocyte-macrophage colony-stimulating factor (GM-CSF) to accelerate the wound closure, in responsive to endogenous ROS existing in the wound microenvironment. Remarkably, our drug-loaded ROS-scavenging hydrogel could be employed to effectively treat various types of wounds including difficult-to-heal diabetic wounds with bacterial infection. Therefore, this work presents an effective strategy based on ROS-scavenging hydrogel for wound healing under various kinds of complications.Bacterial infection has been a great threat to dermal wounds, especially to difficult-to-heal diabetic wounds. It is known that reactive oxygen species (ROS) generated by wounds or bacterial infection could further impede wound healing. Here, a type of ROS-scavenging hydrogel is developed by using polyvinyl alcohol (PVA) cross-linked by a ROS-responsive linker. The obtained hydrogel could act as an effective ROS-scavenging agent to promote the wound closure by decreasing the ROS level and up-regulating M2 phenotype macrophages around the wound. Importantly, such hydrogel formed in the wound could allow release of therapeutics, including mupirocin to kill bacteria, and granulocyte-macrophage colony-stimulating factor (GM-CSF) to accelerate the wound closure, in responsive to endogenous ROS existing in the wound microenvironment. Remarkably, our drug-loaded ROS-scavenging hydrogel could be employed to effectively treat various types of wounds including difficult-to-heal diabetic wounds with bacterial infection. Therefore, this work presents an effective strategy based on ROS-scavenging hydrogel for wound healing under various kinds of complications. |
| ArticleNumber | 120286 |
| Author | Zhou, Huiting Wang, Jian Wang, Chao Zhao, He Xu, Yunyun Liu, Zhuang Li, Yan Huang, Jie Wang, Hairong Lv, Xinjing |
| Author_xml | – sequence: 1 givenname: He surname: Zhao fullname: Zhao, He organization: Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China – sequence: 2 givenname: Jie surname: Huang fullname: Huang, Jie organization: Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China – sequence: 3 givenname: Yan surname: Li fullname: Li, Yan organization: Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China – sequence: 4 givenname: Xinjing surname: Lv fullname: Lv, Xinjing organization: Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China – sequence: 5 givenname: Huiting surname: Zhou fullname: Zhou, Huiting organization: Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China – sequence: 6 givenname: Hairong surname: Wang fullname: Wang, Hairong organization: Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China – sequence: 7 givenname: Yunyun surname: Xu fullname: Xu, Yunyun organization: Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China – sequence: 8 givenname: Chao surname: Wang fullname: Wang, Chao organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China – sequence: 9 givenname: Jian surname: Wang fullname: Wang, Jian email: wj196312@vip.163.com organization: Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China – sequence: 10 givenname: Zhuang surname: Liu fullname: Liu, Zhuang email: zliu@suda.edu.cn organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32798744$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1v1DAQhi1URLeFv4AiTlyy2I4Tx5yA0gJSpZX4OFvOeLL1ktjF9hbtv8fLFoR6YS_-0Dx-PJr3jJz44JGQF4wuGWXdq81ycGE2GaMzU1pyykuhrH33iCxYL_u6VbQ9IQvKBK9Vx_gpOUtpQ8udCv6EnDZcql4KsSCrz6svdQJzh37t_Lq62dkY1jhVOVS3McwhY3WDZtrXwlgNBn5_Wzk_YjnayjozYHZQ_Qxbb9NT8ngsTeGz-_2cfLu6_Hrxsb5effh08fa6BiF5rlGBYcBHy6Rho2gaRgcFoDrZtADCSKksiqZre0tVb7uRSqs4DrTFvu-Uas7Jy4O3NPljiynr2SXAaTIewzZp3nLBRVcM_0dFI2QrGkUL-vwe3Q4zWn0b3WziTv-ZVwFeHwCIIaWI41-EUb0PR2_0v-HofTj6EE55_ObBY3DZZBd8jsZNxyneHxRYZnvnMOoEDj2gdbHkoW1wx2nePdBASdiBmb7j7ljJL1ESyl0 |
| CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2024_130989 crossref_primary_10_1016_j_ijbiomac_2023_128027 crossref_primary_10_1002_adma_202404297 crossref_primary_10_1002_sstr_202100002 crossref_primary_10_1016_j_ijbiomac_2025_147220 crossref_primary_10_1016_j_cej_2023_145941 crossref_primary_10_1002_adfm_202213066 crossref_primary_10_1002_adfm_202425625 crossref_primary_10_3390_pharmaceutics13101666 crossref_primary_10_1063_5_0228692 crossref_primary_10_1016_j_mtchem_2022_100968 crossref_primary_10_1186_s40824_023_00429_z crossref_primary_10_1002_anie_202302329 crossref_primary_10_1007_s42765_022_00153_8 crossref_primary_10_1016_j_cej_2022_136835 crossref_primary_10_1021_jacs_4c03361 crossref_primary_10_1016_j_mtcomm_2024_109149 crossref_primary_10_1016_j_compositesb_2023_110909 crossref_primary_10_1016_j_biomaterials_2024_122841 crossref_primary_10_1002_admi_202202034 crossref_primary_10_3390_ma17020278 crossref_primary_10_1016_j_matt_2021_06_044 crossref_primary_10_1016_j_ymthe_2022_07_016 crossref_primary_10_1063_5_0046682 crossref_primary_10_1186_s12951_024_03055_6 crossref_primary_10_1186_s40779_025_00611_5 crossref_primary_10_1002_adhm_202401118 crossref_primary_10_1016_j_bioactmat_2022_02_034 crossref_primary_10_2147_IJN_S427055 crossref_primary_10_1080_09205063_2022_2124351 crossref_primary_10_1016_j_ijbiomac_2023_128284 crossref_primary_10_1016_j_bioactmat_2024_05_010 crossref_primary_10_1016_j_bioactmat_2025_07_026 crossref_primary_10_1080_17425247_2025_2466772 crossref_primary_10_1002_smll_202205489 crossref_primary_10_1016_j_ijbiomac_2024_129735 crossref_primary_10_1038_s41392_025_02124_y crossref_primary_10_1002_advs_202104165 crossref_primary_10_1002_anbr_202300133 crossref_primary_10_1002_slct_202405715 crossref_primary_10_34133_bmr_0066 crossref_primary_10_1002_adfm_202303095 crossref_primary_10_1002_adhm_202402699 crossref_primary_10_1002_adfm_202306357 crossref_primary_10_1089_wound_2024_0138 crossref_primary_10_1007_s42765_022_00198_9 crossref_primary_10_1093_rb_rbaf046 crossref_primary_10_1002_adfm_202307449 crossref_primary_10_2147_IJN_S531396 crossref_primary_10_1002_adfm_202411117 crossref_primary_10_1002_smll_202203064 crossref_primary_10_1016_j_ijbiomac_2025_143095 crossref_primary_10_1016_j_eurpolymj_2024_113026 crossref_primary_10_1016_j_matdes_2023_112459 crossref_primary_10_3390_pharmaceutics14102065 crossref_primary_10_1002_adhm_202404889 crossref_primary_10_1002_adfm_202102599 crossref_primary_10_1002_adfm_202401307 crossref_primary_10_1021_acs_biomac_5c00112 crossref_primary_10_1016_j_cbi_2024_111188 crossref_primary_10_1016_j_biochi_2021_08_007 crossref_primary_10_1002_adhm_202400170 crossref_primary_10_1039_D4RE00472H crossref_primary_10_3389_fbioe_2022_973080 crossref_primary_10_1016_j_jmbbm_2023_106081 crossref_primary_10_3389_fbioe_2023_1283771 crossref_primary_10_1016_j_actbio_2022_09_017 crossref_primary_10_1002_smll_202103997 crossref_primary_10_1002_adhm_202100033 crossref_primary_10_3390_gels8060361 crossref_primary_10_3390_gels11040293 crossref_primary_10_1016_j_cej_2024_150770 crossref_primary_10_1088_1748_605X_ad0d85 crossref_primary_10_1002_btm2_10398 crossref_primary_10_1016_j_ijbiomac_2024_138786 crossref_primary_10_1016_j_cej_2025_160984 crossref_primary_10_1002_adhm_202302868 crossref_primary_10_1016_j_matdes_2023_112620 crossref_primary_10_3390_life13061409 crossref_primary_10_3390_gels9040289 crossref_primary_10_1557_s43578_023_01249_6 crossref_primary_10_1016_j_colsurfb_2022_112479 crossref_primary_10_1016_j_cej_2024_150545 crossref_primary_10_1186_s12951_022_01395_9 crossref_primary_10_1093_burnst_tkae067 crossref_primary_10_1002_adfm_202214089 crossref_primary_10_1002_adtp_202400405 crossref_primary_10_1002_smll_202404636 crossref_primary_10_1002_adfm_202009442 crossref_primary_10_1186_s12951_023_02211_8 crossref_primary_10_1002_smll_202401241 crossref_primary_10_1016_j_cej_2024_158133 crossref_primary_10_1002_advs_202200732 crossref_primary_10_1002_smll_202403781 crossref_primary_10_1002_marc_202300379 crossref_primary_10_1016_j_ijbiomac_2024_136239 crossref_primary_10_3390_bios15030139 crossref_primary_10_1063_5_0237243 crossref_primary_10_1016_j_actbio_2022_11_054 crossref_primary_10_1016_j_colsurfb_2023_113738 crossref_primary_10_1002_smll_202104229 crossref_primary_10_1002_adfm_202111003 crossref_primary_10_1002_adhm_202303604 crossref_primary_10_1016_j_colsurfb_2022_112589 crossref_primary_10_1002_adma_202309719 crossref_primary_10_1002_ange_202311698 crossref_primary_10_1016_j_cej_2024_150879 crossref_primary_10_1016_j_ijbiomac_2023_124960 crossref_primary_10_1002_jbm_a_37453 crossref_primary_10_3389_fbioe_2023_1308184 crossref_primary_10_1007_s12274_024_6943_4 crossref_primary_10_1002_smll_202403679 crossref_primary_10_1002_adhm_202102791 crossref_primary_10_1002_adfm_202402845 crossref_primary_10_1002_adhm_202303930 crossref_primary_10_1016_j_ijbiomac_2024_134055 crossref_primary_10_1038_s41598_025_96578_3 crossref_primary_10_1002_advs_202306602 crossref_primary_10_1016_j_ijbiomac_2024_135381 crossref_primary_10_1016_j_colsurfa_2025_136588 crossref_primary_10_3389_fchem_2024_1376799 crossref_primary_10_1002_adfm_202306319 crossref_primary_10_1007_s12015_024_10806_3 crossref_primary_10_1016_j_matdes_2023_111674 crossref_primary_10_1016_j_ijbiomac_2023_124971 crossref_primary_10_1016_j_actbio_2021_07_018 crossref_primary_10_1016_j_redox_2025_103718 crossref_primary_10_1089_wound_2021_0162 crossref_primary_10_3390_ijms24032936 crossref_primary_10_1016_j_ijbiomac_2024_133075 crossref_primary_10_1002_mabi_202500084 crossref_primary_10_1002_adhm_202301885 crossref_primary_10_3389_fbioe_2023_1304835 crossref_primary_10_3389_fbioe_2024_1525644 crossref_primary_10_1021_acsbiomaterials_5c01060 crossref_primary_10_1016_j_jconrel_2024_03_024 crossref_primary_10_2147_IJN_S505918 crossref_primary_10_1016_j_bioactmat_2022_09_019 crossref_primary_10_2147_IJN_S363827 crossref_primary_10_1016_j_compositesb_2023_110985 crossref_primary_10_1021_acsbiomaterials_5c00244 crossref_primary_10_1002_adhm_202303997 crossref_primary_10_1007_s10853_025_10803_y crossref_primary_10_1039_D4BM00155A crossref_primary_10_1007_s40820_024_01323_6 crossref_primary_10_1016_j_cej_2024_152249 crossref_primary_10_3389_fphar_2021_679580 crossref_primary_10_1002_bmm2_12021 crossref_primary_10_1039_D4BM01221F crossref_primary_10_1016_j_actbio_2022_11_023 crossref_primary_10_1016_j_cej_2025_162442 crossref_primary_10_3390_pharmaceutics17050644 crossref_primary_10_1016_j_cej_2024_149068 crossref_primary_10_1016_j_matdes_2022_111452 crossref_primary_10_1016_j_cclet_2025_111481 crossref_primary_10_1002_smll_202308295 crossref_primary_10_1016_j_jddst_2023_105072 crossref_primary_10_1016_j_matdes_2022_110598 crossref_primary_10_1016_j_ijbiomac_2025_144480 crossref_primary_10_1016_j_cej_2023_146744 crossref_primary_10_1186_s12951_025_03621_6 crossref_primary_10_1039_D4MD00232F crossref_primary_10_1002_adfm_202100795 crossref_primary_10_1016_j_ijbiomac_2023_126819 crossref_primary_10_1039_D1BM01575C crossref_primary_10_1016_j_cej_2024_154890 crossref_primary_10_1038_s41467_022_33920_7 crossref_primary_10_1016_j_hsr_2023_100140 crossref_primary_10_1016_j_microc_2023_109268 crossref_primary_10_1016_j_bioadv_2025_214324 crossref_primary_10_1016_j_jddst_2025_106848 crossref_primary_10_1063_5_0238411 crossref_primary_10_1007_s11051_021_05213_5 crossref_primary_10_1093_burnst_tkaf020 crossref_primary_10_1002_advs_202403219 crossref_primary_10_1016_j_ijbiomac_2023_125731 crossref_primary_10_1093_burnst_tkaf024 crossref_primary_10_1093_burnst_tkaf025 crossref_primary_10_1186_s12951_021_01215_6 crossref_primary_10_1016_j_ijpharm_2025_125222 crossref_primary_10_1016_j_cej_2024_151005 crossref_primary_10_1186_s12951_024_02685_0 crossref_primary_10_1371_journal_pone_0317928 crossref_primary_10_1016_j_cej_2024_151485 crossref_primary_10_1016_j_carbpol_2024_122740 crossref_primary_10_1002_smll_202402146 crossref_primary_10_1016_j_cej_2022_138076 crossref_primary_10_1038_s41387_024_00344_9 crossref_primary_10_3390_cells11030443 crossref_primary_10_1016_j_cej_2022_138077 crossref_primary_10_1016_j_ijbiomac_2024_137752 crossref_primary_10_34133_bmr_0216 crossref_primary_10_3389_fbioe_2022_968078 crossref_primary_10_3390_pharmaceutics15122735 crossref_primary_10_1016_j_ijbiomac_2024_138966 crossref_primary_10_1016_j_ijbiomac_2024_136669 crossref_primary_10_1016_j_ijbiomac_2022_03_214 crossref_primary_10_1016_j_ijbiomac_2025_147716 crossref_primary_10_1007_s12274_022_4792_6 crossref_primary_10_1002_adfm_202212489 crossref_primary_10_1016_j_ijbiomac_2022_04_026 crossref_primary_10_1002_jbm_b_35458 crossref_primary_10_1039_D5TB00563A crossref_primary_10_1007_s42765_024_00407_7 crossref_primary_10_1016_j_jconrel_2023_01_049 crossref_primary_10_1016_j_intimp_2024_112695 crossref_primary_10_1016_j_ijbiomac_2024_135567 crossref_primary_10_1016_j_ijbiomac_2024_135324 crossref_primary_10_1073_pnas_2322935121 crossref_primary_10_1016_j_ijbiomac_2022_11_320 crossref_primary_10_1016_j_cej_2025_160379 crossref_primary_10_1002_adhm_202001966 crossref_primary_10_1016_j_cej_2024_154517 crossref_primary_10_1016_j_nantod_2021_101290 crossref_primary_10_1016_j_biomaterials_2024_122891 crossref_primary_10_1049_bsb2_12050 crossref_primary_10_1016_j_bios_2023_115997 crossref_primary_10_1007_s42247_024_00930_8 crossref_primary_10_1186_s12951_024_02687_y crossref_primary_10_4103_japtr_japtr_631_22 crossref_primary_10_1016_j_ijbiomac_2024_134105 crossref_primary_10_3390_polym13213630 crossref_primary_10_1039_D2BM00620K crossref_primary_10_3390_antiox12051079 crossref_primary_10_1007_s10853_025_10823_8 crossref_primary_10_1007_s40242_024_4195_1 crossref_primary_10_1016_j_ijbiomac_2024_134342 crossref_primary_10_1016_j_ijbiomac_2024_135562 crossref_primary_10_1002_adhm_202200717 crossref_primary_10_1016_j_colsurfb_2023_113444 crossref_primary_10_1016_j_actbio_2025_04_034 crossref_primary_10_1002_adhm_202501303 crossref_primary_10_1088_1758_5090_adeecc crossref_primary_10_1016_j_ijbiomac_2025_143695 crossref_primary_10_1002_adhm_202402080 crossref_primary_10_1016_j_bioadv_2022_212979 crossref_primary_10_1016_j_intimp_2024_113009 crossref_primary_10_1016_j_matdes_2023_111701 crossref_primary_10_1002_smll_202207437 crossref_primary_10_1016_j_cej_2023_142222 crossref_primary_10_1016_j_biomaterials_2024_122880 crossref_primary_10_1177_08853282231197901 crossref_primary_10_1007_s40843_021_1724_8 crossref_primary_10_1016_j_actbio_2022_08_048 crossref_primary_10_1016_j_bioactmat_2022_06_018 crossref_primary_10_1016_j_cej_2023_144649 crossref_primary_10_1016_j_ijbiomac_2024_133363 crossref_primary_10_2147_IJN_S372211 crossref_primary_10_3389_fcell_2023_1195600 crossref_primary_10_1002_adhm_202304536 crossref_primary_10_1016_j_actbio_2025_02_014 crossref_primary_10_1039_D3MH01054F crossref_primary_10_1002_ange_202302329 crossref_primary_10_1016_j_cej_2024_154855 crossref_primary_10_3390_pharmaceutics17040519 crossref_primary_10_1016_j_actbio_2025_04_047 crossref_primary_10_1002_jbm_a_37636 crossref_primary_10_1016_j_ijbiomac_2025_141284 crossref_primary_10_1039_D1BM00411E crossref_primary_10_1002_adfm_202213008 crossref_primary_10_1039_D5NR02066B crossref_primary_10_1016_j_ijbiomac_2024_132269 crossref_primary_10_1016_j_ccr_2022_214875 crossref_primary_10_3390_ijms25073849 crossref_primary_10_1093_burnst_tkae018 crossref_primary_10_1002_adhm_202404283 crossref_primary_10_1016_j_bioadv_2025_214217 crossref_primary_10_1002_anbr_202200177 crossref_primary_10_1016_j_jcis_2024_10_137 crossref_primary_10_1016_j_carbpol_2025_123916 crossref_primary_10_1002_adhm_202500355 crossref_primary_10_1002_cjoc_202300142 crossref_primary_10_3389_fphar_2023_1276849 crossref_primary_10_1080_10601325_2021_1927754 crossref_primary_10_1080_15583724_2024_2427184 crossref_primary_10_1016_j_ijpharm_2025_125315 crossref_primary_10_1016_j_carbpol_2024_122894 crossref_primary_10_1002_adma_202306292 crossref_primary_10_1016_j_ijbiomac_2024_133471 crossref_primary_10_26599_NR_2025_94907078 crossref_primary_10_1016_j_bioactmat_2022_07_020 crossref_primary_10_1016_j_ijbiomac_2023_124106 crossref_primary_10_1002_advs_202300576 crossref_primary_10_1016_j_ijbiomac_2025_145744 crossref_primary_10_1016_j_jconrel_2021_11_027 crossref_primary_10_1007_s13346_022_01176_9 crossref_primary_10_1016_j_biomaterials_2025_123542 crossref_primary_10_1002_smll_202201300 crossref_primary_10_1016_j_ijbiomac_2023_127737 crossref_primary_10_3389_fbioe_2021_718377 crossref_primary_10_3390_gels11060420 crossref_primary_10_1016_j_ijbiomac_2024_130189 crossref_primary_10_1016_j_cej_2024_148938 crossref_primary_10_1016_j_ijbiomac_2024_131395 crossref_primary_10_1093_burnst_tkac019 crossref_primary_10_1186_s12951_023_01922_2 crossref_primary_10_1557_s43578_025_01629_0 crossref_primary_10_1002_adhm_202405151 crossref_primary_10_1002_adfm_202201875 crossref_primary_10_1016_j_ijbiomac_2022_11_156 crossref_primary_10_1002_adsr_202200018 crossref_primary_10_1002_VIW_20200112 crossref_primary_10_1039_D4RA04860A crossref_primary_10_3389_fbioe_2023_1241660 crossref_primary_10_1016_j_bioadv_2022_213226 crossref_primary_10_1016_j_jddst_2025_107308 crossref_primary_10_1002_adhm_202201323 crossref_primary_10_1002_adhm_202202652 crossref_primary_10_1016_j_mtbio_2025_101751 crossref_primary_10_1016_j_cej_2025_164111 crossref_primary_10_1016_j_ejps_2024_106847 crossref_primary_10_1016_j_ijbiomac_2022_12_063 crossref_primary_10_1002_agt2_587 crossref_primary_10_1016_j_biomaterials_2024_123010 crossref_primary_10_1038_s41467_022_32160_z crossref_primary_10_3389_fbioe_2021_821288 crossref_primary_10_1016_j_ijbiomac_2024_134896 crossref_primary_10_1016_j_jep_2023_116451 crossref_primary_10_1002_cbic_202400790 crossref_primary_10_1002_smll_202107137 crossref_primary_10_1039_D2NR03756D crossref_primary_10_1186_s13054_023_04577_5 crossref_primary_10_1002_adhm_202500403 crossref_primary_10_1016_j_cej_2025_165440 crossref_primary_10_1016_j_ijbiomac_2023_124321 crossref_primary_10_1002_adtp_202000270 crossref_primary_10_1016_j_ijbiomac_2023_128962 crossref_primary_10_1002_advs_202102545 crossref_primary_10_1016_j_matdes_2023_111917 crossref_primary_10_1088_1748_605X_ad2ed1 crossref_primary_10_1016_j_ijbiomac_2024_130172 crossref_primary_10_1016_j_biomaterials_2022_121656 crossref_primary_10_1016_j_talanta_2025_128512 crossref_primary_10_1016_j_cej_2024_155336 crossref_primary_10_1016_j_ijbiomac_2025_143997 crossref_primary_10_1016_j_mtbio_2025_101856 crossref_primary_10_1016_j_ijbiomac_2025_140125 crossref_primary_10_3390_gels9040301 crossref_primary_10_1016_j_ijbiomac_2024_139090 crossref_primary_10_3390_ani12182444 crossref_primary_10_1002_advs_202405924 crossref_primary_10_1002_bip_70046 crossref_primary_10_1016_j_biomaterials_2025_123531 crossref_primary_10_1186_s12951_024_02423_6 crossref_primary_10_1016_j_biomaterials_2025_123411 crossref_primary_10_1016_j_nxnano_2025_100134 crossref_primary_10_1002_INMD_20250001 crossref_primary_10_15446_rfmvz_v70n1_102246 crossref_primary_10_1016_j_bioactmat_2024_02_010 crossref_primary_10_1002_cnma_202400073 crossref_primary_10_1002_adhm_202303229 crossref_primary_10_3390_molecules30030686 crossref_primary_10_1016_j_cej_2024_158713 crossref_primary_10_1021_acs_biomac_4c01331 crossref_primary_10_1155_2021_8852759 crossref_primary_10_3390_biomimetics9010023 crossref_primary_10_3390_gels10020114 crossref_primary_10_1002_idm2_12215 crossref_primary_10_1002_smll_202507226 crossref_primary_10_1039_D2BM00224H crossref_primary_10_1186_s40779_023_00473_9 crossref_primary_10_1016_j_biomaterials_2021_121164 crossref_primary_10_1002_adhm_202400856 crossref_primary_10_1016_j_biomaterials_2021_121040 crossref_primary_10_1016_j_coco_2024_102107 crossref_primary_10_1080_21663831_2023_2294882 crossref_primary_10_1186_s12951_023_01924_0 crossref_primary_10_12677_acm_2025_1551617 crossref_primary_10_1016_j_bioadv_2024_213820 crossref_primary_10_1002_adhm_202304125 crossref_primary_10_1002_adhm_202101808 crossref_primary_10_1002_adhm_202500734 crossref_primary_10_1016_j_cej_2023_142192 crossref_primary_10_3390_gels9060451 crossref_primary_10_1016_j_jmbbm_2025_106927 crossref_primary_10_1016_j_snb_2023_134279 crossref_primary_10_2147_IJN_S276001 crossref_primary_10_1016_j_cej_2023_146788 crossref_primary_10_1063_5_0245545 crossref_primary_10_1016_j_biomaterials_2022_121790 crossref_primary_10_1016_j_jconrel_2023_06_007 crossref_primary_10_1002_app_57096 crossref_primary_10_1002_smll_202406377 crossref_primary_10_1016_j_actbio_2024_10_020 crossref_primary_10_1002_adfm_202418711 crossref_primary_10_3390_polym15092000 crossref_primary_10_3390_pharmaceutics17060749 crossref_primary_10_1016_j_bioactmat_2023_01_019 crossref_primary_10_1177_15533506251367251 crossref_primary_10_1002_adfm_202314500 crossref_primary_10_1016_j_ijbiomac_2023_124886 crossref_primary_10_1016_j_ijbiomac_2025_140598 crossref_primary_10_1002_adhm_202201771 crossref_primary_10_1016_j_mtbio_2025_101686 crossref_primary_10_1039_D3BM01766D crossref_primary_10_1016_j_bioactmat_2024_08_034 crossref_primary_10_1002_smll_202201766 crossref_primary_10_1007_s10876_021_02131_3 crossref_primary_10_1016_j_cej_2024_156860 crossref_primary_10_1007_s43939_025_00178_x crossref_primary_10_1002_adfm_202416205 crossref_primary_10_1039_D5TB01327E crossref_primary_10_1016_j_jconrel_2023_12_015 crossref_primary_10_1016_j_ijbiomac_2025_140325 crossref_primary_10_1111_dom_15544 crossref_primary_10_1016_j_ijbiomac_2025_140442 crossref_primary_10_1016_j_preme_2025_100028 crossref_primary_10_1016_j_bioactmat_2023_01_001 crossref_primary_10_1002_SMMD_20230034 crossref_primary_10_1016_j_ijbiomac_2022_10_054 crossref_primary_10_1016_j_ijbiomac_2023_125028 crossref_primary_10_1002_adhm_202302183 crossref_primary_10_1089_ars_2021_0134 crossref_primary_10_1016_j_ijbiomac_2025_147091 crossref_primary_10_1039_D3NR02930A crossref_primary_10_1016_j_peptides_2025_171366 crossref_primary_10_1016_j_carbpol_2023_121543 crossref_primary_10_1016_j_cej_2024_152252 crossref_primary_10_1093_rb_rbac023 crossref_primary_10_1002_advs_202306152 crossref_primary_10_1016_j_ijbiomac_2025_145900 crossref_primary_10_1016_j_jddst_2023_104961 crossref_primary_10_1039_D3NR01624B crossref_primary_10_1007_s12274_024_6674_6 crossref_primary_10_3389_fimmu_2025_1675212 crossref_primary_10_1016_j_mtcomm_2024_111198 crossref_primary_10_1016_j_ijbiomac_2024_130226 crossref_primary_10_1016_j_jcis_2025_02_078 crossref_primary_10_1002_mba2_23 crossref_primary_10_1016_j_bioactmat_2022_04_032 crossref_primary_10_1016_j_ijbiomac_2025_139685 crossref_primary_10_1016_j_cej_2022_137880 crossref_primary_10_1016_j_chmed_2024_11_005 crossref_primary_10_1016_j_mtchem_2021_100606 crossref_primary_10_3390_ph17101312 crossref_primary_10_1016_j_carbpol_2023_120823 crossref_primary_10_3390_gels11050345 crossref_primary_10_1016_j_matlet_2022_131690 crossref_primary_10_3390_pharmaceutics15041187 crossref_primary_10_1016_j_actbio_2024_07_043 crossref_primary_10_1016_j_ijbiomac_2023_126010 crossref_primary_10_1016_j_cej_2025_168316 crossref_primary_10_3390_bioengineering11101017 crossref_primary_10_1002_smtd_202401127 crossref_primary_10_1039_D3BM01676E crossref_primary_10_1016_j_msec_2021_112560 crossref_primary_10_1002_smll_202200165 crossref_primary_10_1007_s40820_023_01099_1 crossref_primary_10_1002_smll_202206707 crossref_primary_10_1002_anie_202311698 crossref_primary_10_1016_j_nantod_2024_102415 crossref_primary_10_3390_polym16101316 crossref_primary_10_1016_j_jconrel_2025_01_077 crossref_primary_10_1016_j_mtbio_2025_101481 crossref_primary_10_1016_j_bioactmat_2025_09_010 crossref_primary_10_1016_j_actbio_2023_05_045 crossref_primary_10_1016_j_ijbiomac_2022_09_174 crossref_primary_10_3390_biomedicines12040923 crossref_primary_10_1016_j_ijbiomac_2024_129356 crossref_primary_10_1021_acsami_5c07412 crossref_primary_10_1016_j_eurpolymj_2025_114025 crossref_primary_10_1016_j_jconrel_2024_11_044 crossref_primary_10_1016_j_cej_2024_156381 crossref_primary_10_1002_agt2_639 crossref_primary_10_3390_biomedicines10112784 crossref_primary_10_1080_01480545_2024_2370916 crossref_primary_10_1002_adhm_202400318 crossref_primary_10_1002_smll_202407046 crossref_primary_10_1016_j_bioadv_2022_213096 crossref_primary_10_1039_D4NR03799E crossref_primary_10_1021_jacs_5c02184 crossref_primary_10_1007_s12274_022_4547_4 crossref_primary_10_1039_D5SM00621J crossref_primary_10_1016_j_carbpol_2022_119643 crossref_primary_10_1002_agt2_402 crossref_primary_10_1002_adhm_202101659 crossref_primary_10_1016_j_cej_2024_148768 crossref_primary_10_1016_j_cobme_2022_100443 crossref_primary_10_1016_j_ijbiomac_2024_131643 crossref_primary_10_1016_j_actbio_2022_04_043 crossref_primary_10_1016_j_nantod_2025_102815 crossref_primary_10_1021_acssuschemeng_5c00713 crossref_primary_10_1016_j_cej_2022_135130 crossref_primary_10_1002_advs_202203308 crossref_primary_10_1016_j_bioadv_2022_213078 crossref_primary_10_1080_17435889_2025_2466414 crossref_primary_10_1016_j_apmt_2022_101586 crossref_primary_10_1016_j_actbio_2023_05_027 crossref_primary_10_3390_jfb14040226 crossref_primary_10_1002_adfm_202207466 crossref_primary_10_1002_cmdc_202300325 crossref_primary_10_1002_mabi_202200514 crossref_primary_10_1016_j_biomaterials_2024_123065 crossref_primary_10_1016_j_ijbiomac_2024_129557 crossref_primary_10_1039_D4BM01657B crossref_primary_10_1039_D5TB01636C crossref_primary_10_1021_acsami_5c10994 crossref_primary_10_1093_rb_rbac069 crossref_primary_10_1002_adhm_202100793 crossref_primary_10_1016_j_mtbio_2025_102005 crossref_primary_10_1016_j_carbpol_2022_120348 crossref_primary_10_1186_s40824_023_00367_w crossref_primary_10_1007_s12274_022_4809_1 crossref_primary_10_1093_rb_rbae134 crossref_primary_10_1007_s10924_021_02175_6 crossref_primary_10_1002_adhm_202300725 crossref_primary_10_3389_fbioe_2024_1428793 crossref_primary_10_1016_j_carbpol_2022_119467 crossref_primary_10_1021_acs_biomac_5c00087 crossref_primary_10_3389_fbioe_2023_1115603 crossref_primary_10_1002_adhm_202101515 crossref_primary_10_1016_j_jconrel_2023_05_047 crossref_primary_10_1002_admt_202300669 crossref_primary_10_1016_j_actbio_2024_12_044 crossref_primary_10_1002_slct_202404417 crossref_primary_10_1016_j_bioactmat_2023_04_004 crossref_primary_10_1016_j_colsurfa_2025_137252 crossref_primary_10_1002_adfm_202305992 crossref_primary_10_1002_advs_202201425 crossref_primary_10_1002_ctm2_1094 crossref_primary_10_1002_mco2_658 crossref_primary_10_1016_j_jconrel_2024_12_061 crossref_primary_10_1002_adfm_202311199 crossref_primary_10_2147_IJN_S519379 crossref_primary_10_1016_j_bioadv_2024_213779 crossref_primary_10_1016_j_jconrel_2024_11_003 crossref_primary_10_2147_IJN_S519100 crossref_primary_10_1039_D2BM00157H crossref_primary_10_1016_j_colsurfb_2024_114160 crossref_primary_10_1016_j_carbpol_2025_124446 crossref_primary_10_1016_j_actbio_2024_05_015 crossref_primary_10_1016_j_ijbiomac_2025_140965 crossref_primary_10_1016_j_nanoen_2024_109946 crossref_primary_10_1016_j_actbio_2023_11_043 crossref_primary_10_1016_j_cis_2023_103012 crossref_primary_10_1002_adfm_202500586 crossref_primary_10_1002_agt2_688 crossref_primary_10_1016_j_carbpol_2025_124214 crossref_primary_10_1016_j_ijbiomac_2024_132935 crossref_primary_10_1016_j_ccr_2023_215457 crossref_primary_10_1016_j_matt_2023_01_001 crossref_primary_10_3390_polym16192818 crossref_primary_10_1002_adhm_202400003 crossref_primary_10_1186_s13619_023_00158_7 crossref_primary_10_1016_j_bioactmat_2023_04_020 crossref_primary_10_1016_j_nxnano_2025_100177 crossref_primary_10_1002_adhm_202404966 crossref_primary_10_1002_btm2_10540 crossref_primary_10_1111_jocd_15631 crossref_primary_10_1039_D1SC04413C crossref_primary_10_1093_rb_rbad072 crossref_primary_10_1039_D2BM01244H crossref_primary_10_1002_adfm_202314202 crossref_primary_10_1039_D5LP00092K crossref_primary_10_1016_j_carbpol_2022_119336 crossref_primary_10_1039_D2BM01220K crossref_primary_10_1016_j_jcis_2023_07_141 crossref_primary_10_1016_j_jcis_2024_01_190 crossref_primary_10_1016_j_scitotenv_2022_153857 crossref_primary_10_1186_s12951_021_01152_4 |
| Cites_doi | 10.1016/j.imbio.2011.01.001 10.1016/S0140-6736(05)67700-8 10.1039/C9BM02029B 10.1002/advs.201802112 10.1038/nrendo.2015.130 10.1016/j.biomaterials.2019.119398 10.1016/j.phrs.2008.06.004 10.1002/smll.201702582 10.1002/advs.201900867 10.1021/acsnano.7b08152 10.1016/j.jid.2016.08.009 10.1039/C9SC05808G 10.1073/pnas.1701976114 10.1039/C8NR00838H 10.1016/j.biomaterials.2018.01.024 10.1002/adfm.201702026 10.1002/adfm.201801787 10.1016/j.biomaterials.2019.119719 10.1038/s41551-019-0508-y 10.1016/j.colsurfb.2016.03.006 10.1016/j.actbio.2018.03.008 10.1002/adfm.201906922 10.1002/adma.201801527 10.1016/j.tibtech.2018.10.011 10.1073/pnas.1804262115 10.1126/scitranslmed.aan3682 10.1016/j.biomaterials.2019.01.020 10.1073/pnas.1813000115 10.1002/anie.201712878 10.1016/j.polymdegradstab.2016.04.010 10.1002/adma.201801100 10.1002/adma.201805798 10.1021/acscentsci.8b00850 10.1016/j.apsusc.2015.06.163 10.1039/C8NR07534D 10.1073/pnas.1004204107 10.1038/s41565-018-0319-4 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.biomaterials.2020.120286 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1878-5905 |
| ExternalDocumentID | 32798744 10_1016_j_biomaterials_2020_120286 S0142961220305329 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- ~HD AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS RIG 9DU AAYXX CITATION AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c472t-e9ca1c2fd17a1f43310b9cc96735cc4a779de43658d098d6f07d92eb05e886993 |
| ISICitedReferencesCount | 679 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000568987700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-9612 1878-5905 |
| IngestDate | Sat Sep 27 21:26:36 EDT 2025 Thu Oct 02 08:17:06 EDT 2025 Mon Jul 21 05:56:30 EDT 2025 Sat Nov 29 02:37:34 EST 2025 Tue Nov 18 20:49:48 EST 2025 Fri Feb 23 02:49:43 EST 2024 Tue Oct 14 19:30:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bacterial infection ROS-scavenging hydrogel M2 phenotype macrophages Wound closure |
| Language | English |
| License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c472t-e9ca1c2fd17a1f43310b9cc96735cc4a779de43658d098d6f07d92eb05e886993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 32798744 |
| PQID | 2434754390 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2524246365 proquest_miscellaneous_2434754390 pubmed_primary_32798744 crossref_primary_10_1016_j_biomaterials_2020_120286 crossref_citationtrail_10_1016_j_biomaterials_2020_120286 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2020_120286 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2020_120286 |
| PublicationCentury | 2000 |
| PublicationDate | November 2020 2020-11-00 20201101 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Biomaterials |
| PublicationTitleAlternate | Biomaterials |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Sahiner, Sagbas, Aktas (bib24) 2016; 129 Chen, Wang, Zhang, Chen, Hu, Li, Wang, Wen, Zhang, Lu (bib14) 2019; 14 Bowling, Rashid, Boulton (bib1) 2015; 11 Guo, Sun, Kim, Lu, Li, Lin, Mrowczynski, Rizk, Cheng, Qian (bib11) 2018; 72 Zheng, Gao, Xu, Liang, Shi, Wang, Yang (bib19) 2018; 10 Fan, Deng, Li, Chery, Su, Zhu, Kambayashi, Blankenhorn, Han, Cheng (bib21) 2019; 197 Loesche, Gardner, Kalan, Horwinski, Zheng, Hodkinson, Tyldsley, Franciscus, Hillis, Mehta, Margolis, Grice (bib7) 2017; 137 Lu, Shi, Li, Gerhard, Lu, Tan, Li, Rahn, Xie, Xu (bib12) 2020; 232 Wang, Wang, Zhang, Yu, Wen, Hu, Ye, Bomba, Hu, Liu (bib13) 2018; 10 Schäfer, Werner (bib4) 2008; 58 Sagbas, Aktas, Sahiner (bib23) 2015; 354 Meng, Yao, Ma, Xue, Du, Liu, Yang (bib18) 2019; 6 Zhang, Xu, Li, Fan, Cui, Wu, Xiao, Yang, Yang, Liu (bib31) 2020; 8 Falanga (bib3) 2005; 366 Sahiner, Sagbas, Aktas, Silan (bib6) 2016; 142 Xie, Liu, Yang, Liu, Hu, Zhu, Jiang (bib34) 2018; 57 Wang, Ye, Yu, Kahkoska, Zhang, Wang, Sun, Corder, Chen, Khan (bib25) 2018; 12 Wu, Cheng, Cheng (bib8) 2019; 37 Zhang, Zhou, Hu, Han, Zou, Chen, Chen, Liu, Wang (bib16) 2020; 30 Zhao, Zeng, Liu, Chen, Zhou, Huang, Huang, Xu, Xu, Chen, Wu, Guo, Wang, Wang, Liu (bib27) 2018; 10 Xie, Xianyu, Wang, Yan, Liu, Zhu, Hatzakis, Jiang (bib35) 2018; 28 Song, Wang, Cheng, Yang, Shi, Yu (bib5) 2020; 11 Grice, Snitkin, Yockey, Bermudez, Liechty, Segre (bib10) 2010; 107 Zhu, Cankova, Iwanaszko, Lichtor, Mrksich, Ameer (bib28) 2018; 115 Wu, Chen, Zhou, Zheng, Yang, An, Xu, He, Kang, Luckanagul (bib29) 2019; 222 Ma, Tian, Kim, Xie, Ao, Shan, Lin, Hudock, Bai, Yang (bib9) 2018; 115 Yu, Wang, Zhang, Chen, Mao, Ye, Kahkoska, Buse, Langer, Gu (bib37) 2020; 4 Chen, Liang, Sun, Chen, Yang, Zhao, Feng, Liu (bib26) 2017; 114 Delavary, van der Veer, van Egmond, Niessen, Beelen (bib36) 2011; 216 Yu, Wang, Yu, Wang, Lu, Zhang, Zhang, Hu, Sun, He (bib15) 2018; 30 Zhou, Yao, Qian, Hou, Li, Jenkins, Fan (bib33) 2018; 161 Gao, Xu, Liang, Li, Peng, Wu, Zhao, Cui, Ruan, Liu (bib17) 2019; 6 Gao, Zhan, Yang (bib20) 2020; 32 Xu, Fang, Tian, Wang, Ye, Zhang, Cai (bib30) 2018; 30 Shan, Kothapalli, Ravnic, Gerhard, Kim, Guo, Ma, Guo, Gui, Sun (bib22) 2018; 28 Yang, Wang, Zhang, Sun, Li, Yang, Zeng, Peng, Zheng, Jiang (bib32) 2018; 14 Wu, Li, Shao, Gao, Ling (bib2) 2019; 5 Xie (10.1016/j.biomaterials.2020.120286_bib35) 2018; 28 Yu (10.1016/j.biomaterials.2020.120286_bib15) 2018; 30 Grice (10.1016/j.biomaterials.2020.120286_bib10) 2010; 107 Chen (10.1016/j.biomaterials.2020.120286_bib26) 2017; 114 Fan (10.1016/j.biomaterials.2020.120286_bib21) 2019; 197 Xie (10.1016/j.biomaterials.2020.120286_bib34) 2018; 57 Zhang (10.1016/j.biomaterials.2020.120286_bib31) 2020; 8 Shan (10.1016/j.biomaterials.2020.120286_bib22) 2018; 28 Lu (10.1016/j.biomaterials.2020.120286_bib12) 2020; 232 Wu (10.1016/j.biomaterials.2020.120286_bib29) 2019; 222 Chen (10.1016/j.biomaterials.2020.120286_bib14) 2019; 14 Delavary (10.1016/j.biomaterials.2020.120286_bib36) 2011; 216 Meng (10.1016/j.biomaterials.2020.120286_bib18) 2019; 6 Wang (10.1016/j.biomaterials.2020.120286_bib13) 2018; 10 Yu (10.1016/j.biomaterials.2020.120286_bib37) 2020; 4 Guo (10.1016/j.biomaterials.2020.120286_bib11) 2018; 72 Sahiner (10.1016/j.biomaterials.2020.120286_bib6) 2016; 142 Sahiner (10.1016/j.biomaterials.2020.120286_bib24) 2016; 129 Schäfer (10.1016/j.biomaterials.2020.120286_bib4) 2008; 58 Zheng (10.1016/j.biomaterials.2020.120286_bib19) 2018; 10 Gao (10.1016/j.biomaterials.2020.120286_bib20) 2020; 32 Yang (10.1016/j.biomaterials.2020.120286_bib32) 2018; 14 Loesche (10.1016/j.biomaterials.2020.120286_bib7) 2017; 137 Gao (10.1016/j.biomaterials.2020.120286_bib17) 2019; 6 Zhu (10.1016/j.biomaterials.2020.120286_bib28) 2018; 115 Bowling (10.1016/j.biomaterials.2020.120286_bib1) 2015; 11 Song (10.1016/j.biomaterials.2020.120286_bib5) 2020; 11 Sagbas (10.1016/j.biomaterials.2020.120286_bib23) 2015; 354 Zhang (10.1016/j.biomaterials.2020.120286_bib16) 2020; 30 Falanga (10.1016/j.biomaterials.2020.120286_bib3) 2005; 366 Wu (10.1016/j.biomaterials.2020.120286_bib2) 2019; 5 Xu (10.1016/j.biomaterials.2020.120286_bib30) 2018; 30 Ma (10.1016/j.biomaterials.2020.120286_bib9) 2018; 115 Zhao (10.1016/j.biomaterials.2020.120286_bib27) 2018; 10 Wang (10.1016/j.biomaterials.2020.120286_bib25) 2018; 12 Zhou (10.1016/j.biomaterials.2020.120286_bib33) 2018; 161 Wu (10.1016/j.biomaterials.2020.120286_bib8) 2019; 37 |
| References_xml | – volume: 5 start-page: 477 year: 2019 end-page: 485 ident: bib2 article-title: Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel publication-title: ACS Cent. Sci. – volume: 72 start-page: 35 year: 2018 end-page: 44 ident: bib11 article-title: Development of tannin-inspired antimicrobial bioadhesives publication-title: Acta Biomater. – volume: 232 start-page: 119719 year: 2020 ident: bib12 article-title: Magnesium oxide-crosslinked low-swelling citrate-based mussel-inspired tissue adhesives publication-title: Biomaterials – volume: 10 start-page: 6981 year: 2018 end-page: 6991 ident: bib27 article-title: Polydopamine nanoparticles for the treatment of acute inflammation-induced injury publication-title: Nanoscale – volume: 354 start-page: 306 year: 2015 end-page: 313 ident: bib23 article-title: Modified biofunctional p (tannic acid) microgels and their antimicrobial activity publication-title: Appl. Surf. Sci. – volume: 11 start-page: 1383 year: 2020 end-page: 1393 ident: bib5 article-title: Directional molecular sliding movement in peptide hydrogels accelerates cell proliferation publication-title: Chem. Sci. – volume: 58 start-page: 165 year: 2008 end-page: 171 ident: bib4 article-title: Oxidative stress in normal and impaired wound repair publication-title: Pharmacol. Res. – volume: 14 start-page: 1702582 year: 2018 ident: bib32 article-title: Reverse reconstruction and bioprinting of bacterial cellulose-based functional total intervertebral disc for therapeutic implantation publication-title: Small – volume: 30 start-page: 1801100 year: 2018 ident: bib30 article-title: Green fabrication of amphiphilic quaternized β-chitin derivatives with excellent biocompatibility and antibacterial activities for wound healing publication-title: Adv. Mater. – volume: 142 start-page: 334 year: 2016 end-page: 343 ident: bib6 article-title: Inherently antioxidant and antimicrobial tannic acid release from poly (tannic acid) nanoparticles with controllable degradability publication-title: Colloids Surf. B Biointerfaces – volume: 30 start-page: 1801527 year: 2018 ident: bib15 article-title: Injectable bioresponsive gel depot for enhanced immune checkpoint blockade publication-title: Adv. Mater. – volume: 11 start-page: 606 year: 2015 ident: bib1 article-title: Preventing and treating foot complications associated with diabetes mellitus publication-title: Nat. Rev. Endocrinol. – volume: 37 start-page: 505 year: 2019 end-page: 517 ident: bib8 article-title: Biofilms in chronic wounds: pathogenesis and diagnosis publication-title: Trends Biotechnol. – volume: 115 start-page: E11741 year: 2018 end-page: E11750 ident: bib9 article-title: Citrate-based materials fuel human stem cells by metabonegenic regulation publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 137 start-page: 237 year: 2017 end-page: 244 ident: bib7 article-title: Temporal stability in chronic wound microbiota is associated with poor healing publication-title: J. Invest. Dermatol. – volume: 32 start-page: 1805798 year: 2020 ident: bib20 article-title: Enzyme-instructed self-assembly (EISA) and hydrogelation of peptides publication-title: Adv. Mater. – volume: 28 start-page: 1801787 year: 2018 ident: bib22 article-title: Development of citrate-based dual-imaging enabled biodegradable electroactive polymers publication-title: Adv. Funct. Mater. – volume: 28 start-page: 1702026 year: 2018 ident: bib35 article-title: Functionalized gold nanoclusters identify highly reactive oxygen species in living organisms publication-title: Adv. Funct. Mater. – volume: 10 year: 2018 ident: bib13 article-title: In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy publication-title: Sci. Transl. Med. – volume: 8 start-page: 1455 year: 2020 end-page: 1463 ident: bib31 article-title: Fabrication of strong hydrogen-bonding induced coacervate adhesive hydrogels with antibacterial and hemostatic activities publication-title: Biomaterials Science – volume: 10 start-page: 21459 year: 2018 end-page: 21465 ident: bib19 article-title: Responsive peptide-based supramolecular hydrogels constructed by self-immolative chemistry publication-title: Nanoscale – volume: 107 start-page: 14799 year: 2010 end-page: 14804 ident: bib10 article-title: Longitudinal shift in diabetic wound microbiota correlates with prolonged skin defense response publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 4 start-page: 499 year: 2020 end-page: 506 ident: bib37 article-title: Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs publication-title: Nature Biomedical Engineering – volume: 30 start-page: 1906922 year: 2020 ident: bib16 article-title: In situ formed fibrin scaffold with cyclophosphamide to synergize with immune checkpoint blockade for inhibition of cancer recurrence after surgery publication-title: Adv. Funct. Mater. – volume: 114 start-page: 5343 year: 2017 end-page: 5348 ident: bib26 article-title: H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 222 start-page: 119398 year: 2019 ident: bib29 article-title: Novel H2S-Releasing hydrogel for wound repair via in situ polarization of M2 macrophages publication-title: Biomaterials – volume: 57 start-page: 3958 year: 2018 end-page: 3962 ident: bib34 article-title: Gold nanoclusters for targeting methicillin-resistant Staphylococcus aureus in vivo publication-title: Angew. Chem. Int. Ed. – volume: 161 start-page: 11 year: 2018 end-page: 23 ident: bib33 article-title: Bacteria-responsive intelligent wound dressing: simultaneous in situ detection and inhibition of bacterial infection for accelerated wound healing publication-title: Biomaterials – volume: 12 start-page: 2466 year: 2018 end-page: 2473 ident: bib25 article-title: Core-shell microneedle gel for self-regulated insulin delivery publication-title: ACS Nano – volume: 14 start-page: 89 year: 2019 end-page: 97 ident: bib14 article-title: In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment publication-title: Nat. Nanotechnol. – volume: 6 start-page: 1802112 year: 2019 ident: bib18 article-title: A reversibly responsive fluorochromic hydrogel based on lanthanide-mannose complex publication-title: Advanced Science – volume: 216 start-page: 753 year: 2011 end-page: 762 ident: bib36 article-title: Macrophages in skin injury and repair publication-title: Immunobiology – volume: 366 start-page: 1736 year: 2005 end-page: 1743 ident: bib3 article-title: Wound healing and its impairment in the diabetic foot publication-title: Lancet – volume: 6 start-page: 1900867 year: 2019 ident: bib17 article-title: Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds publication-title: Advanced Science – volume: 129 start-page: 96 year: 2016 end-page: 105 ident: bib24 article-title: Preparation of macro-, micro-, and nano-sized poly (Tannic acid) particles with controllable degradability and multiple biomedical uses publication-title: Polym. Degrad. Stabil. – volume: 115 start-page: 6816 year: 2018 end-page: 6821 ident: bib28 article-title: Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 197 start-page: 244 year: 2019 end-page: 254 ident: bib21 article-title: A new class of biological materials: cell membrane-derived hydrogel scaffolds publication-title: Biomaterials – volume: 216 start-page: 753 issue: 7 year: 2011 ident: 10.1016/j.biomaterials.2020.120286_bib36 article-title: Macrophages in skin injury and repair publication-title: Immunobiology doi: 10.1016/j.imbio.2011.01.001 – volume: 366 start-page: 1736 issue: 9498 year: 2005 ident: 10.1016/j.biomaterials.2020.120286_bib3 article-title: Wound healing and its impairment in the diabetic foot publication-title: Lancet doi: 10.1016/S0140-6736(05)67700-8 – volume: 8 start-page: 1455 year: 2020 ident: 10.1016/j.biomaterials.2020.120286_bib31 article-title: Fabrication of strong hydrogen-bonding induced coacervate adhesive hydrogels with antibacterial and hemostatic activities publication-title: Biomaterials Science doi: 10.1039/C9BM02029B – volume: 6 start-page: 1802112 issue: 10 year: 2019 ident: 10.1016/j.biomaterials.2020.120286_bib18 article-title: A reversibly responsive fluorochromic hydrogel based on lanthanide-mannose complex publication-title: Advanced Science doi: 10.1002/advs.201802112 – volume: 11 start-page: 606 issue: 10 year: 2015 ident: 10.1016/j.biomaterials.2020.120286_bib1 article-title: Preventing and treating foot complications associated with diabetes mellitus publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2015.130 – volume: 222 start-page: 119398 year: 2019 ident: 10.1016/j.biomaterials.2020.120286_bib29 article-title: Novel H2S-Releasing hydrogel for wound repair via in situ polarization of M2 macrophages publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119398 – volume: 58 start-page: 165 issue: 2 year: 2008 ident: 10.1016/j.biomaterials.2020.120286_bib4 article-title: Oxidative stress in normal and impaired wound repair publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2008.06.004 – volume: 14 start-page: 1702582 issue: 7 year: 2018 ident: 10.1016/j.biomaterials.2020.120286_bib32 article-title: Reverse reconstruction and bioprinting of bacterial cellulose-based functional total intervertebral disc for therapeutic implantation publication-title: Small doi: 10.1002/smll.201702582 – volume: 6 start-page: 1900867 issue: 15 year: 2019 ident: 10.1016/j.biomaterials.2020.120286_bib17 article-title: Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds publication-title: Advanced Science doi: 10.1002/advs.201900867 – volume: 12 start-page: 2466 issue: 3 year: 2018 ident: 10.1016/j.biomaterials.2020.120286_bib25 article-title: Core-shell microneedle gel for self-regulated insulin delivery publication-title: ACS Nano doi: 10.1021/acsnano.7b08152 – volume: 137 start-page: 237 issue: 1 year: 2017 ident: 10.1016/j.biomaterials.2020.120286_bib7 article-title: Temporal stability in chronic wound microbiota is associated with poor healing publication-title: J. Invest. Dermatol. doi: 10.1016/j.jid.2016.08.009 – volume: 11 start-page: 1383 year: 2020 ident: 10.1016/j.biomaterials.2020.120286_bib5 article-title: Directional molecular sliding movement in peptide hydrogels accelerates cell proliferation publication-title: Chem. Sci. doi: 10.1039/C9SC05808G – volume: 114 start-page: 5343 issue: 21 year: 2017 ident: 10.1016/j.biomaterials.2020.120286_bib26 article-title: H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1701976114 – volume: 10 start-page: 6981 issue: 15 year: 2018 ident: 10.1016/j.biomaterials.2020.120286_bib27 article-title: Polydopamine nanoparticles for the treatment of acute inflammation-induced injury publication-title: Nanoscale doi: 10.1039/C8NR00838H – volume: 161 start-page: 11 year: 2018 ident: 10.1016/j.biomaterials.2020.120286_bib33 article-title: Bacteria-responsive intelligent wound dressing: simultaneous in situ detection and inhibition of bacterial infection for accelerated wound healing publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.01.024 – volume: 28 start-page: 1702026 issue: 14 year: 2018 ident: 10.1016/j.biomaterials.2020.120286_bib35 article-title: Functionalized gold nanoclusters identify highly reactive oxygen species in living organisms publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702026 – volume: 28 start-page: 1801787 issue: 34 year: 2018 ident: 10.1016/j.biomaterials.2020.120286_bib22 article-title: Development of citrate-based dual-imaging enabled biodegradable electroactive polymers publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201801787 – volume: 232 start-page: 119719 year: 2020 ident: 10.1016/j.biomaterials.2020.120286_bib12 article-title: Magnesium oxide-crosslinked low-swelling citrate-based mussel-inspired tissue adhesives publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119719 – volume: 4 start-page: 499 issue: 5 year: 2020 ident: 10.1016/j.biomaterials.2020.120286_bib37 article-title: Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs publication-title: Nature Biomedical Engineering doi: 10.1038/s41551-019-0508-y – volume: 142 start-page: 334 year: 2016 ident: 10.1016/j.biomaterials.2020.120286_bib6 article-title: Inherently antioxidant and antimicrobial tannic acid release from poly (tannic acid) nanoparticles with controllable degradability publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2016.03.006 – volume: 72 start-page: 35 year: 2018 ident: 10.1016/j.biomaterials.2020.120286_bib11 article-title: Development of tannin-inspired antimicrobial bioadhesives publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.03.008 – volume: 30 start-page: 1906922 issue: 7 year: 2020 ident: 10.1016/j.biomaterials.2020.120286_bib16 article-title: In situ formed fibrin scaffold with cyclophosphamide to synergize with immune checkpoint blockade for inhibition of cancer recurrence after surgery publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201906922 – volume: 30 start-page: 1801527 issue: 28 year: 2018 ident: 10.1016/j.biomaterials.2020.120286_bib15 article-title: Injectable bioresponsive gel depot for enhanced immune checkpoint blockade publication-title: Adv. Mater. doi: 10.1002/adma.201801527 – volume: 37 start-page: 505 issue: 5 year: 2019 ident: 10.1016/j.biomaterials.2020.120286_bib8 article-title: Biofilms in chronic wounds: pathogenesis and diagnosis publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2018.10.011 – volume: 115 start-page: 6816 issue: 26 year: 2018 ident: 10.1016/j.biomaterials.2020.120286_bib28 article-title: Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1804262115 – volume: 10 issue: 429 year: 2018 ident: 10.1016/j.biomaterials.2020.120286_bib13 article-title: In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aan3682 – volume: 197 start-page: 244 year: 2019 ident: 10.1016/j.biomaterials.2020.120286_bib21 article-title: A new class of biological materials: cell membrane-derived hydrogel scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.01.020 – volume: 115 start-page: E11741 issue: 50 year: 2018 ident: 10.1016/j.biomaterials.2020.120286_bib9 article-title: Citrate-based materials fuel human stem cells by metabonegenic regulation publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1813000115 – volume: 57 start-page: 3958 issue: 15 year: 2018 ident: 10.1016/j.biomaterials.2020.120286_bib34 article-title: Gold nanoclusters for targeting methicillin-resistant Staphylococcus aureus in vivo publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712878 – volume: 129 start-page: 96 year: 2016 ident: 10.1016/j.biomaterials.2020.120286_bib24 article-title: Preparation of macro-, micro-, and nano-sized poly (Tannic acid) particles with controllable degradability and multiple biomedical uses publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2016.04.010 – volume: 30 start-page: 1801100 issue: 29 year: 2018 ident: 10.1016/j.biomaterials.2020.120286_bib30 article-title: Green fabrication of amphiphilic quaternized β-chitin derivatives with excellent biocompatibility and antibacterial activities for wound healing publication-title: Adv. Mater. doi: 10.1002/adma.201801100 – volume: 32 start-page: 1805798 issue: 3 year: 2020 ident: 10.1016/j.biomaterials.2020.120286_bib20 article-title: Enzyme-instructed self-assembly (EISA) and hydrogelation of peptides publication-title: Adv. Mater. doi: 10.1002/adma.201805798 – volume: 5 start-page: 477 issue: 3 year: 2019 ident: 10.1016/j.biomaterials.2020.120286_bib2 article-title: Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.8b00850 – volume: 354 start-page: 306 year: 2015 ident: 10.1016/j.biomaterials.2020.120286_bib23 article-title: Modified biofunctional p (tannic acid) microgels and their antimicrobial activity publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.06.163 – volume: 10 start-page: 21459 issue: 45 year: 2018 ident: 10.1016/j.biomaterials.2020.120286_bib19 article-title: Responsive peptide-based supramolecular hydrogels constructed by self-immolative chemistry publication-title: Nanoscale doi: 10.1039/C8NR07534D – volume: 107 start-page: 14799 issue: 33 year: 2010 ident: 10.1016/j.biomaterials.2020.120286_bib10 article-title: Longitudinal shift in diabetic wound microbiota correlates with prolonged skin defense response publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1004204107 – volume: 14 start-page: 89 issue: 1 year: 2019 ident: 10.1016/j.biomaterials.2020.120286_bib14 article-title: In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0319-4 |
| SSID | ssj0014042 |
| Score | 2.7288997 |
| Snippet | Bacterial infection has been a great threat to dermal wounds, especially to difficult-to-heal diabetic wounds. It is known that reactive oxygen species (ROS)... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 120286 |
| SubjectTerms | Bacteria Bacterial infection bacterial infections biocompatible materials crosslinking Diabetes Mellitus granulocyte-macrophage colony-stimulating factor Humans Hydrogels M2 phenotype macrophages macrophages phenotype polyvinyl alcohol Reactive Oxygen Species ROS-scavenging hydrogel therapeutics Wound closure Wound Healing |
| Title | ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961220305329 https://dx.doi.org/10.1016/j.biomaterials.2020.120286 https://www.ncbi.nlm.nih.gov/pubmed/32798744 https://www.proquest.com/docview/2434754390 https://www.proquest.com/docview/2524246365 |
| Volume | 258 |
| WOSCitedRecordID | wos000568987700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELbYhqbxgGDAVgaTkXhDqRInjm2hPUxoCCbYEAwpPEWO47JUW1K13Rj_nnNsp5mmovLAS1Q5uaTxfTl_Z5_vEHqdAA5kGvKASfiaYMQvA0kLEsREx0pwlaZh2RabYCcnPMvEF1feataWE2B1zW9uxOS_qhraQNlm6-w_qLu7KTTAb1A6HEHtcFxJ8V9PvwUzZarEt_WHzn-X0-anvjAkc9LG3umWHbpo58Jma5YuKgvop52NrdSbX6bi0uzWqm_VAMG1L9GbcW7s-LVAiJuDPq66tk9t0MCPXgDQtWnIqnrsx0439QB-ZtRNPWhrLjn4oFSEtG9Pic3F7ixiBII22fUdY23nDcbDovfnh-Y5w7tC0MeTy1ZjMWHC5OxfDGBdWKE_tYY2CKMCjNzG4cej7LhbVkrARPnMs22Q37JHb6FNf7NlhGWZQ9ISk7NH6KHzKPChRcJjdE_X2-hBL8_kNtr87CIonqDT2_DAHh543mAHD-zggZsR9vDAHh7YwwNbeDxF398fnb37ELiiGoFKGJkHWigZKTIqIyajkdkvFxZCKZGymCqVSMZEqZMYiGkZCl6mo5CVgugipJrzFNjsM7ReN7XeRZhJLWkqKJHg1ioquSaKgv2XxukF6jtAwvdcrlzGeVP45CL3oYXjvK-A3CggtwoYoLiTndi8KytJvfUKyv3OYhgLc0DcStIHnbTjn5ZXriz_ymMiByNtVt5krZsruCiJE0aB-4d_uYaanVop9PwA7VhAdW_usfh86Zk9tLX4Ql-g9fn0Sr9E99X1vJpN99Eay_i--xr-AEAcw2Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ROS-scavenging+hydrogel+to+promote+healing+of+bacteria+infected+diabetic+wounds&rft.jtitle=Biomaterials&rft.au=Zhao%2C+He&rft.au=Huang%2C+Jie&rft.au=Li%2C+Yan&rft.au=Lv%2C+Xinjing&rft.date=2020-11-01&rft.eissn=1878-5905&rft.volume=258&rft.spage=120286&rft_id=info:doi/10.1016%2Fj.biomaterials.2020.120286&rft_id=info%3Apmid%2F32798744&rft.externalDocID=32798744 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |