Periosteal matrix-derived hydrogel promotes bone repair through an early immune regulation coupled with enhanced angio- and osteogenesis

Bone healing is a complex physiological process initiated by early regulation of the inflammatory immunity and entails multiple events including angiogenesis, osteogenic differentiation, and biomineralization. Here, we fabricated an injectable periosteal extracellular matrix (PEM) hydrogel that dyna...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials Vol. 227; p. 119552
Main Authors: Qiu, Pengcheng, Li, Mobai, Chen, Kai, Fang, Bin, Chen, Pengfei, Tang, Zhibin, Lin, Xianfeng, Fan, Shunwu
Format: Journal Article
Language:English
Published: Netherlands Elsevier Ltd 01.01.2020
Subjects:
ISSN:0142-9612, 1878-5905, 1878-5905
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Bone healing is a complex physiological process initiated by early regulation of the inflammatory immunity and entails multiple events including angiogenesis, osteogenic differentiation, and biomineralization. Here, we fabricated an injectable periosteal extracellular matrix (PEM) hydrogel that dynamically integrates multiple biological functions and, therefore, acts at different stages of the fracture healing process. PEM hydrogels were fully characterized compared with a collagen I hydrogel. The effects of PEM hydrogels on the different phases of the healing process were assessed in vitro. PEM hydrogels induced the recruitment and M2-polarization of macrophages, promoted the differentiation of MSCs into endothelial-like cells, HUVEC tube formation, osteogenic differentiation of primary calvarial osteoblasts and MSCs, and mineralization after being immersed in simulated body fluid. The dynamic and multiphase effects of the hydrogels were evaluated using a rat critical-sized calvarial defect model in vivo. During the early phase of repair, PEM hydrogels facilitated the M1-to-M2 transition of macrophages. As bone repair progressed, PEM hydrogels promoted blood vessel migration, the development of relative larger blood vessels, and functional vascularization. These effects were also verified in a subcutaneous embedding model. Eventually, PEM hydrogels promoted mature bone formation in large bone defects to a greater extent than collagen I hydrogels. These biological effects coordinated well with the natural process of bone regeneration. Thus, PEM hydrogels may serve as promising biomaterials in bone tissue engineering. •Prolonged M1 phase and an M2 transformation failure occur in critical size bone defects.•PEM hydrogels participate in early immune regulation of bone repair and promotes M1-to-M2 transition of macrophages.•PEM hydrogels play a promoting role in the process angiogenesis and osteogenic differentiation of bone repair.•PEM hydrogels coordinate and guide several overlapping bone regeneration events.•PEM hydrogels showed superior bone healing properties.
AbstractList Bone healing is a complex physiological process initiated by early regulation of the inflammatory immunity and entails multiple events including angiogenesis, osteogenic differentiation, and biomineralization. Here, we fabricated an injectable periosteal extracellular matrix (PEM) hydrogel that dynamically integrates multiple biological functions and, therefore, acts at different stages of the fracture healing process. PEM hydrogels were fully characterized compared with a collagen I hydrogel. The effects of PEM hydrogels on the different phases of the healing process were assessed in vitro. PEM hydrogels induced the recruitment and M2-polarization of macrophages, promoted the differentiation of MSCs into endothelial-like cells, HUVEC tube formation, osteogenic differentiation of primary calvarial osteoblasts and MSCs, and mineralization after being immersed in simulated body fluid. The dynamic and multiphase effects of the hydrogels were evaluated using a rat critical-sized calvarial defect model in vivo. During the early phase of repair, PEM hydrogels facilitated the M1-to-M2 transition of macrophages. As bone repair progressed, PEM hydrogels promoted blood vessel migration, the development of relative larger blood vessels, and functional vascularization. These effects were also verified in a subcutaneous embedding model. Eventually, PEM hydrogels promoted mature bone formation in large bone defects to a greater extent than collagen I hydrogels. These biological effects coordinated well with the natural process of bone regeneration. Thus, PEM hydrogels may serve as promising biomaterials in bone tissue engineering.Bone healing is a complex physiological process initiated by early regulation of the inflammatory immunity and entails multiple events including angiogenesis, osteogenic differentiation, and biomineralization. Here, we fabricated an injectable periosteal extracellular matrix (PEM) hydrogel that dynamically integrates multiple biological functions and, therefore, acts at different stages of the fracture healing process. PEM hydrogels were fully characterized compared with a collagen I hydrogel. The effects of PEM hydrogels on the different phases of the healing process were assessed in vitro. PEM hydrogels induced the recruitment and M2-polarization of macrophages, promoted the differentiation of MSCs into endothelial-like cells, HUVEC tube formation, osteogenic differentiation of primary calvarial osteoblasts and MSCs, and mineralization after being immersed in simulated body fluid. The dynamic and multiphase effects of the hydrogels were evaluated using a rat critical-sized calvarial defect model in vivo. During the early phase of repair, PEM hydrogels facilitated the M1-to-M2 transition of macrophages. As bone repair progressed, PEM hydrogels promoted blood vessel migration, the development of relative larger blood vessels, and functional vascularization. These effects were also verified in a subcutaneous embedding model. Eventually, PEM hydrogels promoted mature bone formation in large bone defects to a greater extent than collagen I hydrogels. These biological effects coordinated well with the natural process of bone regeneration. Thus, PEM hydrogels may serve as promising biomaterials in bone tissue engineering.
Bone healing is a complex physiological process initiated by early regulation of the inflammatory immunity and entails multiple events including angiogenesis, osteogenic differentiation, and biomineralization. Here, we fabricated an injectable periosteal extracellular matrix (PEM) hydrogel that dynamically integrates multiple biological functions and, therefore, acts at different stages of the fracture healing process. PEM hydrogels were fully characterized compared with a collagen I hydrogel. The effects of PEM hydrogels on the different phases of the healing process were assessed in vitro. PEM hydrogels induced the recruitment and M2-polarization of macrophages, promoted the differentiation of MSCs into endothelial-like cells, HUVEC tube formation, osteogenic differentiation of primary calvarial osteoblasts and MSCs, and mineralization after being immersed in simulated body fluid. The dynamic and multiphase effects of the hydrogels were evaluated using a rat critical-sized calvarial defect model in vivo. During the early phase of repair, PEM hydrogels facilitated the M1-to-M2 transition of macrophages. As bone repair progressed, PEM hydrogels promoted blood vessel migration, the development of relative larger blood vessels, and functional vascularization. These effects were also verified in a subcutaneous embedding model. Eventually, PEM hydrogels promoted mature bone formation in large bone defects to a greater extent than collagen I hydrogels. These biological effects coordinated well with the natural process of bone regeneration. Thus, PEM hydrogels may serve as promising biomaterials in bone tissue engineering. •Prolonged M1 phase and an M2 transformation failure occur in critical size bone defects.•PEM hydrogels participate in early immune regulation of bone repair and promotes M1-to-M2 transition of macrophages.•PEM hydrogels play a promoting role in the process angiogenesis and osteogenic differentiation of bone repair.•PEM hydrogels coordinate and guide several overlapping bone regeneration events.•PEM hydrogels showed superior bone healing properties.
Bone healing is a complex physiological process initiated by early regulation of the inflammatory immunity and entails multiple events including angiogenesis, osteogenic differentiation, and biomineralization. Here, we fabricated an injectable periosteal extracellular matrix (PEM) hydrogel that dynamically integrates multiple biological functions and, therefore, acts at different stages of the fracture healing process. PEM hydrogels were fully characterized compared with a collagen I hydrogel. The effects of PEM hydrogels on the different phases of the healing process were assessed in vitro. PEM hydrogels induced the recruitment and M2-polarization of macrophages, promoted the differentiation of MSCs into endothelial-like cells, HUVEC tube formation, osteogenic differentiation of primary calvarial osteoblasts and MSCs, and mineralization after being immersed in simulated body fluid. The dynamic and multiphase effects of the hydrogels were evaluated using a rat critical-sized calvarial defect model in vivo. During the early phase of repair, PEM hydrogels facilitated the M1-to-M2 transition of macrophages. As bone repair progressed, PEM hydrogels promoted blood vessel migration, the development of relative larger blood vessels, and functional vascularization. These effects were also verified in a subcutaneous embedding model. Eventually, PEM hydrogels promoted mature bone formation in large bone defects to a greater extent than collagen I hydrogels. These biological effects coordinated well with the natural process of bone regeneration. Thus, PEM hydrogels may serve as promising biomaterials in bone tissue engineering.
ArticleNumber 119552
Author Fan, Shunwu
Tang, Zhibin
Lin, Xianfeng
Chen, Kai
Chen, Pengfei
Fang, Bin
Li, Mobai
Qiu, Pengcheng
Author_xml – sequence: 1
  givenname: Pengcheng
  surname: Qiu
  fullname: Qiu, Pengcheng
  organization: Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Mobai
  surname: Li
  fullname: Li, Mobai
  organization: Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Kai
  surname: Chen
  fullname: Chen, Kai
  organization: School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
– sequence: 4
  givenname: Bin
  surname: Fang
  fullname: Fang, Bin
  organization: Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
– sequence: 5
  givenname: Pengfei
  surname: Chen
  fullname: Chen, Pengfei
  organization: Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
– sequence: 6
  givenname: Zhibin
  surname: Tang
  fullname: Tang, Zhibin
  organization: Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
– sequence: 7
  givenname: Xianfeng
  surname: Lin
  fullname: Lin, Xianfeng
  email: xianfeng_lin@zju.edu.cn
  organization: Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
– sequence: 8
  givenname: Shunwu
  surname: Fan
  fullname: Fan, Shunwu
  email: shunwu_fan@zju.edu.cn
  organization: Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31670079$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9uEzEQxi1URNPAKyCLE5cN9v6zzQkoFJAqwQHOlteeTRy8drC9hbwBj12naSXUUy4ejT3z-zzzXaAzHzwg9IqSFSW0f7NdDTZMKkO0yqVVTahYUSq6rn6CFpQzXnWCdGdoQWhbV6Kn9Tm6SGlLSk7a-hk6b2jPCGFigf59L5SQMiiHCzLav5UpNzdg8GZvYliDw7sYppAh4aH8A0fYKRtx3sQwrzdYeQwquj220zTfPa9np7INHusw71wB_bF5g8FvlNclU35tQ1WCwQfdouAh2fQcPR3LNPDiPi7Rz6tPPy6_VNffPn-9fH9d6ZbVuVIwMg1kMGagneEDazpGBWeGi6Zv9KiEKgdlpDWqFbwhnHTNKMaagxj6QTVL9PrILVP9niFlOdmkwTnlIcxJ1g0vG-woaU8opYRR3hXpJXp5XzoPExi5i3ZScS8fFl0K3h0LdAwpRRiltvluTTkq6yQl8uCt3Mr_vZUHb-XR24J4-wjxoHJS88djM5Td3liIMmkLB0NsBJ2lCfY0zIdHGO2st1q5X7A_FXILggPhoA
CitedBy_id crossref_primary_10_1111_jcpe_13725
crossref_primary_10_1016_j_cej_2024_151789
crossref_primary_10_1016_j_mtbio_2025_101759
crossref_primary_10_1089_ten_teb_2022_0076
crossref_primary_10_1002_adhm_202404975
crossref_primary_10_1080_09205063_2023_2204779
crossref_primary_10_1063_5_0228692
crossref_primary_10_1002_advs_202304761
crossref_primary_10_1002_jbm_a_37829
crossref_primary_10_1016_j_biomaterials_2022_121519
crossref_primary_10_1002_adhm_202102818
crossref_primary_10_1016_j_matdes_2025_113996
crossref_primary_10_48165_ijvsbt_18_4_23
crossref_primary_10_1016_j_matdes_2021_110240
crossref_primary_10_1016_j_mtbio_2025_101874
crossref_primary_10_1002_advs_202304641
crossref_primary_10_1186_s40824_023_00428_0
crossref_primary_10_1016_j_compositesb_2022_109620
crossref_primary_10_3389_fphy_2023_1218179
crossref_primary_10_1016_j_bioactmat_2020_10_014
crossref_primary_10_1016_j_ijpharm_2025_125972
crossref_primary_10_1016_j_biomaterials_2023_122461
crossref_primary_10_1016_j_ijbiomac_2024_133202
crossref_primary_10_1016_j_bioactmat_2022_02_032
crossref_primary_10_1016_j_cej_2024_157088
crossref_primary_10_1016_j_ultsonch_2025_107431
crossref_primary_10_3389_fbioe_2022_887970
crossref_primary_10_1016_j_cej_2025_168276
crossref_primary_10_1016_j_mtbio_2025_102299
crossref_primary_10_1016_j_bioadv_2022_212803
crossref_primary_10_1016_j_matdes_2022_111045
crossref_primary_10_1002_advs_202403976
crossref_primary_10_1016_j_bioactmat_2025_04_018
crossref_primary_10_1155_2020_1425402
crossref_primary_10_1063_5_0220157
crossref_primary_10_1111_odi_14910
crossref_primary_10_1038_s41536_023_00305_3
crossref_primary_10_1186_s13287_025_04307_4
crossref_primary_10_3390_ph14111133
crossref_primary_10_1002_adhm_202001695
crossref_primary_10_1002_adhm_202304668
crossref_primary_10_1002_smll_202409747
crossref_primary_10_1016_j_tice_2021_101494
crossref_primary_10_1016_j_matdes_2022_111070
crossref_primary_10_1016_j_compositesb_2022_110099
crossref_primary_10_3390_bioengineering11080772
crossref_primary_10_1016_j_mtbio_2025_102264
crossref_primary_10_1186_s40779_023_00469_5
crossref_primary_10_1186_s40824_022_00281_7
crossref_primary_10_1016_j_colsurfa_2021_126458
crossref_primary_10_1097_SCS_0000000000011452
crossref_primary_10_1016_j_ijbiomac_2022_06_137
crossref_primary_10_1039_D5RA01932J
crossref_primary_10_1177_20417314241231452
crossref_primary_10_1016_j_mtnano_2022_100290
crossref_primary_10_3389_fcell_2023_1193765
crossref_primary_10_1007_s10853_021_06675_7
crossref_primary_10_1016_j_compositesb_2024_111277
crossref_primary_10_1016_j_apmt_2024_102236
crossref_primary_10_1016_j_jmst_2025_03_041
crossref_primary_10_1002_advs_202302674
crossref_primary_10_3892_br_2023_1625
crossref_primary_10_3389_fbioe_2022_1038250
crossref_primary_10_1002_adma_202108430
crossref_primary_10_1038_s41598_025_12663_7
crossref_primary_10_3389_fchem_2020_00124
crossref_primary_10_1016_j_ijbiomac_2025_140902
crossref_primary_10_1016_j_molimm_2023_09_010
crossref_primary_10_1016_j_mtbio_2025_102088
crossref_primary_10_1038_s12276_021_00631_w
crossref_primary_10_1063_5_0035504
crossref_primary_10_1155_2021_9954205
crossref_primary_10_1016_j_biomaterials_2023_122266
crossref_primary_10_1016_j_bioactmat_2022_08_005
crossref_primary_10_1016_j_actbio_2024_10_014
crossref_primary_10_3389_fbioe_2021_840421
crossref_primary_10_1016_j_cej_2024_154333
crossref_primary_10_1002_adfm_202214095
crossref_primary_10_1111_jop_13581
crossref_primary_10_1016_j_bioactmat_2022_01_039
crossref_primary_10_1016_j_biomaterials_2021_120998
crossref_primary_10_1016_j_actbio_2021_03_054
crossref_primary_10_1016_j_bioactmat_2024_03_021
crossref_primary_10_1177_08853282221135095
crossref_primary_10_1002_adma_202208781
crossref_primary_10_1002_mabi_202200496
crossref_primary_10_1016_j_apmt_2022_101370
crossref_primary_10_1016_j_cej_2024_150990
crossref_primary_10_1093_rb_rbac009
crossref_primary_10_3390_ph15091094
crossref_primary_10_1016_j_bioactmat_2022_05_023
crossref_primary_10_1016_j_biomaterials_2020_120561
crossref_primary_10_1016_j_cej_2021_130380
crossref_primary_10_1186_s12951_024_02996_2
crossref_primary_10_1002_adfm_202003542
crossref_primary_10_1002_adhm_202201548
crossref_primary_10_1002_adhm_202303134
crossref_primary_10_1002_adhm_202401296
crossref_primary_10_1177_08853282211027678
crossref_primary_10_1186_s12951_024_02320_y
crossref_primary_10_1186_s13018_024_05371_x
crossref_primary_10_3389_fdmed_2023_1163562
crossref_primary_10_1002_adhm_202303814
crossref_primary_10_1016_j_bioactmat_2021_10_042
crossref_primary_10_1016_j_bioactmat_2022_05_028
crossref_primary_10_1016_j_jsps_2024_102209
crossref_primary_10_1002_bit_28896
crossref_primary_10_1016_j_bioactmat_2023_12_006
crossref_primary_10_3389_fbioe_2023_1190171
crossref_primary_10_1016_j_cej_2023_141630
crossref_primary_10_1002_advs_202401368
crossref_primary_10_1186_s12951_021_01228_1
crossref_primary_10_1016_j_cej_2023_142605
crossref_primary_10_1088_1758_5090_abcf8d
crossref_primary_10_1002_mabi_202300339
crossref_primary_10_3389_fbioe_2023_1181580
crossref_primary_10_1016_j_biomaterials_2022_121683
crossref_primary_10_1186_s12951_025_03363_5
crossref_primary_10_1007_s10856_024_06850_7
crossref_primary_10_1016_j_bioactmat_2021_09_014
crossref_primary_10_1002_advs_202205041
crossref_primary_10_3390_ijms25042162
crossref_primary_10_3390_ma14010235
crossref_primary_10_1038_s41419_020_2496_y
crossref_primary_10_1039_D2BM00894G
crossref_primary_10_3389_fbioe_2023_1232427
crossref_primary_10_1016_j_compositesb_2023_110620
crossref_primary_10_1002_adhm_202102534
crossref_primary_10_1089_ten_tea_2024_0112
crossref_primary_10_1093_rb_rbad118
crossref_primary_10_1097_SCS_0000000000010534
crossref_primary_10_1039_D5TC00628G
crossref_primary_10_3390_gels11030175
crossref_primary_10_1002_adfm_202000015
crossref_primary_10_1002_smll_202203680
crossref_primary_10_1016_j_bioactmat_2025_05_004
crossref_primary_10_1016_j_jddst_2023_104677
crossref_primary_10_1186_s13036_022_00311_x
crossref_primary_10_1186_s40580_024_00447_0
crossref_primary_10_1016_j_compositesb_2021_109524
crossref_primary_10_1016_j_compositesb_2024_111202
crossref_primary_10_1093_rb_rbad006
crossref_primary_10_1039_D2BM01036D
crossref_primary_10_1002_EXP_20220173
crossref_primary_10_1016_j_bioactmat_2022_04_025
crossref_primary_10_1002_mabi_202400322
crossref_primary_10_1016_j_bioadv_2022_213058
crossref_primary_10_1016_j_colsurfb_2023_113537
crossref_primary_10_1016_j_ijbiomac_2025_145449
crossref_primary_10_1016_j_mtchem_2021_100612
crossref_primary_10_1002_adma_202308894
crossref_primary_10_2147_IJN_S428429
crossref_primary_10_1016_j_bioactmat_2022_07_006
crossref_primary_10_1002_adhm_202100215
crossref_primary_10_1016_j_matdes_2020_109231
crossref_primary_10_1016_j_actbio_2023_01_042
crossref_primary_10_3390_biom12091222
crossref_primary_10_1002_jbm_b_35326
crossref_primary_10_1039_D1BM00470K
crossref_primary_10_1002_advs_202406287
crossref_primary_10_1016_j_bioactmat_2021_06_028
crossref_primary_10_1002_adhm_202001851
crossref_primary_10_1021_acsnano_4c18240
crossref_primary_10_1093_rb_rbae113
crossref_primary_10_3389_fbioe_2023_1219460
crossref_primary_10_1002_adma_202310876
crossref_primary_10_1016_j_mtcomm_2022_104070
crossref_primary_10_3390_gels8050294
crossref_primary_10_1002_advs_202510349
crossref_primary_10_1016_j_bioactmat_2025_08_007
crossref_primary_10_1016_j_cclet_2024_109564
crossref_primary_10_1016_j_ijbiomac_2024_131643
crossref_primary_10_1093_rb_rbad025
crossref_primary_10_1002_smll_202403003
crossref_primary_10_3390_ijms242417483
crossref_primary_10_1016_j_bioactmat_2021_08_005
crossref_primary_10_1002_adfm_201909874
crossref_primary_10_1016_j_bioadv_2024_214001
crossref_primary_10_1002_adfm_202006226
crossref_primary_10_1016_j_cej_2023_148220
crossref_primary_10_1016_j_cej_2021_133459
crossref_primary_10_1038_s41536_022_00224_9
crossref_primary_10_3389_fbioe_2020_589094
crossref_primary_10_1016_j_matdes_2024_112903
crossref_primary_10_1016_j_compositesb_2022_110149
crossref_primary_10_1016_j_biomaterials_2024_122650
crossref_primary_10_1016_j_biomaterials_2024_122772
crossref_primary_10_1016_j_matdes_2025_113714
crossref_primary_10_1002_advs_202105194
crossref_primary_10_1016_j_actbio_2025_02_026
crossref_primary_10_1016_j_bioactmat_2020_08_015
crossref_primary_10_1016_j_bioactmat_2020_08_012
crossref_primary_10_1134_S1990519X20060127
crossref_primary_10_1007_s40883_025_00443_8
crossref_primary_10_1016_j_apmt_2021_100942
crossref_primary_10_1016_j_matdes_2023_111705
crossref_primary_10_1016_j_jmst_2022_08_028
crossref_primary_10_1186_s12951_023_02073_0
crossref_primary_10_3390_mi13071073
crossref_primary_10_1007_s12274_022_4106_z
crossref_primary_10_1016_j_heliyon_2023_e20521
crossref_primary_10_1186_s13287_024_03745_w
crossref_primary_10_1016_j_ijbiomac_2025_145525
crossref_primary_10_1016_j_microc_2020_104713
crossref_primary_10_1002_biot_202300094
crossref_primary_10_1016_j_bioactmat_2022_03_023
crossref_primary_10_1016_j_cej_2020_126203
crossref_primary_10_1016_j_bioactmat_2023_04_018
crossref_primary_10_3389_fbioe_2022_845342
crossref_primary_10_1016_j_ceramint_2025_03_079
crossref_primary_10_1016_j_biomaterials_2024_122992
crossref_primary_10_1042_BST20190079
crossref_primary_10_1002_smll_202403835
crossref_primary_10_1016_j_carbpol_2024_122787
crossref_primary_10_1002_adfm_202422817
crossref_primary_10_1016_j_cej_2022_134870
crossref_primary_10_2147_DDDT_S344036
crossref_primary_10_3390_ijms241914484
crossref_primary_10_1016_j_bioactmat_2022_07_030
crossref_primary_10_1016_j_bioadv_2024_213883
crossref_primary_10_1016_j_carbpol_2024_123082
crossref_primary_10_1186_s12951_023_01982_4
crossref_primary_10_1007_s00210_023_02880_0
crossref_primary_10_1016_j_cej_2025_166662
crossref_primary_10_1016_j_bioadv_2022_212759
crossref_primary_10_1002_mabi_202300295
crossref_primary_10_2217_rme_2023_0101
crossref_primary_10_1002_smtd_202300843
crossref_primary_10_1016_j_ijpharm_2020_119543
crossref_primary_10_1016_j_tdr_2025_100037
crossref_primary_10_1016_j_copbio_2021_10_010
crossref_primary_10_1016_j_scib_2023_12_006
crossref_primary_10_1016_j_jmst_2022_07_008
crossref_primary_10_1002_adhm_202401460
crossref_primary_10_1016_j_biomaterials_2022_121604
crossref_primary_10_1039_D5RA04178C
crossref_primary_10_1007_s00266_023_03305_2
crossref_primary_10_1016_j_matdes_2023_112252
crossref_primary_10_1016_j_apmt_2020_100779
Cites_doi 10.1016/j.actbio.2018.10.040
10.1186/s40634-017-0079-3
10.1016/j.bone.2014.08.007
10.1016/j.actbio.2015.02.020
10.1002/pmic.200800297
10.1016/j.biomaterials.2017.05.011
10.1016/j.bone.2004.07.014
10.1007/s10439-016-1685-4
10.1016/j.addr.2015.06.002
10.1016/j.biomaterials.2014.06.060
10.1016/j.actbio.2017.12.019
10.1016/j.actbio.2017.11.046
10.1016/j.biomaterials.2012.02.034
10.1002/advs.201700678
10.1038/mt.2009.315
10.1016/j.bone.2014.09.017
10.1016/j.biomaterials.2018.09.037
10.1002/1873-3468.12703
10.1016/j.carbpol.2018.04.101
10.1016/j.biomaterials.2016.10.039
10.1016/j.biomaterials.2013.03.052
10.1016/j.actbio.2018.04.001
10.1002/term.1505
10.1002/jbmr.2735
10.1007/s00441-011-1205-7
10.1902/jop.2012.110684
10.7150/thno.27385
10.1038/nrm3176
10.1016/j.biomaterials.2014.10.017
10.1021/acsnano.7b09107
10.1073/pnas.1806908115
10.1002/mabi.201100289
10.1002/adhm.201700659
10.1002/jbmr.2238
10.1016/j.biomaterials.2014.08.025
10.1002/adhm.201801578
10.1155/2016/7276150
10.3390/ijms20030636
10.1016/j.ejvs.2017.10.012
10.1002/jor.23460
10.4049/jimmunol.0903356
10.1002/adhm.201700660
10.1007/s00401-014-1369-9
10.1097/00003086-199810001-00003
10.1002/adfm.201705739
10.1016/j.actbio.2016.11.068
10.1002/adma.201602628
10.1016/j.biomaterials.2018.07.012
10.1038/nrrheum.2014.164
10.1016/j.bone.2015.10.019
10.1002/jbm.a.35894
10.1002/adhm.201700289
10.1186/1741-7015-9-66
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2019.119552
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
ExternalDocumentID 31670079
10_1016_j_biomaterials_2019_119552
S0142961219306519
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
~HD
AACTN
AAIAV
AAYOK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
RIG
9DU
AAYXX
CITATION
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c472t-aef7ce0bddb15d8b73571987d89363cfa9acfa1704da498308053f9f28e9b6ba3
ISICitedReferencesCount 292
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000498276700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-9612
1878-5905
IngestDate Thu Oct 02 11:17:49 EDT 2025
Thu Oct 02 08:46:12 EDT 2025
Mon Jul 21 05:59:26 EDT 2025
Sat Nov 29 07:22:54 EST 2025
Tue Nov 18 22:14:19 EST 2025
Fri Feb 23 02:49:13 EST 2024
Tue Oct 14 19:30:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Biomineralization
Decellularized periosteum matrix hydrogel
Angiogenesis
Early inflammatory immune regulation
Macrophages
Bone regeneration
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c472t-aef7ce0bddb15d8b73571987d89363cfa9acfa1704da498308053f9f28e9b6ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31670079
PQID 2310718589
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2388785104
proquest_miscellaneous_2310718589
pubmed_primary_31670079
crossref_citationtrail_10_1016_j_biomaterials_2019_119552
crossref_primary_10_1016_j_biomaterials_2019_119552
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2019_119552
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2019_119552
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lovati, Bottagisio, Moretti (bib25) 2016; 2016
Zou, Liu, Sun, Yang, Xu, Rao, Jiang, Zhu, Liu, Wu, Chang, Mao, Ling, Quan, Zeng (bib19) 2018; 28
Johnson, Dequach, Gaetani, Ungerleider, Elhag, Nigam, Behfar, Christman (bib56) 2014; 2014
Chen, Cescon, Zuccolotto, Nobbio, Colombelli, Filaferro, Vitale, Feltri, Bonaldo (bib30) 2015; 129
Dimitriou, Jones, McGonagle, Giannoudis (bib1) 2011; 9
Liu, Liu, Luo, Xue, Yang, Gu, Zhou, Wang (bib33) 2016; 28
Saldin, Cramer, Velankar, White, Badylak (bib17) 2017; 49
Mountziaris, Mikos (bib42) 2008; 14
Schell, Duda, Peters, Tsitsilonis, Johnson, Schmidt-Bleek (bib43) 2017; 4
Agrawal, Kelly, Tottey, Daly, Johnson, Siu, Reing, Badylak (bib58) 2011; 17
Schmidt-Bleek, Schell, Lienau, Schulz, Hoff, Pfaff, Schmidt, Martin, Perka, Buttgereit, Volk, Duda (bib7) 2014; 8
Allen, Hock, Burr (bib22) 2004; 35
Roberts, van Gastel, Carmeliet, Luyten (bib57) 2015; 70
Kaigler, Silva, Mooney (bib35) 2013; 84
Lin, Zhao, Zhu, Chen, Yu, Cai, Zhang, Qin, Fan (bib23) 2018; 7
Boersema, Aye, van Veen, Heck, Mohammed (bib26) 2008; 8
Alhamdi, Peng, Al-Naggar, Hawley, Spiller, Kuhn (bib45) 2019; 196
Agrawal, Tottey, Johnson, Freund, Siu, Badylak (bib59) 2011; 17
Rowley, Nagalla, Wang, Liu (bib31) 2019; 8
Lucas, Waisman, Ranjan, Roes, Krieg, Muller, Roers, Eming (bib47) 2010; 184
Raimondo, Mooney (bib13) 2018; 115
Herbert, Stainier (bib41) 2011; 12
Einhorn (bib2) 1998
Spang, Christman (bib18) 2018; 68
Zhang, Liu, Zhang, Zhu, Qi, Cao, Fang, Che, Han, He, Han, Li (bib12) 2018; 8
Sicari, Dziki, Siu, Medberry, Dearth, Badylak (bib20) 2014; 35
Spiller, Nassiri, Witherel, Anfang, Ng, Nakazawa, Yu, Vunjak-Novakovic (bib38) 2015; 37
Sun (bib11) 2017; 6
Stegen, van Gastel, Carmeliet (bib51) 2015; 70
Lohmann, Willuweit, Neffe, Geisler, Gebauer, Beer, Coenen, Fischer, Hermanns-Sachweh, Lendlein, Shah, Kiessling, Langen (bib34) 2017; 113
Phadke, Shih, Varghese (bib53) 2012; 12
Kumar, Wan, Ramaswamy, Clemens, Ponnazhagan (bib28) 2010; 18
Wang, Christman (bib54) 2016; 96
Yoon, Esquivies, Ahn, Gray, Ye, Kwiatkowski, Choe (bib27) 2014; 29
Kostenuik, Mirza (bib44) 2017; 35
Diaz-Rodriguez, Garcia-Trinanes, Echezarreta Lopez, Santovena, Landin (bib52) 2018; 195
Cha, Shin, Leijten, Li, Singh, Liu, Annabi, Abdi, Dokmeci, Vrana, Ghaemmaghami, Khademhosseini (bib10) 2017; 6
Lin, Liu, Chen, Qiu, Rao, Liu, Zhu, Yan, Mao, Zhu, Quan, Liu (bib21) 2018; 73
Einhorn, Gerstenfeld (bib50) 2015; 11
Mariani, Lisignoli, Borzi, Pulsatelli (bib55) 2019; 20
Li, Wen, Li, Li, Qiao, Shen, Jin, Jiang, Yeung, Chu (bib40) 2018; 5
Chen, Lin, Zhang, Ni, Li, Xiao, Wang, Ye, Chen, Jin, Chen (bib24) 2015; 19
Seo, Jung, Kim (bib46) 2018; 67
Schmidt-Bleek, Schell, Schulz, Hoff, Perka, Buttgereit, Volk, Lienau, Duda (bib6) 2012; 347
Ahlfeld, Akkineni, Forster, Kohler, Knaack, Gelinsky, Lode (bib37) 2017; 45
Juban, Chazaud (bib8) 2017; 591
Brown, Ratner, Goodman, Amar, Badylak (bib9) 2012; 33
Wang, Li, Yang, Zou, Liu, Liang, Yin, Niu, Yan, Zhang (bib32) 2018; 55
Schlundt, El Khassawna, Serra, Dienelt, Wendler, Schell, van Rooijen, Radbruch, Lucius, Hartmann, Duda, Schmidt-Bleek (bib5) 2018; 106
Jia, Yang, Zhang, Qiu, Xu, Wang, Chai (bib15) 2019; 83
Schmidt-Bleek, Kwee, Mooney, Duda (bib3) 2015; 21
Sinder, Pettit, McCauley (bib4) 2015; 30
Han, Kim, Lim, Kim, Kong, Kang, Choo, Jun, Ryu, Jeong, Park, Jeong, Lee, Eom, Ahn, Kim (bib14) 2018; 12
Dziki, Wang, Pineda, Sicari, Rausch, Badylak (bib49) 2017; 105
Annabi, Rana, Shirzaei Sani, Portillo-Lara, Gifford, Fares, Mithieux, Weiss (bib29) 2017; 139
Li, Fan, Liu, Liu, Zhang, Zhou, Wu, Yang, Shen, Chen, Jin (bib36) 2013; 34
Ma, Zhao, Liu, Jin, Song, Wang, Zhang, Chen, Zhang (bib39) 2014; 35
Weaver, Song, Yang, Ricordi, Pileggi, Buchwald, Stabler (bib48) 2015; 21
Kumar, Gupta, Bhattacharjee, Nandi, Mandal (bib16) 2018; 187
Mountziaris (10.1016/j.biomaterials.2019.119552_bib42) 2008; 14
Lin (10.1016/j.biomaterials.2019.119552_bib23) 2018; 7
Seo (10.1016/j.biomaterials.2019.119552_bib46) 2018; 67
Dimitriou (10.1016/j.biomaterials.2019.119552_bib1) 2011; 9
Ahlfeld (10.1016/j.biomaterials.2019.119552_bib37) 2017; 45
Annabi (10.1016/j.biomaterials.2019.119552_bib29) 2017; 139
Lohmann (10.1016/j.biomaterials.2019.119552_bib34) 2017; 113
Li (10.1016/j.biomaterials.2019.119552_bib36) 2013; 34
Alhamdi (10.1016/j.biomaterials.2019.119552_bib45) 2019; 196
Schlundt (10.1016/j.biomaterials.2019.119552_bib5) 2018; 106
Johnson (10.1016/j.biomaterials.2019.119552_bib56) 2014; 2014
Agrawal (10.1016/j.biomaterials.2019.119552_bib58) 2011; 17
Diaz-Rodriguez (10.1016/j.biomaterials.2019.119552_bib52) 2018; 195
Sicari (10.1016/j.biomaterials.2019.119552_bib20) 2014; 35
Weaver (10.1016/j.biomaterials.2019.119552_bib48) 2015; 21
Sun (10.1016/j.biomaterials.2019.119552_bib11) 2017; 6
Kumar (10.1016/j.biomaterials.2019.119552_bib28) 2010; 18
Schell (10.1016/j.biomaterials.2019.119552_bib43) 2017; 4
Spiller (10.1016/j.biomaterials.2019.119552_bib38) 2015; 37
Juban (10.1016/j.biomaterials.2019.119552_bib8) 2017; 591
Boersema (10.1016/j.biomaterials.2019.119552_bib26) 2008; 8
Sinder (10.1016/j.biomaterials.2019.119552_bib4) 2015; 30
Lucas (10.1016/j.biomaterials.2019.119552_bib47) 2010; 184
Agrawal (10.1016/j.biomaterials.2019.119552_bib59) 2011; 17
Kumar (10.1016/j.biomaterials.2019.119552_bib16) 2018; 187
Dziki (10.1016/j.biomaterials.2019.119552_bib49) 2017; 105
Lin (10.1016/j.biomaterials.2019.119552_bib21) 2018; 73
Jia (10.1016/j.biomaterials.2019.119552_bib15) 2019; 83
Han (10.1016/j.biomaterials.2019.119552_bib14) 2018; 12
Wang (10.1016/j.biomaterials.2019.119552_bib32) 2018; 55
Cha (10.1016/j.biomaterials.2019.119552_bib10) 2017; 6
Lovati (10.1016/j.biomaterials.2019.119552_bib25) 2016; 2016
Einhorn (10.1016/j.biomaterials.2019.119552_bib2) 1998
Roberts (10.1016/j.biomaterials.2019.119552_bib57) 2015; 70
Spang (10.1016/j.biomaterials.2019.119552_bib18) 2018; 68
Einhorn (10.1016/j.biomaterials.2019.119552_bib50) 2015; 11
Schmidt-Bleek (10.1016/j.biomaterials.2019.119552_bib6) 2012; 347
Schmidt-Bleek (10.1016/j.biomaterials.2019.119552_bib7) 2014; 8
Saldin (10.1016/j.biomaterials.2019.119552_bib17) 2017; 49
Raimondo (10.1016/j.biomaterials.2019.119552_bib13) 2018; 115
Chen (10.1016/j.biomaterials.2019.119552_bib24) 2015; 19
Mariani (10.1016/j.biomaterials.2019.119552_bib55) 2019; 20
Zhang (10.1016/j.biomaterials.2019.119552_bib12) 2018; 8
Kostenuik (10.1016/j.biomaterials.2019.119552_bib44) 2017; 35
Ma (10.1016/j.biomaterials.2019.119552_bib39) 2014; 35
Zou (10.1016/j.biomaterials.2019.119552_bib19) 2018; 28
Yoon (10.1016/j.biomaterials.2019.119552_bib27) 2014; 29
Phadke (10.1016/j.biomaterials.2019.119552_bib53) 2012; 12
Wang (10.1016/j.biomaterials.2019.119552_bib54) 2016; 96
Chen (10.1016/j.biomaterials.2019.119552_bib30) 2015; 129
Liu (10.1016/j.biomaterials.2019.119552_bib33) 2016; 28
Li (10.1016/j.biomaterials.2019.119552_bib40) 2018; 5
Kaigler (10.1016/j.biomaterials.2019.119552_bib35) 2013; 84
Allen (10.1016/j.biomaterials.2019.119552_bib22) 2004; 35
Rowley (10.1016/j.biomaterials.2019.119552_bib31) 2019; 8
Herbert (10.1016/j.biomaterials.2019.119552_bib41) 2011; 12
Stegen (10.1016/j.biomaterials.2019.119552_bib51) 2015; 70
Schmidt-Bleek (10.1016/j.biomaterials.2019.119552_bib3) 2015; 21
Brown (10.1016/j.biomaterials.2019.119552_bib9) 2012; 33
References_xml – volume: 37
  start-page: 194
  year: 2015
  end-page: 207
  ident: bib38
  article-title: Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds
  publication-title: Biomaterials
– volume: 49
  start-page: 1
  year: 2017
  end-page: 15
  ident: bib17
  article-title: Extracellular matrix hydrogels from decellularized tissues: structure and function
  publication-title: Acta Biomater.
– volume: 129
  start-page: 97
  year: 2015
  end-page: 113
  ident: bib30
  article-title: Collagen VI regulates peripheral nerve regeneration by modulating macrophage recruitment and polarization
  publication-title: Acta Neuropathol.
– volume: 34
  start-page: 5048
  year: 2013
  end-page: 5058
  ident: bib36
  article-title: The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a
  publication-title: Biomaterials
– volume: 73
  start-page: 326
  year: 2018
  end-page: 338
  ident: bib21
  article-title: Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects
  publication-title: Acta Biomater.
– volume: 55
  start-page: 257
  year: 2018
  end-page: 265
  ident: bib32
  article-title: Efficient differentiation of bone marrow mesenchymal stem cells into endothelial cells in vitro
  publication-title: Eur. J. Vasc. Endovasc. Surg.
– volume: 347
  start-page: 567
  year: 2012
  end-page: 573
  ident: bib6
  article-title: Inflammatory phase of bone healing initiates the regenerative healing cascade
  publication-title: Cell Tissue Res.
– volume: 113
  start-page: 158
  year: 2017
  end-page: 169
  ident: bib34
  article-title: Bone regeneration induced by a 3D architectured hydrogel in a rat critical-size calvarial defect
  publication-title: Biomaterials
– volume: 8
  start-page: 4624
  year: 2008
  end-page: 4632
  ident: bib26
  article-title: Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates
  publication-title: Proteomics
– volume: 187
  start-page: 1
  year: 2018
  end-page: 17
  ident: bib16
  article-title: Immunomodulatory injectable silk hydrogels maintaining functional islets and promoting anti-inflammatory M2 macrophage polarization
  publication-title: Biomaterials
– volume: 28
  start-page: 1705739
  year: 2018
  ident: bib19
  article-title: Peripheral nerve-derived matrix hydrogel promotes remyelination and inhibits synapse formation
  publication-title: Adv. Funct. Mater.
– volume: 591
  start-page: 3007
  year: 2017
  end-page: 3021
  ident: bib8
  article-title: Metabolic regulation of macrophages during tissue repair: insights from skeletal muscle regeneration
  publication-title: FEBS Lett.
– volume: 6
  year: 2017
  ident: bib11
  article-title: Pro-regenerative hydrogel restores scarless skin during cutaneous wound healing
  publication-title: Adv. Healthc. Mater.
– volume: 28
  start-page: 8740
  year: 2016
  end-page: 8748
  ident: bib33
  article-title: Hierarchically staggered nanostructure of mineralized collagen as a bone-grafting scaffold
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1959
  year: 2018
  end-page: 1977
  ident: bib14
  article-title: Dual roles of graphene oxide to attenuate inflammation and elicit timely polarization of macrophage phenotypes for cardiac repair
  publication-title: ACS Nano
– volume: 35
  start-page: 8605
  year: 2014
  end-page: 8612
  ident: bib20
  article-title: The promotion of a constructive macrophage phenotype by solubilized extracellular matrix
  publication-title: Biomaterials
– volume: 7
  year: 2018
  ident: bib23
  article-title: Periosteum extracellular-matrix-mediated acellular mineralization during bone formation
  publication-title: Adv. Healthc. Mater.
– volume: 29
  start-page: 1950
  year: 2014
  end-page: 1959
  ident: bib27
  article-title: An activin A/BMP2 chimera, AB204, displays bone-healing properties superior to those of BMP2
  publication-title: J. Bone Miner. Res. : Off. J. Am. Soc. Bone and Miner. Res.
– volume: 8
  year: 2019
  ident: bib31
  article-title: Extracellular matrix-based strategies for immunomodulatory biomaterials engineering
  publication-title: Adv. Healthc. Mater.
– volume: 67
  start-page: 270
  year: 2018
  end-page: 281
  ident: bib46
  article-title: Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis
  publication-title: Acta Biomater.
– volume: 35
  start-page: 1003
  year: 2004
  end-page: 1012
  ident: bib22
  article-title: Periosteum: biology, regulation, and response to osteoporosis therapies
  publication-title: Bone
– volume: 19
  start-page: 46
  year: 2015
  end-page: 55
  ident: bib24
  article-title: Decellularized periosteum as a potential biologic scaffold for bone tissue engineering
  publication-title: Acta Biomater.
– volume: 8
  start-page: 5348
  year: 2018
  end-page: 5361
  ident: bib12
  article-title: Prostaglandin E2 hydrogel improves cutaneous wound healing via M2 macrophages polarization
  publication-title: Theranostics
– volume: 70
  start-page: 10
  year: 2015
  end-page: 18
  ident: bib57
  article-title: Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath
  publication-title: Bone
– start-page: S7
  year: 1998
  end-page: S21
  ident: bib2
  article-title: The cell and molecular biology of fracture healing
  publication-title: Clin. Orthop. Relat. Res.
– volume: 9
  start-page: 66
  year: 2011
  ident: bib1
  article-title: Bone regeneration: current concepts and future directions
  publication-title: BMC Med.
– volume: 2016
  start-page: 7276150
  year: 2016
  ident: bib25
  article-title: Decellularized and engineered tendons as biological substitutes: a critical review
  publication-title: Stem Cell. Int.
– volume: 8
  start-page: 120
  year: 2014
  end-page: 130
  ident: bib7
  article-title: Initial immune reaction and angiogenesis in bone healing
  publication-title: J. Tissue Eng. Regenerat. Med.
– volume: 11
  start-page: 45
  year: 2015
  end-page: 54
  ident: bib50
  article-title: Fracture healing: mechanisms and interventions
  publication-title: Nat. Rev. Rheumatol.
– volume: 2014
  start-page: 60283D
  year: 2014
  ident: bib56
  article-title: Human versus porcine tissue sourcing for an injectable myocardial matrix hydrogel
  publication-title: Biomater Sci.
– volume: 6
  year: 2017
  ident: bib10
  article-title: Integrin-mediated interactions control macrophage polarization in 3D hydrogels
  publication-title: Adv. Healthc. Mater.
– volume: 45
  start-page: 224
  year: 2017
  end-page: 236
  ident: bib37
  article-title: Design and fabrication of complex scaffolds for bone defect healing: combined 3D plotting of a calcium phosphate cement and a growth factor-loaded hydrogel
  publication-title: Ann. Biomed. Eng.
– volume: 35
  start-page: 9853
  year: 2014
  end-page: 9867
  ident: bib39
  article-title: Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization
  publication-title: Biomaterials
– volume: 21
  start-page: 2250
  year: 2015
  end-page: 2261
  ident: bib48
  article-title: Controlled release of dexamethasone from organosilicone constructs for local modulation of inflammation in islet transplantation, tissue engineering
  publication-title: Part A
– volume: 83
  start-page: 291
  year: 2019
  end-page: 301
  ident: bib15
  article-title: Nanofiber arrangement regulates peripheral nerve regeneration through differential modulation of macrophage phenotypes
  publication-title: Acta Biomater.
– volume: 106
  start-page: 78
  year: 2018
  end-page: 89
  ident: bib5
  article-title: Macrophages in bone fracture healing: their essential role in endochondral ossification
  publication-title: Bone
– volume: 4
  start-page: 5
  year: 2017
  ident: bib43
  article-title: The haematoma and its role in bone healing
  publication-title: J. Exp. Orthop.
– volume: 17
  start-page: 2435
  year: 2011
  end-page: 2443
  ident: bib59
  article-title: Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation, Tissue engineering
  publication-title: Part A
– volume: 196
  start-page: 90
  year: 2019
  end-page: 99
  ident: bib45
  article-title: Controlled M1-to-M2 transition of aged macrophages by calcium phosphate coatings
  publication-title: Biomaterials
– volume: 105
  start-page: 138
  year: 2017
  end-page: 147
  ident: bib49
  article-title: Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype
  publication-title: J. Biomed. Mater. Res. A
– volume: 5
  start-page: 1700678
  year: 2018
  ident: bib40
  article-title: Valence state manipulation of cerium oxide nanoparticles on a titanium surface for modulating cell fate and bone formation
  publication-title: Adv. Sci.
– volume: 14
  start-page: 179
  year: 2008
  end-page: 186
  ident: bib42
  article-title: Modulation of the inflammatory response for enhanced bone tissue regeneration, Tissue engineering
  publication-title: Part B Rev.
– volume: 35
  start-page: 213
  year: 2017
  end-page: 223
  ident: bib44
  article-title: Fracture healing physiology and the quest for therapies for delayed healing and nonunion
  publication-title: J. Orthop. Res. : Off. Publ. Orthop. Res. Soc.
– volume: 12
  start-page: 1022
  year: 2012
  end-page: 1032
  ident: bib53
  article-title: Mineralized synthetic matrices as an instructive microenvironment for osteogenic differentiation of human mesenchymal stem cells
  publication-title: Macromol. Biosci.
– volume: 20
  year: 2019
  ident: bib55
  article-title: Biomaterials: foreign bodies or tuners for the immune response?
  publication-title: Int. J. Mol. Sci.
– volume: 84
  start-page: 230
  year: 2013
  end-page: 238
  ident: bib35
  article-title: Guided bone regeneration using injectable vascular endothelial growth factor delivery gel
  publication-title: J. Periodontol.
– volume: 17
  start-page: 3033
  year: 2011
  end-page: 3044
  ident: bib58
  article-title: An isolated cryptic peptide influences osteogenesis and bone remodeling in an adult mammalian model of digit amputation, Tissue engineering
  publication-title: Part A
– volume: 139
  start-page: 229
  year: 2017
  end-page: 243
  ident: bib29
  article-title: Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing
  publication-title: Biomaterials
– volume: 12
  start-page: 551
  year: 2011
  end-page: 564
  ident: bib41
  article-title: Molecular control of endothelial cell behaviour during blood vessel morphogenesis
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 184
  start-page: 3964
  year: 2010
  end-page: 3977
  ident: bib47
  article-title: Differential roles of macrophages in diverse phases of skin repair
  publication-title: J. Immunol.
– volume: 33
  start-page: 3792
  year: 2012
  end-page: 3802
  ident: bib9
  article-title: Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine
  publication-title: Biomaterials
– volume: 96
  start-page: 77
  year: 2016
  end-page: 82
  ident: bib54
  article-title: Decellularized myocardial matrix hydrogels: in basic research and preclinical studies
  publication-title: Adv. Drug Deliv. Rev.
– volume: 18
  start-page: 1026
  year: 2010
  end-page: 1034
  ident: bib28
  article-title: Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect
  publication-title: Mol. Ther.
– volume: 195
  start-page: 235
  year: 2018
  end-page: 242
  ident: bib52
  article-title: Mineralized alginate hydrogels using marine carbonates for bone tissue engineering applications
  publication-title: Carbohydr. Polym.
– volume: 115
  start-page: 10648
  year: 2018
  end-page: 10653
  ident: bib13
  article-title: Functional muscle recovery with nanoparticle-directed M2 macrophage polarization in mice
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 30
  start-page: 2140
  year: 2015
  end-page: 2149
  ident: bib4
  article-title: Macrophages: their emerging roles in bone
  publication-title: J. Bone Miner. Res. : Off. J. Am. Soc. Bone and Miner. Res.
– volume: 21
  start-page: 354
  year: 2015
  end-page: 364
  ident: bib3
  article-title: Boon and bane of inflammation in bone tissue regeneration and its link with angiogenesis, tissue engineering
  publication-title: Part B Rev.
– volume: 68
  start-page: 1
  year: 2018
  end-page: 14
  ident: bib18
  article-title: Extracellular matrix hydrogel therapies: in vivo applications and development
  publication-title: Acta Biomater.
– volume: 70
  start-page: 19
  year: 2015
  end-page: 27
  ident: bib51
  article-title: Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration
  publication-title: Bone
– volume: 83
  start-page: 291
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119552_bib15
  article-title: Nanofiber arrangement regulates peripheral nerve regeneration through differential modulation of macrophage phenotypes
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.10.040
– volume: 4
  start-page: 5
  issue: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119552_bib43
  article-title: The haematoma and its role in bone healing
  publication-title: J. Exp. Orthop.
  doi: 10.1186/s40634-017-0079-3
– volume: 70
  start-page: 10
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119552_bib57
  article-title: Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath
  publication-title: Bone
  doi: 10.1016/j.bone.2014.08.007
– volume: 19
  start-page: 46
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119552_bib24
  article-title: Decellularized periosteum as a potential biologic scaffold for bone tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.02.020
– volume: 8
  start-page: 4624
  issue: 22
  year: 2008
  ident: 10.1016/j.biomaterials.2019.119552_bib26
  article-title: Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates
  publication-title: Proteomics
  doi: 10.1002/pmic.200800297
– volume: 139
  start-page: 229
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119552_bib29
  article-title: Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.05.011
– volume: 35
  start-page: 1003
  issue: 5
  year: 2004
  ident: 10.1016/j.biomaterials.2019.119552_bib22
  article-title: Periosteum: biology, regulation, and response to osteoporosis therapies
  publication-title: Bone
  doi: 10.1016/j.bone.2004.07.014
– volume: 45
  start-page: 224
  issue: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119552_bib37
  article-title: Design and fabrication of complex scaffolds for bone defect healing: combined 3D plotting of a calcium phosphate cement and a growth factor-loaded hydrogel
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-016-1685-4
– volume: 96
  start-page: 77
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119552_bib54
  article-title: Decellularized myocardial matrix hydrogels: in basic research and preclinical studies
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2015.06.002
– volume: 14
  start-page: 179
  issue: 2
  year: 2008
  ident: 10.1016/j.biomaterials.2019.119552_bib42
  article-title: Modulation of the inflammatory response for enhanced bone tissue regeneration, Tissue engineering
  publication-title: Part B Rev.
– volume: 35
  start-page: 8605
  issue: 30
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119552_bib20
  article-title: The promotion of a constructive macrophage phenotype by solubilized extracellular matrix
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.06.060
– volume: 68
  start-page: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119552_bib18
  article-title: Extracellular matrix hydrogel therapies: in vivo applications and development
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.12.019
– volume: 67
  start-page: 270
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119552_bib46
  article-title: Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.11.046
– volume: 33
  start-page: 3792
  issue: 15
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119552_bib9
  article-title: Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.02.034
– volume: 5
  start-page: 1700678
  issue: 2
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119552_bib40
  article-title: Valence state manipulation of cerium oxide nanoparticles on a titanium surface for modulating cell fate and bone formation
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700678
– volume: 18
  start-page: 1026
  issue: 5
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119552_bib28
  article-title: Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2009.315
– volume: 70
  start-page: 19
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119552_bib51
  article-title: Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration
  publication-title: Bone
  doi: 10.1016/j.bone.2014.09.017
– volume: 187
  start-page: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119552_bib16
  article-title: Immunomodulatory injectable silk hydrogels maintaining functional islets and promoting anti-inflammatory M2 macrophage polarization
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.09.037
– volume: 591
  start-page: 3007
  issue: 19
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119552_bib8
  article-title: Metabolic regulation of macrophages during tissue repair: insights from skeletal muscle regeneration
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.12703
– volume: 195
  start-page: 235
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119552_bib52
  article-title: Mineralized alginate hydrogels using marine carbonates for bone tissue engineering applications
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.04.101
– volume: 17
  start-page: 2435
  issue: 19–20
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119552_bib59
  article-title: Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation, Tissue engineering
  publication-title: Part A
– volume: 113
  start-page: 158
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119552_bib34
  article-title: Bone regeneration induced by a 3D architectured hydrogel in a rat critical-size calvarial defect
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.10.039
– volume: 34
  start-page: 5048
  issue: 21
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119552_bib36
  article-title: The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.03.052
– volume: 73
  start-page: 326
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119552_bib21
  article-title: Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.04.001
– volume: 8
  start-page: 120
  issue: 2
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119552_bib7
  article-title: Initial immune reaction and angiogenesis in bone healing
  publication-title: J. Tissue Eng. Regenerat. Med.
  doi: 10.1002/term.1505
– volume: 30
  start-page: 2140
  issue: 12
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119552_bib4
  article-title: Macrophages: their emerging roles in bone
  publication-title: J. Bone Miner. Res. : Off. J. Am. Soc. Bone and Miner. Res.
  doi: 10.1002/jbmr.2735
– volume: 347
  start-page: 567
  issue: 3
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119552_bib6
  article-title: Inflammatory phase of bone healing initiates the regenerative healing cascade
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-011-1205-7
– volume: 84
  start-page: 230
  issue: 2
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119552_bib35
  article-title: Guided bone regeneration using injectable vascular endothelial growth factor delivery gel
  publication-title: J. Periodontol.
  doi: 10.1902/jop.2012.110684
– volume: 8
  start-page: 5348
  issue: 19
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119552_bib12
  article-title: Prostaglandin E2 hydrogel improves cutaneous wound healing via M2 macrophages polarization
  publication-title: Theranostics
  doi: 10.7150/thno.27385
– volume: 12
  start-page: 551
  issue: 9
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119552_bib41
  article-title: Molecular control of endothelial cell behaviour during blood vessel morphogenesis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3176
– volume: 37
  start-page: 194
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119552_bib38
  article-title: Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.10.017
– volume: 12
  start-page: 1959
  issue: 2
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119552_bib14
  article-title: Dual roles of graphene oxide to attenuate inflammation and elicit timely polarization of macrophage phenotypes for cardiac repair
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b09107
– volume: 115
  start-page: 10648
  issue: 42
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119552_bib13
  article-title: Functional muscle recovery with nanoparticle-directed M2 macrophage polarization in mice
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1806908115
– volume: 12
  start-page: 1022
  issue: 8
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119552_bib53
  article-title: Mineralized synthetic matrices as an instructive microenvironment for osteogenic differentiation of human mesenchymal stem cells
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201100289
– volume: 21
  start-page: 2250
  issue: 15–16
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119552_bib48
  article-title: Controlled release of dexamethasone from organosilicone constructs for local modulation of inflammation in islet transplantation, tissue engineering
  publication-title: Part A
– volume: 17
  start-page: 3033
  issue: 23–24
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119552_bib58
  article-title: An isolated cryptic peptide influences osteogenesis and bone remodeling in an adult mammalian model of digit amputation, Tissue engineering
  publication-title: Part A
– volume: 6
  issue: 23
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119552_bib11
  article-title: Pro-regenerative hydrogel restores scarless skin during cutaneous wound healing
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201700659
– volume: 29
  start-page: 1950
  issue: 9
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119552_bib27
  article-title: An activin A/BMP2 chimera, AB204, displays bone-healing properties superior to those of BMP2
  publication-title: J. Bone Miner. Res. : Off. J. Am. Soc. Bone and Miner. Res.
  doi: 10.1002/jbmr.2238
– volume: 35
  start-page: 9853
  issue: 37
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119552_bib39
  article-title: Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.08.025
– volume: 8
  issue: 8
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119552_bib31
  article-title: Extracellular matrix-based strategies for immunomodulatory biomaterials engineering
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201801578
– volume: 2016
  start-page: 7276150
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119552_bib25
  article-title: Decellularized and engineered tendons as biological substitutes: a critical review
  publication-title: Stem Cell. Int.
  doi: 10.1155/2016/7276150
– volume: 2014
  start-page: 60283D
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119552_bib56
  article-title: Human versus porcine tissue sourcing for an injectable myocardial matrix hydrogel
  publication-title: Biomater Sci.
– volume: 20
  issue: 3
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119552_bib55
  article-title: Biomaterials: foreign bodies or tuners for the immune response?
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20030636
– volume: 55
  start-page: 257
  issue: 2
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119552_bib32
  article-title: Efficient differentiation of bone marrow mesenchymal stem cells into endothelial cells in vitro
  publication-title: Eur. J. Vasc. Endovasc. Surg.
  doi: 10.1016/j.ejvs.2017.10.012
– volume: 35
  start-page: 213
  issue: 2
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119552_bib44
  article-title: Fracture healing physiology and the quest for therapies for delayed healing and nonunion
  publication-title: J. Orthop. Res. : Off. Publ. Orthop. Res. Soc.
  doi: 10.1002/jor.23460
– volume: 184
  start-page: 3964
  issue: 7
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119552_bib47
  article-title: Differential roles of macrophages in diverse phases of skin repair
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0903356
– volume: 7
  issue: 4
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119552_bib23
  article-title: Periosteum extracellular-matrix-mediated acellular mineralization during bone formation
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201700660
– volume: 129
  start-page: 97
  issue: 1
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119552_bib30
  article-title: Collagen VI regulates peripheral nerve regeneration by modulating macrophage recruitment and polarization
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-014-1369-9
– start-page: S7
  issue: 355 Suppl
  year: 1998
  ident: 10.1016/j.biomaterials.2019.119552_bib2
  article-title: The cell and molecular biology of fracture healing
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1097/00003086-199810001-00003
– volume: 28
  start-page: 1705739
  issue: 13
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119552_bib19
  article-title: Peripheral nerve-derived matrix hydrogel promotes remyelination and inhibits synapse formation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705739
– volume: 49
  start-page: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119552_bib17
  article-title: Extracellular matrix hydrogels from decellularized tissues: structure and function
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.11.068
– volume: 28
  start-page: 8740
  issue: 39
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119552_bib33
  article-title: Hierarchically staggered nanostructure of mineralized collagen as a bone-grafting scaffold
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602628
– volume: 196
  start-page: 90
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119552_bib45
  article-title: Controlled M1-to-M2 transition of aged macrophages by calcium phosphate coatings
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.07.012
– volume: 11
  start-page: 45
  issue: 1
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119552_bib50
  article-title: Fracture healing: mechanisms and interventions
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/nrrheum.2014.164
– volume: 106
  start-page: 78
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119552_bib5
  article-title: Macrophages in bone fracture healing: their essential role in endochondral ossification
  publication-title: Bone
  doi: 10.1016/j.bone.2015.10.019
– volume: 105
  start-page: 138
  issue: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119552_bib49
  article-title: Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.35894
– volume: 6
  issue: 21
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119552_bib10
  article-title: Integrin-mediated interactions control macrophage polarization in 3D hydrogels
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201700289
– volume: 21
  start-page: 354
  issue: 4
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119552_bib3
  article-title: Boon and bane of inflammation in bone tissue regeneration and its link with angiogenesis, tissue engineering
  publication-title: Part B Rev.
– volume: 9
  start-page: 66
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119552_bib1
  article-title: Bone regeneration: current concepts and future directions
  publication-title: BMC Med.
  doi: 10.1186/1741-7015-9-66
SSID ssj0014042
Score 2.6832001
Snippet Bone healing is a complex physiological process initiated by early regulation of the inflammatory immunity and entails multiple events including angiogenesis,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119552
SubjectTerms Angiogenesis
Animals
bioactive properties
biocompatible materials
Biomineralization
blood vessels
body fluids
bone formation
Bone Regeneration
bones
Cell Differentiation
collagen
Decellularized periosteum matrix hydrogel
Early inflammatory immune regulation
extracellular matrix
Hydrogels
immunity
in vitro studies
Macrophages
osteoblasts
Osteogenesis
Rats
Tissue Engineering
Title Periosteal matrix-derived hydrogel promotes bone repair through an early immune regulation coupled with enhanced angio- and osteogenesis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961219306519
https://dx.doi.org/10.1016/j.biomaterials.2019.119552
https://www.ncbi.nlm.nih.gov/pubmed/31670079
https://www.proquest.com/docview/2310718589
https://www.proquest.com/docview/2388785104
Volume 227
WOSCitedRecordID wos000498276700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKhxA8IBgMymUyEm9TplxrW4iHgTZx27SHgfoW2YnbZaqSqjd1_4CfzTmxnXRDRUWIl7Ry4zju-WwfH5_zHULeYgZrzYPEy2B18uIhU56EdcXLg8xXgY55VtMu_vjGzs74YCDOO51rFwuzHLOy5KuVmPxXUUMZCBtDZ_9C3M1DoQC-g9DhCmKH61aCP4dGMHIDw0KQf3_l5VCyBMXy8jqfViM9RqcskJCeHaiqxLQpE1lMm4w9MOB1zXpcYOgI_jyyKb4OsmoxGTt_dV1eGu8BWY6KyqtPIbBdaAGmz2J247i4qOBdTO8bU2uxMA7C5QiAYxdQdA2q_QtOYZ4pWt8DMzl-bYtOrJ37g2UOt4aL0L9luGgialr3JWPgDD3RD27M0KGhD_httjeGh6tDtdYJ9NYTh0hkZ5hxb7FpozNbiM8HxRW0LySM3QlZIniX7Bx9Ph58aY6gYr_OvNS8kGOsrZ0DN7W4SbvZtHuptZiLR-Sh3X7QIwObx6Sjy13yYI2UcpfcO7XuFk_IzxZL9CaWqMMSdViiiCVqsEQtlqgsaY0larBEWyxRiyWKWKIOS9RgCT5yuo6lp-T7yfHFx0-eTd0BY56Fc0_qIcu0r_JcBUnOFYsShuatHNTjfpQNpZBwCZgf5zIWPIJ9SxINxTDkWqi-ktEe6Zbw2s8JzWQiY6UAQJrHWZALLvoyiHRfMaYCpXtEuL88zSyvPaZXGafOgfEqXRdXiuJKjbh6JGrqTgy7y1a13jnJpi5-GVbcFGC5Ve33TW2r5Rrtdev6bxyYUlgK8HxPlrpawE2wVQNVM-HiT_eAVgG7LD_ukWcGiU3PkRQDtgzixT_17yW53472V6Q7ny70a3I3W86L2XSf3GEDvm_H2i_AWvwM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Periosteal+matrix-derived+hydrogel+promotes+bone+repair+through+an+early+immune+regulation+coupled+with+enhanced+angio-+and+osteogenesis&rft.jtitle=Biomaterials&rft.au=Qiu%2C+Pengcheng&rft.au=Li%2C+Mobai&rft.au=Chen%2C+Kai&rft.au=Fang%2C+Bin&rft.date=2020-01-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.volume=227&rft_id=info:doi/10.1016%2Fj.biomaterials.2019.119552&rft.externalDocID=S0142961219306519
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon