Input–Output-Improved Reservoir Computing Based on Duffing Resonator Processing Dynamic Temperature Compensation for MEMS Resonant Accelerometer

An MEMS resonant accelerometer is a temperature-sensitive device because temperature change affects the intrinsic resonant frequency of the inner silicon beam. Most classic temperature compensation methods, such as algorithm modeling and structure design, have large errors under rapid temperature ch...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Micromachines (Basel) Ročník 14; číslo 1; s. 161
Hlavní autori: Guo, Xiaowei, Yang, Wuhao, Zheng, Tianyi, Sun, Jie, Xiong, Xingyin, Wang, Zheng, Zou, Xudong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 08.01.2023
MDPI
Predmet:
ISSN:2072-666X, 2072-666X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:An MEMS resonant accelerometer is a temperature-sensitive device because temperature change affects the intrinsic resonant frequency of the inner silicon beam. Most classic temperature compensation methods, such as algorithm modeling and structure design, have large errors under rapid temperature changing due to the hysteresis of the temperature response of the accelerometer. To address this issue, we propose a novel reservoir computing (RC) structure based on a nonlinear silicon resonator, which is specifically improved for predicting dynamic information that is referred to as the input–output-improved reservoir computing (IOI-RC) algorithm. It combines the polynomial fitting with the RC on the input data mapping ensuring that the system always resides in the rich nonlinear state. Meanwhile, the output layer is also optimized by vector concatenation operation for higher memory capacity. Therefore, the new system has better performance in dynamic temperature compensation. In addition, the method is real-time, with easy hardware implementation that can be integrated with MEMS sensors. The experiment’s result showed a 93% improvement in IOI-RC compared to raw data in a temperature range of −20–60 °C. The study confirmed the feasibility of RC in realizing dynamic temperature compensation precisely, which provides a potential real-time online temperature compensation method and a sensor system with edge computing.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2072-666X
2072-666X
DOI:10.3390/mi14010161