ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds

Bacterial infection has been a great threat to dermal wounds, especially to difficult-to-heal diabetic wounds. It is known that reactive oxygen species (ROS) generated by wounds or bacterial infection could further impede wound healing. Here, a type of ROS-scavenging hydrogel is developed by using p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomaterials Ročník 258; s. 120286
Hlavní autoři: Zhao, He, Huang, Jie, Li, Yan, Lv, Xinjing, Zhou, Huiting, Wang, Hairong, Xu, Yunyun, Wang, Chao, Wang, Jian, Liu, Zhuang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier Ltd 01.11.2020
Témata:
ISSN:0142-9612, 1878-5905, 1878-5905
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Bacterial infection has been a great threat to dermal wounds, especially to difficult-to-heal diabetic wounds. It is known that reactive oxygen species (ROS) generated by wounds or bacterial infection could further impede wound healing. Here, a type of ROS-scavenging hydrogel is developed by using polyvinyl alcohol (PVA) cross-linked by a ROS-responsive linker. The obtained hydrogel could act as an effective ROS-scavenging agent to promote the wound closure by decreasing the ROS level and up-regulating M2 phenotype macrophages around the wound. Importantly, such hydrogel formed in the wound could allow release of therapeutics, including mupirocin to kill bacteria, and granulocyte-macrophage colony-stimulating factor (GM-CSF) to accelerate the wound closure, in responsive to endogenous ROS existing in the wound microenvironment. Remarkably, our drug-loaded ROS-scavenging hydrogel could be employed to effectively treat various types of wounds including difficult-to-heal diabetic wounds with bacterial infection. Therefore, this work presents an effective strategy based on ROS-scavenging hydrogel for wound healing under various kinds of complications. [Display omitted]
AbstractList Bacterial infection has been a great threat to dermal wounds, especially to difficult-to-heal diabetic wounds. It is known that reactive oxygen species (ROS) generated by wounds or bacterial infection could further impede wound healing. Here, a type of ROS-scavenging hydrogel is developed by using polyvinyl alcohol (PVA) cross-linked by a ROS-responsive linker. The obtained hydrogel could act as an effective ROS-scavenging agent to promote the wound closure by decreasing the ROS level and up-regulating M2 phenotype macrophages around the wound. Importantly, such hydrogel formed in the wound could allow release of therapeutics, including mupirocin to kill bacteria, and granulocyte-macrophage colony-stimulating factor (GM-CSF) to accelerate the wound closure, in responsive to endogenous ROS existing in the wound microenvironment. Remarkably, our drug-loaded ROS-scavenging hydrogel could be employed to effectively treat various types of wounds including difficult-to-heal diabetic wounds with bacterial infection. Therefore, this work presents an effective strategy based on ROS-scavenging hydrogel for wound healing under various kinds of complications.
Bacterial infection has been a great threat to dermal wounds, especially to difficult-to-heal diabetic wounds. It is known that reactive oxygen species (ROS) generated by wounds or bacterial infection could further impede wound healing. Here, a type of ROS-scavenging hydrogel is developed by using polyvinyl alcohol (PVA) cross-linked by a ROS-responsive linker. The obtained hydrogel could act as an effective ROS-scavenging agent to promote the wound closure by decreasing the ROS level and up-regulating M2 phenotype macrophages around the wound. Importantly, such hydrogel formed in the wound could allow release of therapeutics, including mupirocin to kill bacteria, and granulocyte-macrophage colony-stimulating factor (GM-CSF) to accelerate the wound closure, in responsive to endogenous ROS existing in the wound microenvironment. Remarkably, our drug-loaded ROS-scavenging hydrogel could be employed to effectively treat various types of wounds including difficult-to-heal diabetic wounds with bacterial infection. Therefore, this work presents an effective strategy based on ROS-scavenging hydrogel for wound healing under various kinds of complications. [Display omitted]
Bacterial infection has been a great threat to dermal wounds, especially to difficult-to-heal diabetic wounds. It is known that reactive oxygen species (ROS) generated by wounds or bacterial infection could further impede wound healing. Here, a type of ROS-scavenging hydrogel is developed by using polyvinyl alcohol (PVA) cross-linked by a ROS-responsive linker. The obtained hydrogel could act as an effective ROS-scavenging agent to promote the wound closure by decreasing the ROS level and up-regulating M2 phenotype macrophages around the wound. Importantly, such hydrogel formed in the wound could allow release of therapeutics, including mupirocin to kill bacteria, and granulocyte-macrophage colony-stimulating factor (GM-CSF) to accelerate the wound closure, in responsive to endogenous ROS existing in the wound microenvironment. Remarkably, our drug-loaded ROS-scavenging hydrogel could be employed to effectively treat various types of wounds including difficult-to-heal diabetic wounds with bacterial infection. Therefore, this work presents an effective strategy based on ROS-scavenging hydrogel for wound healing under various kinds of complications.Bacterial infection has been a great threat to dermal wounds, especially to difficult-to-heal diabetic wounds. It is known that reactive oxygen species (ROS) generated by wounds or bacterial infection could further impede wound healing. Here, a type of ROS-scavenging hydrogel is developed by using polyvinyl alcohol (PVA) cross-linked by a ROS-responsive linker. The obtained hydrogel could act as an effective ROS-scavenging agent to promote the wound closure by decreasing the ROS level and up-regulating M2 phenotype macrophages around the wound. Importantly, such hydrogel formed in the wound could allow release of therapeutics, including mupirocin to kill bacteria, and granulocyte-macrophage colony-stimulating factor (GM-CSF) to accelerate the wound closure, in responsive to endogenous ROS existing in the wound microenvironment. Remarkably, our drug-loaded ROS-scavenging hydrogel could be employed to effectively treat various types of wounds including difficult-to-heal diabetic wounds with bacterial infection. Therefore, this work presents an effective strategy based on ROS-scavenging hydrogel for wound healing under various kinds of complications.
ArticleNumber 120286
Author Zhou, Huiting
Wang, Jian
Wang, Chao
Zhao, He
Xu, Yunyun
Liu, Zhuang
Li, Yan
Huang, Jie
Wang, Hairong
Lv, Xinjing
Author_xml – sequence: 1
  givenname: He
  surname: Zhao
  fullname: Zhao, He
  organization: Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China
– sequence: 2
  givenname: Jie
  surname: Huang
  fullname: Huang, Jie
  organization: Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China
– sequence: 3
  givenname: Yan
  surname: Li
  fullname: Li, Yan
  organization: Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China
– sequence: 4
  givenname: Xinjing
  surname: Lv
  fullname: Lv, Xinjing
  organization: Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China
– sequence: 5
  givenname: Huiting
  surname: Zhou
  fullname: Zhou, Huiting
  organization: Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China
– sequence: 6
  givenname: Hairong
  surname: Wang
  fullname: Wang, Hairong
  organization: Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China
– sequence: 7
  givenname: Yunyun
  surname: Xu
  fullname: Xu, Yunyun
  organization: Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China
– sequence: 8
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
– sequence: 9
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
  email: wj196312@vip.163.com
  organization: Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu, 215123, China
– sequence: 10
  givenname: Zhuang
  surname: Liu
  fullname: Liu, Zhuang
  email: zliu@suda.edu.cn
  organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32798744$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URLeFv4AiTlyy2I4Tx5yA0gJSpZX4OFvOeLL1ktjF9hbtv8fLFoR6YS_-0Dx-PJr3jJz44JGQF4wuGWXdq81ycGE2GaMzU1pyykuhrH33iCxYL_u6VbQ9IQvKBK9Vx_gpOUtpQ8udCv6EnDZcql4KsSCrz6svdQJzh37t_Lq62dkY1jhVOVS3McwhY3WDZtrXwlgNBn5_Wzk_YjnayjozYHZQ_Qxbb9NT8ngsTeGz-_2cfLu6_Hrxsb5effh08fa6BiF5rlGBYcBHy6Rho2gaRgcFoDrZtADCSKksiqZre0tVb7uRSqs4DrTFvu-Uas7Jy4O3NPljiynr2SXAaTIewzZp3nLBRVcM_0dFI2QrGkUL-vwe3Q4zWn0b3WziTv-ZVwFeHwCIIaWI41-EUb0PR2_0v-HofTj6EE55_ObBY3DZZBd8jsZNxyneHxRYZnvnMOoEDj2gdbHkoW1wx2nePdBASdiBmb7j7ljJL1ESyl0
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2024_130989
crossref_primary_10_1016_j_ijbiomac_2023_128027
crossref_primary_10_1002_adma_202404297
crossref_primary_10_1002_sstr_202100002
crossref_primary_10_1016_j_ijbiomac_2025_147220
crossref_primary_10_1016_j_cej_2023_145941
crossref_primary_10_1002_adfm_202213066
crossref_primary_10_1002_adfm_202425625
crossref_primary_10_3390_pharmaceutics13101666
crossref_primary_10_1063_5_0228692
crossref_primary_10_1016_j_mtchem_2022_100968
crossref_primary_10_1186_s40824_023_00429_z
crossref_primary_10_1002_anie_202302329
crossref_primary_10_1007_s42765_022_00153_8
crossref_primary_10_1016_j_cej_2022_136835
crossref_primary_10_1021_jacs_4c03361
crossref_primary_10_1016_j_mtcomm_2024_109149
crossref_primary_10_1016_j_compositesb_2023_110909
crossref_primary_10_1016_j_biomaterials_2024_122841
crossref_primary_10_1002_admi_202202034
crossref_primary_10_3390_ma17020278
crossref_primary_10_1016_j_matt_2021_06_044
crossref_primary_10_1016_j_ymthe_2022_07_016
crossref_primary_10_1063_5_0046682
crossref_primary_10_1186_s12951_024_03055_6
crossref_primary_10_1186_s40779_025_00611_5
crossref_primary_10_1002_adhm_202401118
crossref_primary_10_1016_j_bioactmat_2022_02_034
crossref_primary_10_2147_IJN_S427055
crossref_primary_10_1080_09205063_2022_2124351
crossref_primary_10_1016_j_ijbiomac_2023_128284
crossref_primary_10_1016_j_bioactmat_2024_05_010
crossref_primary_10_1016_j_bioactmat_2025_07_026
crossref_primary_10_1080_17425247_2025_2466772
crossref_primary_10_1002_smll_202205489
crossref_primary_10_1016_j_ijbiomac_2024_129735
crossref_primary_10_1038_s41392_025_02124_y
crossref_primary_10_1002_advs_202104165
crossref_primary_10_1002_anbr_202300133
crossref_primary_10_1002_slct_202405715
crossref_primary_10_34133_bmr_0066
crossref_primary_10_1002_adfm_202303095
crossref_primary_10_1002_adhm_202402699
crossref_primary_10_1002_adfm_202306357
crossref_primary_10_1089_wound_2024_0138
crossref_primary_10_1007_s42765_022_00198_9
crossref_primary_10_1093_rb_rbaf046
crossref_primary_10_1002_adfm_202307449
crossref_primary_10_2147_IJN_S531396
crossref_primary_10_1002_adfm_202411117
crossref_primary_10_1002_smll_202203064
crossref_primary_10_1016_j_ijbiomac_2025_143095
crossref_primary_10_1016_j_eurpolymj_2024_113026
crossref_primary_10_1016_j_matdes_2023_112459
crossref_primary_10_3390_pharmaceutics14102065
crossref_primary_10_1002_adhm_202404889
crossref_primary_10_1002_adfm_202102599
crossref_primary_10_1002_adfm_202401307
crossref_primary_10_1021_acs_biomac_5c00112
crossref_primary_10_1016_j_cbi_2024_111188
crossref_primary_10_1016_j_biochi_2021_08_007
crossref_primary_10_1002_adhm_202400170
crossref_primary_10_1039_D4RE00472H
crossref_primary_10_3389_fbioe_2022_973080
crossref_primary_10_1016_j_jmbbm_2023_106081
crossref_primary_10_3389_fbioe_2023_1283771
crossref_primary_10_1016_j_actbio_2022_09_017
crossref_primary_10_1002_smll_202103997
crossref_primary_10_1002_adhm_202100033
crossref_primary_10_3390_gels8060361
crossref_primary_10_3390_gels11040293
crossref_primary_10_1016_j_cej_2024_150770
crossref_primary_10_1088_1748_605X_ad0d85
crossref_primary_10_1002_btm2_10398
crossref_primary_10_1016_j_ijbiomac_2024_138786
crossref_primary_10_1016_j_cej_2025_160984
crossref_primary_10_1002_adhm_202302868
crossref_primary_10_1016_j_matdes_2023_112620
crossref_primary_10_3390_life13061409
crossref_primary_10_3390_gels9040289
crossref_primary_10_1557_s43578_023_01249_6
crossref_primary_10_1016_j_colsurfb_2022_112479
crossref_primary_10_1016_j_cej_2024_150545
crossref_primary_10_1186_s12951_022_01395_9
crossref_primary_10_1093_burnst_tkae067
crossref_primary_10_1002_adfm_202214089
crossref_primary_10_1002_adtp_202400405
crossref_primary_10_1002_smll_202404636
crossref_primary_10_1002_adfm_202009442
crossref_primary_10_1186_s12951_023_02211_8
crossref_primary_10_1002_smll_202401241
crossref_primary_10_1016_j_cej_2024_158133
crossref_primary_10_1002_advs_202200732
crossref_primary_10_1002_smll_202403781
crossref_primary_10_1002_marc_202300379
crossref_primary_10_1016_j_ijbiomac_2024_136239
crossref_primary_10_3390_bios15030139
crossref_primary_10_1063_5_0237243
crossref_primary_10_1016_j_actbio_2022_11_054
crossref_primary_10_1016_j_colsurfb_2023_113738
crossref_primary_10_1002_smll_202104229
crossref_primary_10_1002_adfm_202111003
crossref_primary_10_1002_adhm_202303604
crossref_primary_10_1016_j_colsurfb_2022_112589
crossref_primary_10_1002_adma_202309719
crossref_primary_10_1002_ange_202311698
crossref_primary_10_1016_j_cej_2024_150879
crossref_primary_10_1016_j_ijbiomac_2023_124960
crossref_primary_10_1002_jbm_a_37453
crossref_primary_10_3389_fbioe_2023_1308184
crossref_primary_10_1007_s12274_024_6943_4
crossref_primary_10_1002_smll_202403679
crossref_primary_10_1002_adhm_202102791
crossref_primary_10_1002_adfm_202402845
crossref_primary_10_1002_adhm_202303930
crossref_primary_10_1016_j_ijbiomac_2024_134055
crossref_primary_10_1038_s41598_025_96578_3
crossref_primary_10_1002_advs_202306602
crossref_primary_10_1016_j_ijbiomac_2024_135381
crossref_primary_10_1016_j_colsurfa_2025_136588
crossref_primary_10_3389_fchem_2024_1376799
crossref_primary_10_1002_adfm_202306319
crossref_primary_10_1007_s12015_024_10806_3
crossref_primary_10_1016_j_matdes_2023_111674
crossref_primary_10_1016_j_ijbiomac_2023_124971
crossref_primary_10_1016_j_actbio_2021_07_018
crossref_primary_10_1016_j_redox_2025_103718
crossref_primary_10_1089_wound_2021_0162
crossref_primary_10_3390_ijms24032936
crossref_primary_10_1016_j_ijbiomac_2024_133075
crossref_primary_10_1002_mabi_202500084
crossref_primary_10_1002_adhm_202301885
crossref_primary_10_3389_fbioe_2023_1304835
crossref_primary_10_3389_fbioe_2024_1525644
crossref_primary_10_1021_acsbiomaterials_5c01060
crossref_primary_10_1016_j_jconrel_2024_03_024
crossref_primary_10_2147_IJN_S505918
crossref_primary_10_1016_j_bioactmat_2022_09_019
crossref_primary_10_2147_IJN_S363827
crossref_primary_10_1016_j_compositesb_2023_110985
crossref_primary_10_1021_acsbiomaterials_5c00244
crossref_primary_10_1002_adhm_202303997
crossref_primary_10_1007_s10853_025_10803_y
crossref_primary_10_1039_D4BM00155A
crossref_primary_10_1007_s40820_024_01323_6
crossref_primary_10_1016_j_cej_2024_152249
crossref_primary_10_3389_fphar_2021_679580
crossref_primary_10_1002_bmm2_12021
crossref_primary_10_1039_D4BM01221F
crossref_primary_10_1016_j_actbio_2022_11_023
crossref_primary_10_1016_j_cej_2025_162442
crossref_primary_10_3390_pharmaceutics17050644
crossref_primary_10_1016_j_cej_2024_149068
crossref_primary_10_1016_j_matdes_2022_111452
crossref_primary_10_1016_j_cclet_2025_111481
crossref_primary_10_1002_smll_202308295
crossref_primary_10_1016_j_jddst_2023_105072
crossref_primary_10_1016_j_matdes_2022_110598
crossref_primary_10_1016_j_ijbiomac_2025_144480
crossref_primary_10_1016_j_cej_2023_146744
crossref_primary_10_1186_s12951_025_03621_6
crossref_primary_10_1039_D4MD00232F
crossref_primary_10_1002_adfm_202100795
crossref_primary_10_1016_j_ijbiomac_2023_126819
crossref_primary_10_1039_D1BM01575C
crossref_primary_10_1016_j_cej_2024_154890
crossref_primary_10_1038_s41467_022_33920_7
crossref_primary_10_1016_j_hsr_2023_100140
crossref_primary_10_1016_j_microc_2023_109268
crossref_primary_10_1016_j_bioadv_2025_214324
crossref_primary_10_1016_j_jddst_2025_106848
crossref_primary_10_1063_5_0238411
crossref_primary_10_1007_s11051_021_05213_5
crossref_primary_10_1093_burnst_tkaf020
crossref_primary_10_1002_advs_202403219
crossref_primary_10_1016_j_ijbiomac_2023_125731
crossref_primary_10_1093_burnst_tkaf024
crossref_primary_10_1093_burnst_tkaf025
crossref_primary_10_1186_s12951_021_01215_6
crossref_primary_10_1016_j_ijpharm_2025_125222
crossref_primary_10_1016_j_cej_2024_151005
crossref_primary_10_1186_s12951_024_02685_0
crossref_primary_10_1371_journal_pone_0317928
crossref_primary_10_1016_j_cej_2024_151485
crossref_primary_10_1016_j_carbpol_2024_122740
crossref_primary_10_1002_smll_202402146
crossref_primary_10_1016_j_cej_2022_138076
crossref_primary_10_1038_s41387_024_00344_9
crossref_primary_10_3390_cells11030443
crossref_primary_10_1016_j_cej_2022_138077
crossref_primary_10_1016_j_ijbiomac_2024_137752
crossref_primary_10_34133_bmr_0216
crossref_primary_10_3389_fbioe_2022_968078
crossref_primary_10_3390_pharmaceutics15122735
crossref_primary_10_1016_j_ijbiomac_2024_138966
crossref_primary_10_1016_j_ijbiomac_2024_136669
crossref_primary_10_1016_j_ijbiomac_2022_03_214
crossref_primary_10_1016_j_ijbiomac_2025_147716
crossref_primary_10_1007_s12274_022_4792_6
crossref_primary_10_1002_adfm_202212489
crossref_primary_10_1016_j_ijbiomac_2022_04_026
crossref_primary_10_1002_jbm_b_35458
crossref_primary_10_1039_D5TB00563A
crossref_primary_10_1007_s42765_024_00407_7
crossref_primary_10_1016_j_jconrel_2023_01_049
crossref_primary_10_1016_j_intimp_2024_112695
crossref_primary_10_1016_j_ijbiomac_2024_135567
crossref_primary_10_1016_j_ijbiomac_2024_135324
crossref_primary_10_1073_pnas_2322935121
crossref_primary_10_1016_j_ijbiomac_2022_11_320
crossref_primary_10_1016_j_cej_2025_160379
crossref_primary_10_1002_adhm_202001966
crossref_primary_10_1016_j_cej_2024_154517
crossref_primary_10_1016_j_nantod_2021_101290
crossref_primary_10_1016_j_biomaterials_2024_122891
crossref_primary_10_1049_bsb2_12050
crossref_primary_10_1016_j_bios_2023_115997
crossref_primary_10_1007_s42247_024_00930_8
crossref_primary_10_1186_s12951_024_02687_y
crossref_primary_10_4103_japtr_japtr_631_22
crossref_primary_10_1016_j_ijbiomac_2024_134105
crossref_primary_10_3390_polym13213630
crossref_primary_10_1039_D2BM00620K
crossref_primary_10_3390_antiox12051079
crossref_primary_10_1007_s10853_025_10823_8
crossref_primary_10_1007_s40242_024_4195_1
crossref_primary_10_1016_j_ijbiomac_2024_134342
crossref_primary_10_1016_j_ijbiomac_2024_135562
crossref_primary_10_1002_adhm_202200717
crossref_primary_10_1016_j_colsurfb_2023_113444
crossref_primary_10_1016_j_actbio_2025_04_034
crossref_primary_10_1002_adhm_202501303
crossref_primary_10_1088_1758_5090_adeecc
crossref_primary_10_1016_j_ijbiomac_2025_143695
crossref_primary_10_1002_adhm_202402080
crossref_primary_10_1016_j_bioadv_2022_212979
crossref_primary_10_1016_j_intimp_2024_113009
crossref_primary_10_1016_j_matdes_2023_111701
crossref_primary_10_1002_smll_202207437
crossref_primary_10_1016_j_cej_2023_142222
crossref_primary_10_1016_j_biomaterials_2024_122880
crossref_primary_10_1177_08853282231197901
crossref_primary_10_1007_s40843_021_1724_8
crossref_primary_10_1016_j_actbio_2022_08_048
crossref_primary_10_1016_j_bioactmat_2022_06_018
crossref_primary_10_1016_j_cej_2023_144649
crossref_primary_10_1016_j_ijbiomac_2024_133363
crossref_primary_10_2147_IJN_S372211
crossref_primary_10_3389_fcell_2023_1195600
crossref_primary_10_1002_adhm_202304536
crossref_primary_10_1016_j_actbio_2025_02_014
crossref_primary_10_1039_D3MH01054F
crossref_primary_10_1002_ange_202302329
crossref_primary_10_1016_j_cej_2024_154855
crossref_primary_10_3390_pharmaceutics17040519
crossref_primary_10_1016_j_actbio_2025_04_047
crossref_primary_10_1002_jbm_a_37636
crossref_primary_10_1016_j_ijbiomac_2025_141284
crossref_primary_10_1039_D1BM00411E
crossref_primary_10_1002_adfm_202213008
crossref_primary_10_1039_D5NR02066B
crossref_primary_10_1016_j_ijbiomac_2024_132269
crossref_primary_10_1016_j_ccr_2022_214875
crossref_primary_10_3390_ijms25073849
crossref_primary_10_1093_burnst_tkae018
crossref_primary_10_1002_adhm_202404283
crossref_primary_10_1016_j_bioadv_2025_214217
crossref_primary_10_1002_anbr_202200177
crossref_primary_10_1016_j_jcis_2024_10_137
crossref_primary_10_1016_j_carbpol_2025_123916
crossref_primary_10_1002_adhm_202500355
crossref_primary_10_1002_cjoc_202300142
crossref_primary_10_3389_fphar_2023_1276849
crossref_primary_10_1080_10601325_2021_1927754
crossref_primary_10_1080_15583724_2024_2427184
crossref_primary_10_1016_j_ijpharm_2025_125315
crossref_primary_10_1016_j_carbpol_2024_122894
crossref_primary_10_1002_adma_202306292
crossref_primary_10_1016_j_ijbiomac_2024_133471
crossref_primary_10_26599_NR_2025_94907078
crossref_primary_10_1016_j_bioactmat_2022_07_020
crossref_primary_10_1016_j_ijbiomac_2023_124106
crossref_primary_10_1002_advs_202300576
crossref_primary_10_1016_j_ijbiomac_2025_145744
crossref_primary_10_1016_j_jconrel_2021_11_027
crossref_primary_10_1007_s13346_022_01176_9
crossref_primary_10_1016_j_biomaterials_2025_123542
crossref_primary_10_1002_smll_202201300
crossref_primary_10_1016_j_ijbiomac_2023_127737
crossref_primary_10_3389_fbioe_2021_718377
crossref_primary_10_3390_gels11060420
crossref_primary_10_1016_j_ijbiomac_2024_130189
crossref_primary_10_1016_j_cej_2024_148938
crossref_primary_10_1016_j_ijbiomac_2024_131395
crossref_primary_10_1093_burnst_tkac019
crossref_primary_10_1186_s12951_023_01922_2
crossref_primary_10_1557_s43578_025_01629_0
crossref_primary_10_1002_adhm_202405151
crossref_primary_10_1002_adfm_202201875
crossref_primary_10_1016_j_ijbiomac_2022_11_156
crossref_primary_10_1002_adsr_202200018
crossref_primary_10_1002_VIW_20200112
crossref_primary_10_1039_D4RA04860A
crossref_primary_10_3389_fbioe_2023_1241660
crossref_primary_10_1016_j_bioadv_2022_213226
crossref_primary_10_1016_j_jddst_2025_107308
crossref_primary_10_1002_adhm_202201323
crossref_primary_10_1002_adhm_202202652
crossref_primary_10_1016_j_mtbio_2025_101751
crossref_primary_10_1016_j_cej_2025_164111
crossref_primary_10_1016_j_ejps_2024_106847
crossref_primary_10_1016_j_ijbiomac_2022_12_063
crossref_primary_10_1002_agt2_587
crossref_primary_10_1016_j_biomaterials_2024_123010
crossref_primary_10_1038_s41467_022_32160_z
crossref_primary_10_3389_fbioe_2021_821288
crossref_primary_10_1016_j_ijbiomac_2024_134896
crossref_primary_10_1016_j_jep_2023_116451
crossref_primary_10_1002_cbic_202400790
crossref_primary_10_1002_smll_202107137
crossref_primary_10_1039_D2NR03756D
crossref_primary_10_1186_s13054_023_04577_5
crossref_primary_10_1002_adhm_202500403
crossref_primary_10_1016_j_cej_2025_165440
crossref_primary_10_1016_j_ijbiomac_2023_124321
crossref_primary_10_1002_adtp_202000270
crossref_primary_10_1016_j_ijbiomac_2023_128962
crossref_primary_10_1002_advs_202102545
crossref_primary_10_1016_j_matdes_2023_111917
crossref_primary_10_1088_1748_605X_ad2ed1
crossref_primary_10_1016_j_ijbiomac_2024_130172
crossref_primary_10_1016_j_biomaterials_2022_121656
crossref_primary_10_1016_j_talanta_2025_128512
crossref_primary_10_1016_j_cej_2024_155336
crossref_primary_10_1016_j_ijbiomac_2025_143997
crossref_primary_10_1016_j_mtbio_2025_101856
crossref_primary_10_1016_j_ijbiomac_2025_140125
crossref_primary_10_3390_gels9040301
crossref_primary_10_1016_j_ijbiomac_2024_139090
crossref_primary_10_3390_ani12182444
crossref_primary_10_1002_advs_202405924
crossref_primary_10_1002_bip_70046
crossref_primary_10_1016_j_biomaterials_2025_123531
crossref_primary_10_1186_s12951_024_02423_6
crossref_primary_10_1016_j_biomaterials_2025_123411
crossref_primary_10_1016_j_nxnano_2025_100134
crossref_primary_10_1002_INMD_20250001
crossref_primary_10_15446_rfmvz_v70n1_102246
crossref_primary_10_1016_j_bioactmat_2024_02_010
crossref_primary_10_1002_cnma_202400073
crossref_primary_10_1002_adhm_202303229
crossref_primary_10_3390_molecules30030686
crossref_primary_10_1016_j_cej_2024_158713
crossref_primary_10_1021_acs_biomac_4c01331
crossref_primary_10_1155_2021_8852759
crossref_primary_10_3390_biomimetics9010023
crossref_primary_10_3390_gels10020114
crossref_primary_10_1002_idm2_12215
crossref_primary_10_1002_smll_202507226
crossref_primary_10_1039_D2BM00224H
crossref_primary_10_1186_s40779_023_00473_9
crossref_primary_10_1016_j_biomaterials_2021_121164
crossref_primary_10_1002_adhm_202400856
crossref_primary_10_1016_j_biomaterials_2021_121040
crossref_primary_10_1016_j_coco_2024_102107
crossref_primary_10_1080_21663831_2023_2294882
crossref_primary_10_1186_s12951_023_01924_0
crossref_primary_10_12677_acm_2025_1551617
crossref_primary_10_1016_j_bioadv_2024_213820
crossref_primary_10_1002_adhm_202304125
crossref_primary_10_1002_adhm_202101808
crossref_primary_10_1002_adhm_202500734
crossref_primary_10_1016_j_cej_2023_142192
crossref_primary_10_3390_gels9060451
crossref_primary_10_1016_j_jmbbm_2025_106927
crossref_primary_10_1016_j_snb_2023_134279
crossref_primary_10_2147_IJN_S276001
crossref_primary_10_1016_j_cej_2023_146788
crossref_primary_10_1063_5_0245545
crossref_primary_10_1016_j_biomaterials_2022_121790
crossref_primary_10_1016_j_jconrel_2023_06_007
crossref_primary_10_1002_app_57096
crossref_primary_10_1002_smll_202406377
crossref_primary_10_1016_j_actbio_2024_10_020
crossref_primary_10_1002_adfm_202418711
crossref_primary_10_3390_polym15092000
crossref_primary_10_3390_pharmaceutics17060749
crossref_primary_10_1016_j_bioactmat_2023_01_019
crossref_primary_10_1177_15533506251367251
crossref_primary_10_1002_adfm_202314500
crossref_primary_10_1016_j_ijbiomac_2023_124886
crossref_primary_10_1016_j_ijbiomac_2025_140598
crossref_primary_10_1002_adhm_202201771
crossref_primary_10_1016_j_mtbio_2025_101686
crossref_primary_10_1039_D3BM01766D
crossref_primary_10_1016_j_bioactmat_2024_08_034
crossref_primary_10_1002_smll_202201766
crossref_primary_10_1007_s10876_021_02131_3
crossref_primary_10_1016_j_cej_2024_156860
crossref_primary_10_1007_s43939_025_00178_x
crossref_primary_10_1002_adfm_202416205
crossref_primary_10_1039_D5TB01327E
crossref_primary_10_1016_j_jconrel_2023_12_015
crossref_primary_10_1016_j_ijbiomac_2025_140325
crossref_primary_10_1111_dom_15544
crossref_primary_10_1016_j_ijbiomac_2025_140442
crossref_primary_10_1016_j_preme_2025_100028
crossref_primary_10_1016_j_bioactmat_2023_01_001
crossref_primary_10_1002_SMMD_20230034
crossref_primary_10_1016_j_ijbiomac_2022_10_054
crossref_primary_10_1016_j_ijbiomac_2023_125028
crossref_primary_10_1002_adhm_202302183
crossref_primary_10_1089_ars_2021_0134
crossref_primary_10_1016_j_ijbiomac_2025_147091
crossref_primary_10_1039_D3NR02930A
crossref_primary_10_1016_j_peptides_2025_171366
crossref_primary_10_1016_j_carbpol_2023_121543
crossref_primary_10_1016_j_cej_2024_152252
crossref_primary_10_1093_rb_rbac023
crossref_primary_10_1002_advs_202306152
crossref_primary_10_1016_j_ijbiomac_2025_145900
crossref_primary_10_1016_j_jddst_2023_104961
crossref_primary_10_1039_D3NR01624B
crossref_primary_10_1007_s12274_024_6674_6
crossref_primary_10_3389_fimmu_2025_1675212
crossref_primary_10_1016_j_mtcomm_2024_111198
crossref_primary_10_1016_j_ijbiomac_2024_130226
crossref_primary_10_1016_j_jcis_2025_02_078
crossref_primary_10_1002_mba2_23
crossref_primary_10_1016_j_bioactmat_2022_04_032
crossref_primary_10_1016_j_ijbiomac_2025_139685
crossref_primary_10_1016_j_cej_2022_137880
crossref_primary_10_1016_j_chmed_2024_11_005
crossref_primary_10_1016_j_mtchem_2021_100606
crossref_primary_10_3390_ph17101312
crossref_primary_10_1016_j_carbpol_2023_120823
crossref_primary_10_3390_gels11050345
crossref_primary_10_1016_j_matlet_2022_131690
crossref_primary_10_3390_pharmaceutics15041187
crossref_primary_10_1016_j_actbio_2024_07_043
crossref_primary_10_1016_j_ijbiomac_2023_126010
crossref_primary_10_1016_j_cej_2025_168316
crossref_primary_10_3390_bioengineering11101017
crossref_primary_10_1002_smtd_202401127
crossref_primary_10_1039_D3BM01676E
crossref_primary_10_1016_j_msec_2021_112560
crossref_primary_10_1002_smll_202200165
crossref_primary_10_1007_s40820_023_01099_1
crossref_primary_10_1002_smll_202206707
crossref_primary_10_1002_anie_202311698
crossref_primary_10_1016_j_nantod_2024_102415
crossref_primary_10_3390_polym16101316
crossref_primary_10_1016_j_jconrel_2025_01_077
crossref_primary_10_1016_j_mtbio_2025_101481
crossref_primary_10_1016_j_bioactmat_2025_09_010
crossref_primary_10_1016_j_actbio_2023_05_045
crossref_primary_10_1016_j_ijbiomac_2022_09_174
crossref_primary_10_3390_biomedicines12040923
crossref_primary_10_1016_j_ijbiomac_2024_129356
crossref_primary_10_1021_acsami_5c07412
crossref_primary_10_1016_j_eurpolymj_2025_114025
crossref_primary_10_1016_j_jconrel_2024_11_044
crossref_primary_10_1016_j_cej_2024_156381
crossref_primary_10_1002_agt2_639
crossref_primary_10_3390_biomedicines10112784
crossref_primary_10_1080_01480545_2024_2370916
crossref_primary_10_1002_adhm_202400318
crossref_primary_10_1002_smll_202407046
crossref_primary_10_1016_j_bioadv_2022_213096
crossref_primary_10_1039_D4NR03799E
crossref_primary_10_1021_jacs_5c02184
crossref_primary_10_1007_s12274_022_4547_4
crossref_primary_10_1039_D5SM00621J
crossref_primary_10_1016_j_carbpol_2022_119643
crossref_primary_10_1002_agt2_402
crossref_primary_10_1002_adhm_202101659
crossref_primary_10_1016_j_cej_2024_148768
crossref_primary_10_1016_j_cobme_2022_100443
crossref_primary_10_1016_j_ijbiomac_2024_131643
crossref_primary_10_1016_j_actbio_2022_04_043
crossref_primary_10_1016_j_nantod_2025_102815
crossref_primary_10_1021_acssuschemeng_5c00713
crossref_primary_10_1016_j_cej_2022_135130
crossref_primary_10_1002_advs_202203308
crossref_primary_10_1016_j_bioadv_2022_213078
crossref_primary_10_1080_17435889_2025_2466414
crossref_primary_10_1016_j_apmt_2022_101586
crossref_primary_10_1016_j_actbio_2023_05_027
crossref_primary_10_3390_jfb14040226
crossref_primary_10_1002_adfm_202207466
crossref_primary_10_1002_cmdc_202300325
crossref_primary_10_1002_mabi_202200514
crossref_primary_10_1016_j_biomaterials_2024_123065
crossref_primary_10_1016_j_ijbiomac_2024_129557
crossref_primary_10_1039_D4BM01657B
crossref_primary_10_1039_D5TB01636C
crossref_primary_10_1021_acsami_5c10994
crossref_primary_10_1093_rb_rbac069
crossref_primary_10_1002_adhm_202100793
crossref_primary_10_1016_j_mtbio_2025_102005
crossref_primary_10_1016_j_carbpol_2022_120348
crossref_primary_10_1186_s40824_023_00367_w
crossref_primary_10_1007_s12274_022_4809_1
crossref_primary_10_1093_rb_rbae134
crossref_primary_10_1007_s10924_021_02175_6
crossref_primary_10_1002_adhm_202300725
crossref_primary_10_3389_fbioe_2024_1428793
crossref_primary_10_1016_j_carbpol_2022_119467
crossref_primary_10_1021_acs_biomac_5c00087
crossref_primary_10_3389_fbioe_2023_1115603
crossref_primary_10_1002_adhm_202101515
crossref_primary_10_1016_j_jconrel_2023_05_047
crossref_primary_10_1002_admt_202300669
crossref_primary_10_1016_j_actbio_2024_12_044
crossref_primary_10_1002_slct_202404417
crossref_primary_10_1016_j_bioactmat_2023_04_004
crossref_primary_10_1016_j_colsurfa_2025_137252
crossref_primary_10_1002_adfm_202305992
crossref_primary_10_1002_advs_202201425
crossref_primary_10_1002_ctm2_1094
crossref_primary_10_1002_mco2_658
crossref_primary_10_1016_j_jconrel_2024_12_061
crossref_primary_10_1002_adfm_202311199
crossref_primary_10_2147_IJN_S519379
crossref_primary_10_1016_j_bioadv_2024_213779
crossref_primary_10_1016_j_jconrel_2024_11_003
crossref_primary_10_2147_IJN_S519100
crossref_primary_10_1039_D2BM00157H
crossref_primary_10_1016_j_colsurfb_2024_114160
crossref_primary_10_1016_j_carbpol_2025_124446
crossref_primary_10_1016_j_actbio_2024_05_015
crossref_primary_10_1016_j_ijbiomac_2025_140965
crossref_primary_10_1016_j_nanoen_2024_109946
crossref_primary_10_1016_j_actbio_2023_11_043
crossref_primary_10_1016_j_cis_2023_103012
crossref_primary_10_1002_adfm_202500586
crossref_primary_10_1002_agt2_688
crossref_primary_10_1016_j_carbpol_2025_124214
crossref_primary_10_1016_j_ijbiomac_2024_132935
crossref_primary_10_1016_j_ccr_2023_215457
crossref_primary_10_1016_j_matt_2023_01_001
crossref_primary_10_3390_polym16192818
crossref_primary_10_1002_adhm_202400003
crossref_primary_10_1186_s13619_023_00158_7
crossref_primary_10_1016_j_bioactmat_2023_04_020
crossref_primary_10_1016_j_nxnano_2025_100177
crossref_primary_10_1002_adhm_202404966
crossref_primary_10_1002_btm2_10540
crossref_primary_10_1111_jocd_15631
crossref_primary_10_1039_D1SC04413C
crossref_primary_10_1093_rb_rbad072
crossref_primary_10_1039_D2BM01244H
crossref_primary_10_1002_adfm_202314202
crossref_primary_10_1039_D5LP00092K
crossref_primary_10_1016_j_carbpol_2022_119336
crossref_primary_10_1039_D2BM01220K
crossref_primary_10_1016_j_jcis_2023_07_141
crossref_primary_10_1016_j_jcis_2024_01_190
crossref_primary_10_1016_j_scitotenv_2022_153857
crossref_primary_10_1186_s12951_021_01152_4
Cites_doi 10.1016/j.imbio.2011.01.001
10.1016/S0140-6736(05)67700-8
10.1039/C9BM02029B
10.1002/advs.201802112
10.1038/nrendo.2015.130
10.1016/j.biomaterials.2019.119398
10.1016/j.phrs.2008.06.004
10.1002/smll.201702582
10.1002/advs.201900867
10.1021/acsnano.7b08152
10.1016/j.jid.2016.08.009
10.1039/C9SC05808G
10.1073/pnas.1701976114
10.1039/C8NR00838H
10.1016/j.biomaterials.2018.01.024
10.1002/adfm.201702026
10.1002/adfm.201801787
10.1016/j.biomaterials.2019.119719
10.1038/s41551-019-0508-y
10.1016/j.colsurfb.2016.03.006
10.1016/j.actbio.2018.03.008
10.1002/adfm.201906922
10.1002/adma.201801527
10.1016/j.tibtech.2018.10.011
10.1073/pnas.1804262115
10.1126/scitranslmed.aan3682
10.1016/j.biomaterials.2019.01.020
10.1073/pnas.1813000115
10.1002/anie.201712878
10.1016/j.polymdegradstab.2016.04.010
10.1002/adma.201801100
10.1002/adma.201805798
10.1021/acscentsci.8b00850
10.1016/j.apsusc.2015.06.163
10.1039/C8NR07534D
10.1073/pnas.1004204107
10.1038/s41565-018-0319-4
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2020.120286
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
ExternalDocumentID 32798744
10_1016_j_biomaterials_2020_120286
S0142961220305329
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
~HD
AACTN
AAIAV
AAYOK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
RIG
9DU
AAYXX
CITATION
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c472t-e9ca1c2fd17a1f43310b9cc96735cc4a779de43658d098d6f07d92eb05e886993
ISICitedReferencesCount 679
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000568987700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-9612
1878-5905
IngestDate Sat Sep 27 21:26:36 EDT 2025
Thu Oct 02 08:17:06 EDT 2025
Mon Jul 21 05:56:30 EDT 2025
Sat Nov 29 02:37:34 EST 2025
Tue Nov 18 20:49:48 EST 2025
Fri Feb 23 02:49:43 EST 2024
Tue Oct 14 19:30:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Bacterial infection
ROS-scavenging hydrogel
M2 phenotype macrophages
Wound closure
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c472t-e9ca1c2fd17a1f43310b9cc96735cc4a779de43658d098d6f07d92eb05e886993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32798744
PQID 2434754390
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2524246365
proquest_miscellaneous_2434754390
pubmed_primary_32798744
crossref_primary_10_1016_j_biomaterials_2020_120286
crossref_citationtrail_10_1016_j_biomaterials_2020_120286
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2020_120286
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2020_120286
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sahiner, Sagbas, Aktas (bib24) 2016; 129
Chen, Wang, Zhang, Chen, Hu, Li, Wang, Wen, Zhang, Lu (bib14) 2019; 14
Bowling, Rashid, Boulton (bib1) 2015; 11
Guo, Sun, Kim, Lu, Li, Lin, Mrowczynski, Rizk, Cheng, Qian (bib11) 2018; 72
Zheng, Gao, Xu, Liang, Shi, Wang, Yang (bib19) 2018; 10
Fan, Deng, Li, Chery, Su, Zhu, Kambayashi, Blankenhorn, Han, Cheng (bib21) 2019; 197
Loesche, Gardner, Kalan, Horwinski, Zheng, Hodkinson, Tyldsley, Franciscus, Hillis, Mehta, Margolis, Grice (bib7) 2017; 137
Lu, Shi, Li, Gerhard, Lu, Tan, Li, Rahn, Xie, Xu (bib12) 2020; 232
Wang, Wang, Zhang, Yu, Wen, Hu, Ye, Bomba, Hu, Liu (bib13) 2018; 10
Schäfer, Werner (bib4) 2008; 58
Sagbas, Aktas, Sahiner (bib23) 2015; 354
Meng, Yao, Ma, Xue, Du, Liu, Yang (bib18) 2019; 6
Zhang, Xu, Li, Fan, Cui, Wu, Xiao, Yang, Yang, Liu (bib31) 2020; 8
Falanga (bib3) 2005; 366
Sahiner, Sagbas, Aktas, Silan (bib6) 2016; 142
Xie, Liu, Yang, Liu, Hu, Zhu, Jiang (bib34) 2018; 57
Wang, Ye, Yu, Kahkoska, Zhang, Wang, Sun, Corder, Chen, Khan (bib25) 2018; 12
Wu, Cheng, Cheng (bib8) 2019; 37
Zhang, Zhou, Hu, Han, Zou, Chen, Chen, Liu, Wang (bib16) 2020; 30
Zhao, Zeng, Liu, Chen, Zhou, Huang, Huang, Xu, Xu, Chen, Wu, Guo, Wang, Wang, Liu (bib27) 2018; 10
Xie, Xianyu, Wang, Yan, Liu, Zhu, Hatzakis, Jiang (bib35) 2018; 28
Song, Wang, Cheng, Yang, Shi, Yu (bib5) 2020; 11
Grice, Snitkin, Yockey, Bermudez, Liechty, Segre (bib10) 2010; 107
Zhu, Cankova, Iwanaszko, Lichtor, Mrksich, Ameer (bib28) 2018; 115
Wu, Chen, Zhou, Zheng, Yang, An, Xu, He, Kang, Luckanagul (bib29) 2019; 222
Ma, Tian, Kim, Xie, Ao, Shan, Lin, Hudock, Bai, Yang (bib9) 2018; 115
Yu, Wang, Zhang, Chen, Mao, Ye, Kahkoska, Buse, Langer, Gu (bib37) 2020; 4
Chen, Liang, Sun, Chen, Yang, Zhao, Feng, Liu (bib26) 2017; 114
Delavary, van der Veer, van Egmond, Niessen, Beelen (bib36) 2011; 216
Yu, Wang, Yu, Wang, Lu, Zhang, Zhang, Hu, Sun, He (bib15) 2018; 30
Zhou, Yao, Qian, Hou, Li, Jenkins, Fan (bib33) 2018; 161
Gao, Xu, Liang, Li, Peng, Wu, Zhao, Cui, Ruan, Liu (bib17) 2019; 6
Gao, Zhan, Yang (bib20) 2020; 32
Xu, Fang, Tian, Wang, Ye, Zhang, Cai (bib30) 2018; 30
Shan, Kothapalli, Ravnic, Gerhard, Kim, Guo, Ma, Guo, Gui, Sun (bib22) 2018; 28
Yang, Wang, Zhang, Sun, Li, Yang, Zeng, Peng, Zheng, Jiang (bib32) 2018; 14
Wu, Li, Shao, Gao, Ling (bib2) 2019; 5
Xie (10.1016/j.biomaterials.2020.120286_bib35) 2018; 28
Yu (10.1016/j.biomaterials.2020.120286_bib15) 2018; 30
Grice (10.1016/j.biomaterials.2020.120286_bib10) 2010; 107
Chen (10.1016/j.biomaterials.2020.120286_bib26) 2017; 114
Fan (10.1016/j.biomaterials.2020.120286_bib21) 2019; 197
Xie (10.1016/j.biomaterials.2020.120286_bib34) 2018; 57
Zhang (10.1016/j.biomaterials.2020.120286_bib31) 2020; 8
Shan (10.1016/j.biomaterials.2020.120286_bib22) 2018; 28
Lu (10.1016/j.biomaterials.2020.120286_bib12) 2020; 232
Wu (10.1016/j.biomaterials.2020.120286_bib29) 2019; 222
Chen (10.1016/j.biomaterials.2020.120286_bib14) 2019; 14
Delavary (10.1016/j.biomaterials.2020.120286_bib36) 2011; 216
Meng (10.1016/j.biomaterials.2020.120286_bib18) 2019; 6
Wang (10.1016/j.biomaterials.2020.120286_bib13) 2018; 10
Yu (10.1016/j.biomaterials.2020.120286_bib37) 2020; 4
Guo (10.1016/j.biomaterials.2020.120286_bib11) 2018; 72
Sahiner (10.1016/j.biomaterials.2020.120286_bib6) 2016; 142
Sahiner (10.1016/j.biomaterials.2020.120286_bib24) 2016; 129
Schäfer (10.1016/j.biomaterials.2020.120286_bib4) 2008; 58
Zheng (10.1016/j.biomaterials.2020.120286_bib19) 2018; 10
Gao (10.1016/j.biomaterials.2020.120286_bib20) 2020; 32
Yang (10.1016/j.biomaterials.2020.120286_bib32) 2018; 14
Loesche (10.1016/j.biomaterials.2020.120286_bib7) 2017; 137
Gao (10.1016/j.biomaterials.2020.120286_bib17) 2019; 6
Zhu (10.1016/j.biomaterials.2020.120286_bib28) 2018; 115
Bowling (10.1016/j.biomaterials.2020.120286_bib1) 2015; 11
Song (10.1016/j.biomaterials.2020.120286_bib5) 2020; 11
Sagbas (10.1016/j.biomaterials.2020.120286_bib23) 2015; 354
Zhang (10.1016/j.biomaterials.2020.120286_bib16) 2020; 30
Falanga (10.1016/j.biomaterials.2020.120286_bib3) 2005; 366
Wu (10.1016/j.biomaterials.2020.120286_bib2) 2019; 5
Xu (10.1016/j.biomaterials.2020.120286_bib30) 2018; 30
Ma (10.1016/j.biomaterials.2020.120286_bib9) 2018; 115
Zhao (10.1016/j.biomaterials.2020.120286_bib27) 2018; 10
Wang (10.1016/j.biomaterials.2020.120286_bib25) 2018; 12
Zhou (10.1016/j.biomaterials.2020.120286_bib33) 2018; 161
Wu (10.1016/j.biomaterials.2020.120286_bib8) 2019; 37
References_xml – volume: 5
  start-page: 477
  year: 2019
  end-page: 485
  ident: bib2
  article-title: Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel
  publication-title: ACS Cent. Sci.
– volume: 72
  start-page: 35
  year: 2018
  end-page: 44
  ident: bib11
  article-title: Development of tannin-inspired antimicrobial bioadhesives
  publication-title: Acta Biomater.
– volume: 232
  start-page: 119719
  year: 2020
  ident: bib12
  article-title: Magnesium oxide-crosslinked low-swelling citrate-based mussel-inspired tissue adhesives
  publication-title: Biomaterials
– volume: 10
  start-page: 6981
  year: 2018
  end-page: 6991
  ident: bib27
  article-title: Polydopamine nanoparticles for the treatment of acute inflammation-induced injury
  publication-title: Nanoscale
– volume: 354
  start-page: 306
  year: 2015
  end-page: 313
  ident: bib23
  article-title: Modified biofunctional p (tannic acid) microgels and their antimicrobial activity
  publication-title: Appl. Surf. Sci.
– volume: 11
  start-page: 1383
  year: 2020
  end-page: 1393
  ident: bib5
  article-title: Directional molecular sliding movement in peptide hydrogels accelerates cell proliferation
  publication-title: Chem. Sci.
– volume: 58
  start-page: 165
  year: 2008
  end-page: 171
  ident: bib4
  article-title: Oxidative stress in normal and impaired wound repair
  publication-title: Pharmacol. Res.
– volume: 14
  start-page: 1702582
  year: 2018
  ident: bib32
  article-title: Reverse reconstruction and bioprinting of bacterial cellulose-based functional total intervertebral disc for therapeutic implantation
  publication-title: Small
– volume: 30
  start-page: 1801100
  year: 2018
  ident: bib30
  article-title: Green fabrication of amphiphilic quaternized β-chitin derivatives with excellent biocompatibility and antibacterial activities for wound healing
  publication-title: Adv. Mater.
– volume: 142
  start-page: 334
  year: 2016
  end-page: 343
  ident: bib6
  article-title: Inherently antioxidant and antimicrobial tannic acid release from poly (tannic acid) nanoparticles with controllable degradability
  publication-title: Colloids Surf. B Biointerfaces
– volume: 30
  start-page: 1801527
  year: 2018
  ident: bib15
  article-title: Injectable bioresponsive gel depot for enhanced immune checkpoint blockade
  publication-title: Adv. Mater.
– volume: 11
  start-page: 606
  year: 2015
  ident: bib1
  article-title: Preventing and treating foot complications associated with diabetes mellitus
  publication-title: Nat. Rev. Endocrinol.
– volume: 37
  start-page: 505
  year: 2019
  end-page: 517
  ident: bib8
  article-title: Biofilms in chronic wounds: pathogenesis and diagnosis
  publication-title: Trends Biotechnol.
– volume: 115
  start-page: E11741
  year: 2018
  end-page: E11750
  ident: bib9
  article-title: Citrate-based materials fuel human stem cells by metabonegenic regulation
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 137
  start-page: 237
  year: 2017
  end-page: 244
  ident: bib7
  article-title: Temporal stability in chronic wound microbiota is associated with poor healing
  publication-title: J. Invest. Dermatol.
– volume: 32
  start-page: 1805798
  year: 2020
  ident: bib20
  article-title: Enzyme-instructed self-assembly (EISA) and hydrogelation of peptides
  publication-title: Adv. Mater.
– volume: 28
  start-page: 1801787
  year: 2018
  ident: bib22
  article-title: Development of citrate-based dual-imaging enabled biodegradable electroactive polymers
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 1702026
  year: 2018
  ident: bib35
  article-title: Functionalized gold nanoclusters identify highly reactive oxygen species in living organisms
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2018
  ident: bib13
  article-title: In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy
  publication-title: Sci. Transl. Med.
– volume: 8
  start-page: 1455
  year: 2020
  end-page: 1463
  ident: bib31
  article-title: Fabrication of strong hydrogen-bonding induced coacervate adhesive hydrogels with antibacterial and hemostatic activities
  publication-title: Biomaterials Science
– volume: 10
  start-page: 21459
  year: 2018
  end-page: 21465
  ident: bib19
  article-title: Responsive peptide-based supramolecular hydrogels constructed by self-immolative chemistry
  publication-title: Nanoscale
– volume: 107
  start-page: 14799
  year: 2010
  end-page: 14804
  ident: bib10
  article-title: Longitudinal shift in diabetic wound microbiota correlates with prolonged skin defense response
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 4
  start-page: 499
  year: 2020
  end-page: 506
  ident: bib37
  article-title: Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs
  publication-title: Nature Biomedical Engineering
– volume: 30
  start-page: 1906922
  year: 2020
  ident: bib16
  article-title: In situ formed fibrin scaffold with cyclophosphamide to synergize with immune checkpoint blockade for inhibition of cancer recurrence after surgery
  publication-title: Adv. Funct. Mater.
– volume: 114
  start-page: 5343
  year: 2017
  end-page: 5348
  ident: bib26
  article-title: H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 222
  start-page: 119398
  year: 2019
  ident: bib29
  article-title: Novel H2S-Releasing hydrogel for wound repair via in situ polarization of M2 macrophages
  publication-title: Biomaterials
– volume: 57
  start-page: 3958
  year: 2018
  end-page: 3962
  ident: bib34
  article-title: Gold nanoclusters for targeting methicillin-resistant Staphylococcus aureus in vivo
  publication-title: Angew. Chem. Int. Ed.
– volume: 161
  start-page: 11
  year: 2018
  end-page: 23
  ident: bib33
  article-title: Bacteria-responsive intelligent wound dressing: simultaneous in situ detection and inhibition of bacterial infection for accelerated wound healing
  publication-title: Biomaterials
– volume: 12
  start-page: 2466
  year: 2018
  end-page: 2473
  ident: bib25
  article-title: Core-shell microneedle gel for self-regulated insulin delivery
  publication-title: ACS Nano
– volume: 14
  start-page: 89
  year: 2019
  end-page: 97
  ident: bib14
  article-title: In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 1802112
  year: 2019
  ident: bib18
  article-title: A reversibly responsive fluorochromic hydrogel based on lanthanide-mannose complex
  publication-title: Advanced Science
– volume: 216
  start-page: 753
  year: 2011
  end-page: 762
  ident: bib36
  article-title: Macrophages in skin injury and repair
  publication-title: Immunobiology
– volume: 366
  start-page: 1736
  year: 2005
  end-page: 1743
  ident: bib3
  article-title: Wound healing and its impairment in the diabetic foot
  publication-title: Lancet
– volume: 6
  start-page: 1900867
  year: 2019
  ident: bib17
  article-title: Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds
  publication-title: Advanced Science
– volume: 129
  start-page: 96
  year: 2016
  end-page: 105
  ident: bib24
  article-title: Preparation of macro-, micro-, and nano-sized poly (Tannic acid) particles with controllable degradability and multiple biomedical uses
  publication-title: Polym. Degrad. Stabil.
– volume: 115
  start-page: 6816
  year: 2018
  end-page: 6821
  ident: bib28
  article-title: Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 197
  start-page: 244
  year: 2019
  end-page: 254
  ident: bib21
  article-title: A new class of biological materials: cell membrane-derived hydrogel scaffolds
  publication-title: Biomaterials
– volume: 216
  start-page: 753
  issue: 7
  year: 2011
  ident: 10.1016/j.biomaterials.2020.120286_bib36
  article-title: Macrophages in skin injury and repair
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2011.01.001
– volume: 366
  start-page: 1736
  issue: 9498
  year: 2005
  ident: 10.1016/j.biomaterials.2020.120286_bib3
  article-title: Wound healing and its impairment in the diabetic foot
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)67700-8
– volume: 8
  start-page: 1455
  year: 2020
  ident: 10.1016/j.biomaterials.2020.120286_bib31
  article-title: Fabrication of strong hydrogen-bonding induced coacervate adhesive hydrogels with antibacterial and hemostatic activities
  publication-title: Biomaterials Science
  doi: 10.1039/C9BM02029B
– volume: 6
  start-page: 1802112
  issue: 10
  year: 2019
  ident: 10.1016/j.biomaterials.2020.120286_bib18
  article-title: A reversibly responsive fluorochromic hydrogel based on lanthanide-mannose complex
  publication-title: Advanced Science
  doi: 10.1002/advs.201802112
– volume: 11
  start-page: 606
  issue: 10
  year: 2015
  ident: 10.1016/j.biomaterials.2020.120286_bib1
  article-title: Preventing and treating foot complications associated with diabetes mellitus
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2015.130
– volume: 222
  start-page: 119398
  year: 2019
  ident: 10.1016/j.biomaterials.2020.120286_bib29
  article-title: Novel H2S-Releasing hydrogel for wound repair via in situ polarization of M2 macrophages
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119398
– volume: 58
  start-page: 165
  issue: 2
  year: 2008
  ident: 10.1016/j.biomaterials.2020.120286_bib4
  article-title: Oxidative stress in normal and impaired wound repair
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2008.06.004
– volume: 14
  start-page: 1702582
  issue: 7
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120286_bib32
  article-title: Reverse reconstruction and bioprinting of bacterial cellulose-based functional total intervertebral disc for therapeutic implantation
  publication-title: Small
  doi: 10.1002/smll.201702582
– volume: 6
  start-page: 1900867
  issue: 15
  year: 2019
  ident: 10.1016/j.biomaterials.2020.120286_bib17
  article-title: Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds
  publication-title: Advanced Science
  doi: 10.1002/advs.201900867
– volume: 12
  start-page: 2466
  issue: 3
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120286_bib25
  article-title: Core-shell microneedle gel for self-regulated insulin delivery
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08152
– volume: 137
  start-page: 237
  issue: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2020.120286_bib7
  article-title: Temporal stability in chronic wound microbiota is associated with poor healing
  publication-title: J. Invest. Dermatol.
  doi: 10.1016/j.jid.2016.08.009
– volume: 11
  start-page: 1383
  year: 2020
  ident: 10.1016/j.biomaterials.2020.120286_bib5
  article-title: Directional molecular sliding movement in peptide hydrogels accelerates cell proliferation
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC05808G
– volume: 114
  start-page: 5343
  issue: 21
  year: 2017
  ident: 10.1016/j.biomaterials.2020.120286_bib26
  article-title: H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1701976114
– volume: 10
  start-page: 6981
  issue: 15
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120286_bib27
  article-title: Polydopamine nanoparticles for the treatment of acute inflammation-induced injury
  publication-title: Nanoscale
  doi: 10.1039/C8NR00838H
– volume: 161
  start-page: 11
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120286_bib33
  article-title: Bacteria-responsive intelligent wound dressing: simultaneous in situ detection and inhibition of bacterial infection for accelerated wound healing
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.01.024
– volume: 28
  start-page: 1702026
  issue: 14
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120286_bib35
  article-title: Functionalized gold nanoclusters identify highly reactive oxygen species in living organisms
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702026
– volume: 28
  start-page: 1801787
  issue: 34
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120286_bib22
  article-title: Development of citrate-based dual-imaging enabled biodegradable electroactive polymers
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201801787
– volume: 232
  start-page: 119719
  year: 2020
  ident: 10.1016/j.biomaterials.2020.120286_bib12
  article-title: Magnesium oxide-crosslinked low-swelling citrate-based mussel-inspired tissue adhesives
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119719
– volume: 4
  start-page: 499
  issue: 5
  year: 2020
  ident: 10.1016/j.biomaterials.2020.120286_bib37
  article-title: Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs
  publication-title: Nature Biomedical Engineering
  doi: 10.1038/s41551-019-0508-y
– volume: 142
  start-page: 334
  year: 2016
  ident: 10.1016/j.biomaterials.2020.120286_bib6
  article-title: Inherently antioxidant and antimicrobial tannic acid release from poly (tannic acid) nanoparticles with controllable degradability
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2016.03.006
– volume: 72
  start-page: 35
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120286_bib11
  article-title: Development of tannin-inspired antimicrobial bioadhesives
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.03.008
– volume: 30
  start-page: 1906922
  issue: 7
  year: 2020
  ident: 10.1016/j.biomaterials.2020.120286_bib16
  article-title: In situ formed fibrin scaffold with cyclophosphamide to synergize with immune checkpoint blockade for inhibition of cancer recurrence after surgery
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201906922
– volume: 30
  start-page: 1801527
  issue: 28
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120286_bib15
  article-title: Injectable bioresponsive gel depot for enhanced immune checkpoint blockade
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801527
– volume: 37
  start-page: 505
  issue: 5
  year: 2019
  ident: 10.1016/j.biomaterials.2020.120286_bib8
  article-title: Biofilms in chronic wounds: pathogenesis and diagnosis
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2018.10.011
– volume: 115
  start-page: 6816
  issue: 26
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120286_bib28
  article-title: Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1804262115
– volume: 10
  issue: 429
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120286_bib13
  article-title: In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aan3682
– volume: 197
  start-page: 244
  year: 2019
  ident: 10.1016/j.biomaterials.2020.120286_bib21
  article-title: A new class of biological materials: cell membrane-derived hydrogel scaffolds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.01.020
– volume: 115
  start-page: E11741
  issue: 50
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120286_bib9
  article-title: Citrate-based materials fuel human stem cells by metabonegenic regulation
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1813000115
– volume: 57
  start-page: 3958
  issue: 15
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120286_bib34
  article-title: Gold nanoclusters for targeting methicillin-resistant Staphylococcus aureus in vivo
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201712878
– volume: 129
  start-page: 96
  year: 2016
  ident: 10.1016/j.biomaterials.2020.120286_bib24
  article-title: Preparation of macro-, micro-, and nano-sized poly (Tannic acid) particles with controllable degradability and multiple biomedical uses
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2016.04.010
– volume: 30
  start-page: 1801100
  issue: 29
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120286_bib30
  article-title: Green fabrication of amphiphilic quaternized β-chitin derivatives with excellent biocompatibility and antibacterial activities for wound healing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801100
– volume: 32
  start-page: 1805798
  issue: 3
  year: 2020
  ident: 10.1016/j.biomaterials.2020.120286_bib20
  article-title: Enzyme-instructed self-assembly (EISA) and hydrogelation of peptides
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805798
– volume: 5
  start-page: 477
  issue: 3
  year: 2019
  ident: 10.1016/j.biomaterials.2020.120286_bib2
  article-title: Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.8b00850
– volume: 354
  start-page: 306
  year: 2015
  ident: 10.1016/j.biomaterials.2020.120286_bib23
  article-title: Modified biofunctional p (tannic acid) microgels and their antimicrobial activity
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.06.163
– volume: 10
  start-page: 21459
  issue: 45
  year: 2018
  ident: 10.1016/j.biomaterials.2020.120286_bib19
  article-title: Responsive peptide-based supramolecular hydrogels constructed by self-immolative chemistry
  publication-title: Nanoscale
  doi: 10.1039/C8NR07534D
– volume: 107
  start-page: 14799
  issue: 33
  year: 2010
  ident: 10.1016/j.biomaterials.2020.120286_bib10
  article-title: Longitudinal shift in diabetic wound microbiota correlates with prolonged skin defense response
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1004204107
– volume: 14
  start-page: 89
  issue: 1
  year: 2019
  ident: 10.1016/j.biomaterials.2020.120286_bib14
  article-title: In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0319-4
SSID ssj0014042
Score 2.7288997
Snippet Bacterial infection has been a great threat to dermal wounds, especially to difficult-to-heal diabetic wounds. It is known that reactive oxygen species (ROS)...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 120286
SubjectTerms Bacteria
Bacterial infection
bacterial infections
biocompatible materials
crosslinking
Diabetes Mellitus
granulocyte-macrophage colony-stimulating factor
Humans
Hydrogels
M2 phenotype macrophages
macrophages
phenotype
polyvinyl alcohol
Reactive Oxygen Species
ROS-scavenging hydrogel
therapeutics
Wound closure
Wound Healing
Title ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961220305329
https://dx.doi.org/10.1016/j.biomaterials.2020.120286
https://www.ncbi.nlm.nih.gov/pubmed/32798744
https://www.proquest.com/docview/2434754390
https://www.proquest.com/docview/2524246365
Volume 258
WOSCitedRecordID wos000568987700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELbYhqbxgGDAVgaTkXhDqRInjm2hPUxoCCbYEAwpPEWO47JUW1K13Rj_nnNsp5mmovLAS1Q5uaTxfTl_Z5_vEHqdAA5kGvKASfiaYMQvA0kLEsREx0pwlaZh2RabYCcnPMvEF1feataWE2B1zW9uxOS_qhraQNlm6-w_qLu7KTTAb1A6HEHtcFxJ8V9PvwUzZarEt_WHzn-X0-anvjAkc9LG3umWHbpo58Jma5YuKgvop52NrdSbX6bi0uzWqm_VAMG1L9GbcW7s-LVAiJuDPq66tk9t0MCPXgDQtWnIqnrsx0439QB-ZtRNPWhrLjn4oFSEtG9Pic3F7ixiBII22fUdY23nDcbDovfnh-Y5w7tC0MeTy1ZjMWHC5OxfDGBdWKE_tYY2CKMCjNzG4cej7LhbVkrARPnMs22Q37JHb6FNf7NlhGWZQ9ISk7NH6KHzKPChRcJjdE_X2-hBL8_kNtr87CIonqDT2_DAHh543mAHD-zggZsR9vDAHh7YwwNbeDxF398fnb37ELiiGoFKGJkHWigZKTIqIyajkdkvFxZCKZGymCqVSMZEqZMYiGkZCl6mo5CVgugipJrzFNjsM7ReN7XeRZhJLWkqKJHg1ioquSaKgv2XxukF6jtAwvdcrlzGeVP45CL3oYXjvK-A3CggtwoYoLiTndi8KytJvfUKyv3OYhgLc0DcStIHnbTjn5ZXriz_ymMiByNtVt5krZsruCiJE0aB-4d_uYaanVop9PwA7VhAdW_usfh86Zk9tLX4Ql-g9fn0Sr9E99X1vJpN99Eay_i--xr-AEAcw2Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ROS-scavenging+hydrogel+to+promote+healing+of+bacteria+infected+diabetic+wounds&rft.jtitle=Biomaterials&rft.au=Zhao%2C+He&rft.au=Huang%2C+Jie&rft.au=Li%2C+Yan&rft.au=Lv%2C+Xinjing&rft.date=2020-11-01&rft.eissn=1878-5905&rft.volume=258&rft.spage=120286&rft_id=info:doi/10.1016%2Fj.biomaterials.2020.120286&rft_id=info%3Apmid%2F32798744&rft.externalDocID=32798744
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon