Multi-objective unrelated parallel machine scheduling: a Tabu-enhanced iterated Pareto greedy algorithm
This work proposes a high-performance algorithm for solving the multi-objective unrelated parallel machine scheduling problem. The proposed approach is based on the iterated Pareto greedy (IPG) algorithm but exploits the accessible Tabu list (TL) to enhance its performance. To demonstrate the superi...
Gespeichert in:
| Veröffentlicht in: | International journal of production research Jg. 54; H. 4; S. 1110 - 1121 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Taylor & Francis
16.02.2016
Taylor & Francis LLC |
| Schlagworte: | |
| ISSN: | 0020-7543, 1366-588X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This work proposes a high-performance algorithm for solving the multi-objective unrelated parallel machine scheduling problem. The proposed approach is based on the iterated Pareto greedy (IPG) algorithm but exploits the accessible Tabu list (TL) to enhance its performance. To demonstrate the superior performance of the proposed Tabu-enhanced iterated Pareto greedy (TIPG) algorithm, its computational results are compared with IPG and existing algorithms on the same benchmark problem set. Experimental results reveal that incorporating the accessible TL can eliminate ineffective job moves, causing the TIPG algorithm to outperform state-of-the-art approaches in the light of five multi-objective performance metrics. This work contributes a useful theoretical and practical optimisation method for solving this problem. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0020-7543 1366-588X |
| DOI: | 10.1080/00207543.2015.1047981 |