Advanced Chemical Looping Materials for CO2 Utilization: A Review

Combining chemical looping with a traditional fuel conversion process yields a promising technology for low-CO2-emission energy production. Bridged by the cyclic transformation of a looping material (CO2 carrier or oxygen carrier), a chemical looping process is divided into two spatially or temporal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Jg. 11; H. 7; S. 1187
Hauptverfasser: Hu, Jiawei, Galvita, Vladimir V., Poelman, Hilde, Marin, Guy B.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 10.07.2018
MDPI
Schlagworte:
ISSN:1996-1944, 1996-1944
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Combining chemical looping with a traditional fuel conversion process yields a promising technology for low-CO2-emission energy production. Bridged by the cyclic transformation of a looping material (CO2 carrier or oxygen carrier), a chemical looping process is divided into two spatially or temporally separated half-cycles. Firstly, the oxygen carrier material is reduced by fuel, producing power or chemicals. Then, the material is regenerated by an oxidizer. In chemical looping combustion, a separation-ready CO2 stream is produced, which significantly improves the CO2 capture efficiency. In chemical looping reforming, CO2 can be used as an oxidizer, resulting in a novel approach for efficient CO2 utilization through reduction to CO. Recently, the novel process of catalyst-assisted chemical looping was proposed, aiming at maximized CO2 utilization via the achievement of deep reduction of the oxygen carrier in the first half-cycle. It makes use of a bifunctional looping material that combines both catalytic function for efficient fuel conversion and oxygen storage function for redox cycling. For all of these chemical looping technologies, the choice of looping materials is crucial for their industrial application. Therefore, current research is focused on the development of a suitable looping material, which is required to have high redox activity and stability, and good economic and environmental performance. In this review, a series of commonly used metal oxide-based materials are firstly compared as looping material from an industrial-application perspective. The recent advances in the enhancement of the activity and stability of looping materials are discussed. The focus then proceeds to new findings in the development of the bifunctional looping materials employed in the emerging catalyst-assisted chemical looping technology. Among these, the design of core-shell structured Ni-Fe bifunctional nanomaterials shows great potential for catalyst-assisted chemical looping.
AbstractList Combining chemical looping with a traditional fuel conversion process yields a promising technology for low-CO2-emission energy production. Bridged by the cyclic transformation of a looping material (CO2 carrier or oxygen carrier), a chemical looping process is divided into two spatially or temporally separated half-cycles. Firstly, the oxygen carrier material is reduced by fuel, producing power or chemicals. Then, the material is regenerated by an oxidizer. In chemical looping combustion, a separation-ready CO2 stream is produced, which significantly improves the CO2 capture efficiency. In chemical looping reforming, CO2 can be used as an oxidizer, resulting in a novel approach for efficient CO2 utilization through reduction to CO. Recently, the novel process of catalyst-assisted chemical looping was proposed, aiming at maximized CO2 utilization via the achievement of deep reduction of the oxygen carrier in the first half-cycle. It makes use of a bifunctional looping material that combines both catalytic function for efficient fuel conversion and oxygen storage function for redox cycling. For all of these chemical looping technologies, the choice of looping materials is crucial for their industrial application. Therefore, current research is focused on the development of a suitable looping material, which is required to have high redox activity and stability, and good economic and environmental performance. In this review, a series of commonly used metal oxide-based materials are firstly compared as looping material from an industrial-application perspective. The recent advances in the enhancement of the activity and stability of looping materials are discussed. The focus then proceeds to new findings in the development of the bifunctional looping materials employed in the emerging catalyst-assisted chemical looping technology. Among these, the design of core-shell structured Ni-Fe bifunctional nanomaterials shows great potential for catalyst-assisted chemical looping.
Combining chemical looping with a traditional fuel conversion process yields a promising technology for low-CO₂-emission energy production. Bridged by the cyclic transformation of a looping material (CO₂ carrier or oxygen carrier), a chemical looping process is divided into two spatially or temporally separated half-cycles. Firstly, the oxygen carrier material is reduced by fuel, producing power or chemicals. Then, the material is regenerated by an oxidizer. In chemical looping combustion, a separation-ready CO₂ stream is produced, which significantly improves the CO₂ capture efficiency. In chemical looping reforming, CO₂ can be used as an oxidizer, resulting in a novel approach for efficient CO₂ utilization through reduction to CO. Recently, the novel process of catalyst-assisted chemical looping was proposed, aiming at maximized CO₂ utilization via the achievement of deep reduction of the oxygen carrier in the first half-cycle. It makes use of a bifunctional looping material that combines both catalytic function for efficient fuel conversion and oxygen storage function for redox cycling. For all of these chemical looping technologies, the choice of looping materials is crucial for their industrial application. Therefore, current research is focused on the development of a suitable looping material, which is required to have high redox activity and stability, and good economic and environmental performance. In this review, a series of commonly used metal oxide-based materials are firstly compared as looping material from an industrial-application perspective. The recent advances in the enhancement of the activity and stability of looping materials are discussed. The focus then proceeds to new findings in the development of the bifunctional looping materials employed in the emerging catalyst-assisted chemical looping technology. Among these, the design of core-shell structured Ni-Fe bifunctional nanomaterials shows great potential for catalyst-assisted chemical looping.Combining chemical looping with a traditional fuel conversion process yields a promising technology for low-CO₂-emission energy production. Bridged by the cyclic transformation of a looping material (CO₂ carrier or oxygen carrier), a chemical looping process is divided into two spatially or temporally separated half-cycles. Firstly, the oxygen carrier material is reduced by fuel, producing power or chemicals. Then, the material is regenerated by an oxidizer. In chemical looping combustion, a separation-ready CO₂ stream is produced, which significantly improves the CO₂ capture efficiency. In chemical looping reforming, CO₂ can be used as an oxidizer, resulting in a novel approach for efficient CO₂ utilization through reduction to CO. Recently, the novel process of catalyst-assisted chemical looping was proposed, aiming at maximized CO₂ utilization via the achievement of deep reduction of the oxygen carrier in the first half-cycle. It makes use of a bifunctional looping material that combines both catalytic function for efficient fuel conversion and oxygen storage function for redox cycling. For all of these chemical looping technologies, the choice of looping materials is crucial for their industrial application. Therefore, current research is focused on the development of a suitable looping material, which is required to have high redox activity and stability, and good economic and environmental performance. In this review, a series of commonly used metal oxide-based materials are firstly compared as looping material from an industrial-application perspective. The recent advances in the enhancement of the activity and stability of looping materials are discussed. The focus then proceeds to new findings in the development of the bifunctional looping materials employed in the emerging catalyst-assisted chemical looping technology. Among these, the design of core-shell structured Ni-Fe bifunctional nanomaterials shows great potential for catalyst-assisted chemical looping.
Combining chemical looping with a traditional fuel conversion process yields a promising technology for low-CO₂-emission energy production. Bridged by the cyclic transformation of a looping material (CO₂ carrier or oxygen carrier), a chemical looping process is divided into two spatially or temporally separated half-cycles. Firstly, the oxygen carrier material is reduced by fuel, producing power or chemicals. Then, the material is regenerated by an oxidizer. In chemical looping combustion, a separation-ready CO₂ stream is produced, which significantly improves the CO₂ capture efficiency. In chemical looping reforming, CO₂ can be used as an oxidizer, resulting in a novel approach for efficient CO₂ utilization through reduction to CO. Recently, the novel process of catalyst-assisted chemical looping was proposed, aiming at maximized CO₂ utilization via the achievement of deep reduction of the oxygen carrier in the first half-cycle. It makes use of a bifunctional looping material that combines both catalytic function for efficient fuel conversion and oxygen storage function for redox cycling. For all of these chemical looping technologies, the choice of looping materials is crucial for their industrial application. Therefore, current research is focused on the development of a suitable looping material, which is required to have high redox activity and stability, and good economic and environmental performance. In this review, a series of commonly used metal oxide-based materials are firstly compared as looping material from an industrial-application perspective. The recent advances in the enhancement of the activity and stability of looping materials are discussed. The focus then proceeds to new findings in the development of the bifunctional looping materials employed in the emerging catalyst-assisted chemical looping technology. Among these, the design of core-shell structured Ni-Fe bifunctional nanomaterials shows great potential for catalyst-assisted chemical looping.
Author Marin, Guy B.
Galvita, Vladimir V.
Poelman, Hilde
Hu, Jiawei
AuthorAffiliation Laboratory for Chemical Technology, Ghent University, Technologiepark 914, B-9052 Ghent, Belgium; Jiawei.Hu@UGent.be (J.H.); Hilde.Poelman@UGent.be (H.P.); Guy.Marin@UGent.be (G.B.M.)
AuthorAffiliation_xml – name: Laboratory for Chemical Technology, Ghent University, Technologiepark 914, B-9052 Ghent, Belgium; Jiawei.Hu@UGent.be (J.H.); Hilde.Poelman@UGent.be (H.P.); Guy.Marin@UGent.be (G.B.M.)
Author_xml – sequence: 1
  givenname: Jiawei
  orcidid: 0000-0003-0792-054X
  surname: Hu
  fullname: Hu, Jiawei
– sequence: 2
  givenname: Vladimir V.
  orcidid: 0000-0001-9205-7917
  surname: Galvita
  fullname: Galvita, Vladimir V.
– sequence: 3
  givenname: Hilde
  orcidid: 0000-0003-4267-7397
  surname: Poelman
  fullname: Poelman, Hilde
– sequence: 4
  givenname: Guy B.
  surname: Marin
  fullname: Marin, Guy B.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29996567$$D View this record in MEDLINE/PubMed
BookMark eNptkU1LAzEQhoMottZe_AGy4EWEaib7kY0HoRS_oFIQew7ZbLZN2U1qdlvRX2-0rdbiXDLDPPPyZuYI7RtrFEIngC_DkOGrSgBgCpDSPdQGxpIesCja38pbqFvXM-wjDCEl7BC1CPPNOKFt1O_nS2GkyoPBVFVaijIYWjvXZhI8iUY5Lco6KKwLBiMSjBtd6g_RaGuug37wrJZavR2jg8JDqrt-O2h8d_syeOgNR_ePg_6wJyNKmh7gLMeqwILGMiVRFkNBKWQkJqTIWRSyVOJcFjLKcUHzGEJJmcgymvoilVSGHXSz0p0vskrlUpnGiZLPna6Ee-dWaP63Y_SUT-ySJ5iGkIAXOF8LOPu6UHXDK11LVZbCKLuoOcFJyoBENPbo2Q46swtn_Pc4AS8W45gxT51uO_qxstmuB_AKkM7WtVMFl7r5Xp83qEsOmH_dkP_e0I9c7IxsVP-BPwHHMJpa
CitedBy_id crossref_primary_10_1515_revce_2020_0038
crossref_primary_10_3390_en16062865
crossref_primary_10_1021_jacs_0c04643
crossref_primary_10_1021_acs_energyfuels_4c02391
crossref_primary_10_3390_catal10010095
crossref_primary_10_3390_su132111625
crossref_primary_10_1016_j_jalmes_2023_100039
crossref_primary_10_1016_j_cej_2024_154984
crossref_primary_10_1016_j_energy_2019_115963
crossref_primary_10_1088_1755_1315_827_1_012012
crossref_primary_10_3390_catal9080668
crossref_primary_10_3390_ma11122424
crossref_primary_10_1016_j_cherd_2019_06_030
crossref_primary_10_1016_j_powtec_2024_119510
crossref_primary_10_1002_cjce_24547
crossref_primary_10_1002_er_7999
crossref_primary_10_1016_j_nanoen_2021_106379
crossref_primary_10_1016_j_jcou_2020_101216
crossref_primary_10_3390_catal10020194
crossref_primary_10_3390_catal11020266
crossref_primary_10_3390_ma16165625
crossref_primary_10_1007_s43938_023_00028_3
crossref_primary_10_1016_j_cjche_2020_11_024
crossref_primary_10_1016_j_enconman_2025_119617
crossref_primary_10_1016_j_jcou_2018_11_008
crossref_primary_10_3390_catal10050468
crossref_primary_10_1016_j_cej_2020_125849
crossref_primary_10_3390_pr6110205
crossref_primary_10_1016_j_cej_2022_135752
crossref_primary_10_1039_D4SU00395K
crossref_primary_10_1016_j_apcatb_2023_122591
crossref_primary_10_1016_j_fuproc_2022_107313
crossref_primary_10_1016_j_fuproc_2021_106888
crossref_primary_10_1016_j_fuproc_2022_107614
crossref_primary_10_1016_j_apcatb_2019_01_084
crossref_primary_10_1016_j_jece_2024_115069
crossref_primary_10_3390_nano12213877
crossref_primary_10_1039_C9EE03793D
crossref_primary_10_1002_adma_202201547
crossref_primary_10_1016_j_cjche_2020_11_034
crossref_primary_10_1016_j_gce_2024_09_009
crossref_primary_10_1016_j_cej_2021_131275
crossref_primary_10_1016_j_apcatb_2019_117946
crossref_primary_10_1016_j_cej_2020_124507
crossref_primary_10_1016_j_apcatb_2019_117944
crossref_primary_10_1002_er_4581
crossref_primary_10_1002_ese3_1303
crossref_primary_10_1007_s11814_025_00406_3
crossref_primary_10_3390_en16176375
crossref_primary_10_1016_j_cej_2021_132133
crossref_primary_10_1016_j_fuproc_2021_106917
crossref_primary_10_1016_j_apcatb_2024_123935
crossref_primary_10_1039_D4EE05328A
crossref_primary_10_1016_j_apcatb_2023_123531
crossref_primary_10_1016_j_mtsust_2025_101128
crossref_primary_10_1016_j_fuel_2025_135258
crossref_primary_10_1016_j_fuproc_2021_107045
crossref_primary_10_1016_j_cej_2024_150369
crossref_primary_10_1016_j_renene_2019_10_111
crossref_primary_10_1016_j_fuel_2023_128208
crossref_primary_10_1016_j_apcatb_2021_120194
crossref_primary_10_1016_j_apcatb_2021_120472
crossref_primary_10_1016_j_fuproc_2025_108322
crossref_primary_10_1016_j_jaecs_2025_100365
crossref_primary_10_1016_j_powtec_2023_119260
crossref_primary_10_1016_j_cattod_2025_115207
crossref_primary_10_1016_j_enss_2022_09_001
crossref_primary_10_1016_j_cej_2023_146083
crossref_primary_10_1016_j_jcou_2023_102416
crossref_primary_10_1016_j_commatsci_2023_112690
crossref_primary_10_1016_j_cej_2021_132606
crossref_primary_10_1016_j_cogsc_2022_100721
Cites_doi 10.1016/j.cherd.2013.12.006
10.1016/j.apenergy.2015.04.017
10.1002/aic.14695
10.1016/j.cherd.2010.10.013
10.1007/s11244-011-9709-7
10.1002/pssb.200404935
10.1016/j.dental.2007.05.005
10.1002/anie.201000431
10.1016/j.jcou.2016.05.006
10.1016/j.fuel.2010.03.043
10.1016/j.energy.2012.08.006
10.1016/j.fuel.2013.12.027
10.1021/ef950173n
10.1016/j.apenergy.2015.10.121
10.1021/ie100432j
10.1021/ef301120r
10.1126/science.1172246
10.1016/S1001-0742(13)60546-X
10.1017/9781108157841
10.1016/j.ijggc.2014.12.022
10.1016/S0016-2361(01)00051-5
10.1021/ie4003574
10.1021/ef0504319
10.1021/ie400612g
10.1016/j.fuel.2004.03.003
10.1021/ie020184l
10.1016/j.pecs.2009.10.001
10.2109/jcersj2.116.1164
10.1002/ente.201500231
10.1088/0957-4484/21/22/225708
10.1016/j.apcatb.2018.03.004
10.1016/j.fuel.2008.02.016
10.1016/j.fuel.2017.08.022
10.1016/j.fuel.2006.02.004
10.1021/jp063490b
10.1016/j.rser.2015.12.007
10.1016/j.apenergy.2016.07.074
10.1016/S0926-860X(00)00728-6
10.1016/j.ijhydene.2015.11.066
10.1021/ie048978i
10.1021/acs.energyfuels.7b00208
10.1016/j.apcatb.2009.10.029
10.1016/j.nanoen.2016.04.038
10.1126/science.1176731
10.1007/978-3-319-06656-1
10.1016/j.apcatb.2013.10.034
10.1039/B809990C
10.1016/j.cattod.2013.12.025
10.1016/j.jcat.2012.01.004
10.1002/cctc.201301104
10.1016/j.apenergy.2013.10.064
10.1039/C5TA02289D
10.1021/ie050756c
10.1021/acs.energyfuels.5b01444
10.1016/j.fuel.2012.11.035
10.1039/b904370e
10.1016/0360-5442(87)90119-8
10.1021/ef020151i
10.1016/j.fuel.2015.10.049
10.1021/ef402203a
10.1039/b926193a
10.1021/ef401513p
10.1016/S0926-860X(02)00230-2
10.1016/j.apsusc.2012.12.023
10.4209/aaqr.2015.10.0603
10.1016/j.apcatb.2014.09.007
10.1016/j.cherd.2014.04.001
10.1021/ef980080g
10.1016/j.combustflame.2015.05.006
10.1016/j.ijhydene.2014.12.130
10.1021/ef0501389
10.1021/ef0301452
10.1016/j.apcatb.2017.09.067
10.1016/j.ijggc.2018.01.007
10.1016/j.cattod.2013.02.005
10.1002/aic.11188
10.1039/C6EE03718F
10.1021/cs501862h
10.1016/j.fuel.2016.04.110
10.1021/ef400184b
10.1016/j.ijhydene.2011.02.146
10.1021/ef060068l
10.1016/j.egypro.2014.11.003
10.1016/j.apcatb.2016.09.020
10.1016/j.pecs.2011.09.001
10.1038/ngeo2668
10.1016/j.apcata.2008.05.018
10.1002/ghg.1763
10.1021/cm201182d
10.1021/ie900638p
10.1021/cs401027p
10.2516/ogst/2010038
10.1016/j.ijggc.2014.06.026
10.1016/j.egypro.2011.01.068
10.1016/j.apenergy.2015.06.028
10.1016/0021-9797(68)90272-5
10.1016/j.ces.2011.06.025
10.1016/j.rser.2016.01.003
10.1016/j.apcatb.2015.04.039
10.1039/C2CC37109J
10.1016/j.fuproc.2013.05.013
10.1002/ceat.201100649
10.1021/nn9015423
10.1126/science.aah7161
10.1021/ie049813c
10.1016/j.apenergy.2012.09.009
10.1016/j.powtec.2008.06.003
10.1039/C4TA03550J
10.1021/cm052580a
10.1016/S1003-9953(07)60041-3
10.1073/pnas.1700104114
10.1016/j.fuel.2006.05.026
10.1016/j.apsusc.2012.06.067
10.1016/j.ijhydene.2015.09.128
10.1016/j.cej.2008.06.004
10.1016/j.apenergy.2015.01.056
10.1016/j.jcou.2016.11.003
10.3390/catal8010027
10.1021/ef3003137
10.1002/aic.12143
10.1002/ente.201600177
10.1002/9783527621705
10.1021/acscatal.5b00357
10.1016/j.rser.2015.08.068
10.1021/acs.jpcc.5b09876
10.1021/ef501981g
10.2298/PAC1302045S
10.1021/ie100651d
10.1016/j.apcatb.2015.05.018
10.1016/j.cattod.2015.10.027
10.1016/j.cej.2016.11.143
10.1016/j.apenergy.2016.10.114
10.1016/j.ijhydene.2010.08.126
10.1039/c0ce00989j
10.1021/acs.iecr.6b00963
10.1016/j.fuel.2009.09.028
10.1016/j.fuproc.2016.04.032
10.1205/cherd.05206
10.1016/j.apcatb.2014.09.023
10.1002/chem.201001827
10.1002/9780470872888
10.1016/j.cej.2015.04.105
10.1039/c3ra43965h
10.1021/ie200802y
10.1021/ie302626x
10.1039/B918446E
10.1021/es5046309
10.1016/j.egypro.2014.11.010
10.1016/j.ces.2008.02.021
10.1016/S0167-2991(04)80051-X
10.1016/j.jaap.2011.01.010
10.1002/ente.201500035
ContentType Journal Article
Copyright 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 by the authors. 2018
Copyright_xml – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma11071187
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Collection (ProQuest)
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC6073161
29996567
10_3390_ma11071187
Genre Journal Article
Review
GeographicLocations Ceram
GeographicLocations_xml – name: Ceram
GroupedDBID 29M
2WC
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IPNFZ
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RIG
RPM
TR2
TUS
GROUPED_DOAJ
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c472t-10bd0ef0a75c824b51f771b2522fd94398c0dcfc4d0f7d513c79abb787d58c7c3
IEDL.DBID BENPR
ISICitedReferencesCount 96
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000442117300138&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1944
IngestDate Tue Nov 04 01:59:11 EST 2025
Sun Nov 09 13:23:24 EST 2025
Fri Jul 25 12:08:43 EDT 2025
Wed Feb 19 02:42:55 EST 2025
Sat Nov 29 07:13:33 EST 2025
Tue Nov 18 21:37:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords structured nanomaterials
metal oxides
CH4 reforming
catalyst-assisted chemical looping
oxygen carrier
bifunctional materials
core-shell
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-10bd0ef0a75c824b51f771b2522fd94398c0dcfc4d0f7d513c79abb787d58c7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4267-7397
0000-0001-9205-7917
0000-0003-0792-054X
OpenAccessLink https://www.proquest.com/docview/2131650599?pq-origsite=%requestingapplication%
PMID 29996567
PQID 2131650599
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6073161
proquest_miscellaneous_2068912475
proquest_journals_2131650599
pubmed_primary_29996567
crossref_citationtrail_10_3390_ma11071187
crossref_primary_10_3390_ma11071187
PublicationCentury 2000
PublicationDate 2018-07-10
PublicationDateYYYYMMDD 2018-07-10
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-10
  day: 10
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Baktash (ref_118) 2015; 179
Qin (ref_83) 2013; 266
Ishida (ref_24) 1987; 12
Machida (ref_98) 2015; 119
ref_90
Fink (ref_155) 1968; 26
ref_131
Lyngfelt (ref_52) 2011; 66
Readman (ref_72) 2006; 20
ref_10
Sedor (ref_64) 2008; 63
Johansson (ref_70) 2009; 2
Datta (ref_82) 2016; 4
Keller (ref_48) 2014; 92
Adanez (ref_2) 2012; 38
Sarshar (ref_123) 2012; 26
Feyen (ref_147) 2011; 17
Yoo (ref_153) 2014; 2
Cleverstam (ref_54) 2010; 56
Hu (ref_40) 2017; 17
Dou (ref_28) 2016; 53
Pishahang (ref_134) 2016; 4
Jackson (ref_148) 2015; 5
Gao (ref_145) 2011; 13
Corbella (ref_84) 2007; 86
Li (ref_140) 2012; 288
Quddus (ref_66) 2013; 210
Zhao (ref_39) 2017; 10
Li (ref_142) 2013; 49
Wei (ref_111) 2017; 31
ref_127
Azimi (ref_105) 2012; 27
He (ref_6) 2015; 49
ref_25
Yu (ref_27) 2011; 51
Abad (ref_53) 2014; 28
Dharanipragada (ref_100) 2016; 55
Zafar (ref_87) 2005; 44
Ryden (ref_74) 2006; 85
Theofanidis (ref_51) 2015; 5
ref_29
Solunke (ref_137) 2010; 49
Zhao (ref_144) 2008; 116
Ushakov (ref_143) 2004; 241
Bhavsar (ref_14) 2014; 228
Tian (ref_124) 2017; 209
Pengpanich (ref_129) 2002; 234
Johansson (ref_133) 2006; 20
Pans (ref_108) 2013; 115
Galvita (ref_22) 2013; 52
Galvita (ref_23) 2015; 164
Cabello (ref_76) 2014; 147
Bhavsar (ref_109) 2013; 52
Tang (ref_1) 2015; 151
Buelens (ref_15) 2016; 354
Park (ref_119) 2010; 21
Romeo (ref_45) 2016; 162
Abad (ref_75) 2008; 87
Wang (ref_151) 2017; 312
Gu (ref_50) 2015; 277
Tian (ref_132) 2018; 8
Galinsky (ref_149) 2015; 164
Mihai (ref_113) 2011; 50
Yang (ref_154) 2011; 23
Sun (ref_99) 2015; 29
Srdic (ref_152) 2013; 7
He (ref_115) 2013; 108
Neal (ref_122) 2015; 157
Tian (ref_56) 2009; 48
Hossain (ref_102) 2007; 53
Haszeldine (ref_18) 2009; 325
Dharanipragada (ref_89) 2015; 3
Ismail (ref_92) 2014; 63
Park (ref_139) 2010; 20
Jin (ref_62) 1998; 12
Antigoni (ref_114) 2010; 89
Chen (ref_31) 2017; 185
He (ref_78) 2007; 16
Bao (ref_136) 2004; Volume 147
(ref_42) 2016; 56
Mattisson (ref_73) 2011; 66
Hu (ref_126) 2018; 231
Rogelj (ref_9) 2016; 9
Lori (ref_116) 2011; 36
Frick (ref_107) 2016; 150
Smit (ref_16) 2010; 49
Abad (ref_58) 2004; 18
Jacobs (ref_91) 2018; 70
Xu (ref_141) 2015; 162
Tobias (ref_130) 2001; 80
Shafiefarhood (ref_121) 2014; 6
Liu (ref_47) 2013; 27
Cabello (ref_81) 2014; 121
Li (ref_3) 2013; 102
Jin (ref_101) 2002; 41
Mondal (ref_7) 2012; 46
Dean (ref_44) 2011; 89
Rao (ref_37) 2017; 114
Kenarsari (ref_8) 2013; 3
Erans (ref_46) 2016; 180
Fan (ref_21) 2015; 61
Tan (ref_95) 2012; 258
Cebrucean (ref_12) 2014; 63
Wang (ref_103) 2010; 3
Zhu (ref_128) 2001; 208
Protasova (ref_38) 2016; 181
Mei (ref_80) 2014; 28
Rochelle (ref_17) 2009; 325
Chen (ref_34) 2010; 35
Azimi (ref_106) 2015; 34
Blamey (ref_41) 2011; 4
Zhang (ref_138) 2015; 176–177
Evdou (ref_150) 2016; 165
Johansson (ref_88) 2004; 43
Bhavsar (ref_120) 2012; 35
Johansson (ref_61) 2006; 84
Kelly (ref_60) 2008; 24
Ishida (ref_71) 1996; 10
Wang (ref_57) 2014; 26
ref_36
Mungse (ref_104) 2015; 3
Wang (ref_79) 2011; 91
Kang (ref_96) 2014; 92
Ksepko (ref_85) 2014; 115
Lin (ref_49) 2009; 189
Nandy (ref_26) 2016; 59
Chen (ref_33) 2016; 162
Dai (ref_135) 2006; 110
Arnal (ref_146) 2006; 18
Zafar (ref_59) 2006; 20
Corbella (ref_67) 2006; 45
Zhu (ref_97) 2014; 28
Mattisson (ref_63) 2003; 17
Galvita (ref_30) 2011; 54
Blamey (ref_43) 2010; 36
Silvester (ref_69) 2015; 40
Guo (ref_5) 2016; 25
Kohn (ref_35) 2010; 94
Ortiz (ref_19) 2008; 144
Hu (ref_20) 2016; 16
Lim (ref_112) 2017; 202
Holmen (ref_32) 2008; 346
Dharanipragada (ref_125) 2018; 222
Abad (ref_55) 2004; 83
Antzara (ref_68) 2016; 272
Dueso (ref_65) 2010; 89
Ismail (ref_93) 2016; 41
Liu (ref_86) 2016; 16
Liu (ref_94) 2012; 51
Wei (ref_110) 2015; 40
Bhavsar (ref_77) 2013; 27
ref_4
Jacobson (ref_11) 2009; 2
Roy (ref_13) 2010; 4
Li (ref_117) 2014; 4
23124111 - Chem Commun (Camb). 2013 May 14;49(39):4226-8
28522461 - Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13385-13393
19779187 - Science. 2009 Sep 25;325(5948):1647-52
20453272 - Nanotechnology. 2010 Jun 4;21(22):225708
20141175 - ACS Nano. 2010 Mar 23;4(3):1259-78
17624420 - Dent Mater. 2008 Mar;24(3):289-98
21207578 - Chemistry. 2011 Jan 10;17(2):598-605
25485763 - Environ Sci Technol. 2015 Jan 6;49(1):649-56
27738013 - Science. 2016 Oct 28;354(6311):449-452
20652916 - Angew Chem Int Ed Engl. 2010 Aug 16;49(35):6058-82
19779188 - Science. 2009 Sep 25;325(5948):1652-4
25079636 - J Environ Sci (China). 2014 May 1;26(5):1062-70
17091997 - J Phys Chem B. 2006 Nov 16;110(45):22525-31
References_xml – volume: 92
  start-page: 1753
  year: 2014
  ident: ref_48
  article-title: Interaction of mineral matter of coal with oxygen carriers in chemical-looping combustion (CLC)
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2013.12.006
– volume: 151
  start-page: 143
  year: 2015
  ident: ref_1
  article-title: Progress in oxygen carrier development of methane-based chemical-looping reforming: A review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.04.017
– volume: 61
  start-page: 2
  year: 2015
  ident: ref_21
  article-title: Chemical-looping technology platform
  publication-title: AIChE J.
  doi: 10.1002/aic.14695
– volume: 89
  start-page: 836
  year: 2011
  ident: ref_44
  article-title: The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2010.10.013
– volume: 54
  start-page: 907
  year: 2011
  ident: ref_30
  article-title: Hydrogen production from methane and carbon dioxide by catalyst-assisted chemical looping
  publication-title: Top. Catal.
  doi: 10.1007/s11244-011-9709-7
– volume: 241
  start-page: 2268
  year: 2004
  ident: ref_143
  article-title: Crystallization in hafnia- and zirconia-based systems
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssb.200404935
– volume: 24
  start-page: 289
  year: 2008
  ident: ref_60
  article-title: Stabilized zirconia as a structural ceramic: An overview
  publication-title: Dent. Mater.
  doi: 10.1016/j.dental.2007.05.005
– volume: 49
  start-page: 6058
  year: 2010
  ident: ref_16
  article-title: Carbon dioxide capture: Prospects for new materials
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201000431
– volume: 16
  start-page: 8
  year: 2016
  ident: ref_20
  article-title: CO2 conversion to CO by auto-thermal catalyst-assisted chemical looping
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2016.05.006
– volume: 89
  start-page: 3399
  year: 2010
  ident: ref_65
  article-title: Reactivity of a NiO/Al2O3 oxygen carrier prepared by impregnation for chemical-looping combustion
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.03.043
– volume: 46
  start-page: 431
  year: 2012
  ident: ref_7
  article-title: Progress and trends in CO2 capture/separation technologies: A review
  publication-title: Energy
  doi: 10.1016/j.energy.2012.08.006
– volume: 121
  start-page: 117
  year: 2014
  ident: ref_81
  article-title: Performance of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier with CH4 and H2S in a 500 Wth CLC unit
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.12.027
– volume: 10
  start-page: 958
  year: 1996
  ident: ref_71
  article-title: A fundamental study of a new kind of medium material for chemical-looping combustion
  publication-title: Energy Fuels
  doi: 10.1021/ef950173n
– volume: 162
  start-page: 787
  year: 2016
  ident: ref_45
  article-title: The calcium-looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.10.121
– volume: 49
  start-page: 11037
  year: 2010
  ident: ref_137
  article-title: Hydrogen production via chemical looping steam reforming in a periodically operated fixed-bed reactor
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie100432j
– volume: 27
  start-page: 367
  year: 2012
  ident: ref_105
  article-title: Investigation of different Mn–Fe oxides as oxygen carrier for chemical-looping with oxygen uncoupling (CLOU)
  publication-title: Energy Fuels
  doi: 10.1021/ef301120r
– volume: 325
  start-page: 1647
  year: 2009
  ident: ref_18
  article-title: Carbon capture and storage: How green can black be?
  publication-title: Science
  doi: 10.1126/science.1172246
– volume: 26
  start-page: 1062
  year: 2014
  ident: ref_57
  article-title: Sulfur evolution in chemical looping combustion of coal with MnFe2O4 oxygen carrier
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(13)60546-X
– ident: ref_29
  doi: 10.1017/9781108157841
– volume: 34
  start-page: 12
  year: 2015
  ident: ref_106
  article-title: Comprehensive study of Mn–Fe–Al oxygen-carriers for chemical-looping with oxygen uncoupling (CLOU)
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2014.12.022
– volume: 80
  start-page: 1953
  year: 2001
  ident: ref_130
  article-title: The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2
  publication-title: Fuel
  doi: 10.1016/S0016-2361(01)00051-5
– volume: 52
  start-page: 8416
  year: 2013
  ident: ref_22
  article-title: CeO2-modified Fe2O3 for CO2 utilization via chemical looping
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie4003574
– volume: 20
  start-page: 1382
  year: 2006
  ident: ref_72
  article-title: Chemical looping combustion using NiO/NiAl2O4: Mechanisms and kinetics of reduction−oxidation (red-ox) reactions from in situ powder X-ray diffraction and thermogravimetry experiments
  publication-title: Energy Fuels
  doi: 10.1021/ef0504319
– volume: 52
  start-page: 15342
  year: 2013
  ident: ref_109
  article-title: Bimetallic Fe–Ni oxygen carriers for chemical looping combustion
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie400612g
– volume: 83
  start-page: 1749
  year: 2004
  ident: ref_55
  article-title: Development of Cu-based oxygen carriers for chemical-looping combustion
  publication-title: Fuel
  doi: 10.1016/j.fuel.2004.03.003
– volume: 41
  start-page: 4004
  year: 2002
  ident: ref_101
  article-title: Reactivity study on natural-gas-fueled chemical-looping combustion by a fixed-bed reactor
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie020184l
– volume: 36
  start-page: 260
  year: 2010
  ident: ref_43
  article-title: The calcium looping cycle for large-scale CO2 capture
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2009.10.001
– volume: 116
  start-page: 1164
  year: 2008
  ident: ref_144
  article-title: Nanocoating Fe2O3 powders with a homogeneous ultrathin ZrO2 shell
  publication-title: J. Ceram. Soc. Jpn.
  doi: 10.2109/jcersj2.116.1164
– ident: ref_10
– volume: 4
  start-page: 304
  year: 2016
  ident: ref_82
  article-title: Hydrogen and carbon monoxide production by chemical looping over iron-aluminium oxides
  publication-title: Energy Technol.
  doi: 10.1002/ente.201500231
– volume: 21
  start-page: 225708
  year: 2010
  ident: ref_119
  article-title: Synthesis and characterization of sintering-resistant silica-encapsulated Fe3O4 magnetic nanoparticles active for oxidation and chemical looping combustion
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/22/225708
– volume: 231
  start-page: 123
  year: 2018
  ident: ref_126
  article-title: Catalyst-assisted chemical looping auto-thermal dry reforming: Spatial structuring effects on process efficiency
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.03.004
– volume: 87
  start-page: 2641
  year: 2008
  ident: ref_75
  article-title: Effect of support on reactivity and selectivity of Ni-based oxygen carriers for chemical-looping combustion
  publication-title: Fuel
  doi: 10.1016/j.fuel.2008.02.016
– volume: 209
  start-page: 402
  year: 2017
  ident: ref_124
  article-title: Evaluation of a hierarchically-structured CuO@TiO2-Al2O3 oxygen carrier for chemical looping with oxygen uncoupling
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.08.022
– volume: 85
  start-page: 1631
  year: 2006
  ident: ref_74
  article-title: Synthesis gas generation by chemical-looping reforming in a continuously operating laboratory reactor
  publication-title: Fuel
  doi: 10.1016/j.fuel.2006.02.004
– volume: 110
  start-page: 22525
  year: 2006
  ident: ref_135
  article-title: Unsteady-state direct partial oxidation of methane to synthesis gas in a fixed-bed reactor using AFeO3 (A = La, Nd, Eu) perovskite-type oxides as oxygen storage
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp063490b
– volume: 56
  start-page: 1387
  year: 2016
  ident: ref_42
  article-title: Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.007
– volume: 180
  start-page: 722
  year: 2016
  ident: ref_46
  article-title: Calcium looping sorbents for CO2 capture
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.07.074
– volume: 208
  start-page: 403
  year: 2001
  ident: ref_128
  article-title: Catalytic partial oxidation of methane to syngas over Ni-CeO2
  publication-title: Appl. Catal. A
  doi: 10.1016/S0926-860X(00)00728-6
– volume: 41
  start-page: 4073
  year: 2016
  ident: ref_93
  article-title: Development and performance of iron based oxygen carriers containing calcium ferrites for chemical looping combustion and production of hydrogen
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.11.066
– volume: 44
  start-page: 3485
  year: 2005
  ident: ref_87
  article-title: Integrated hydrogen and power production with CO2 capture using chemical-looping reforming redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie048978i
– volume: 31
  start-page: 5174
  year: 2017
  ident: ref_111
  article-title: Experimental investigation of Fe–Ni–Al oxygen carrier derived from hydrotalcite-like precursors for the chemical looping gasification of biomass char
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.7b00208
– volume: 94
  start-page: 125
  year: 2010
  ident: ref_35
  article-title: Auto-thermal and dry reforming of landfill gas over a Rh/γ-Al2O3 monolith catalyst
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2009.10.029
– volume: 25
  start-page: 1
  year: 2016
  ident: ref_5
  article-title: CO2 removal from flue gas with amine-impregnated titanate nanotubes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.038
– volume: 325
  start-page: 1652
  year: 2009
  ident: ref_17
  article-title: Amine scrubbing for CO2 capture
  publication-title: Science
  doi: 10.1126/science.1176731
– ident: ref_4
  doi: 10.1007/978-3-319-06656-1
– volume: 147
  start-page: 980
  year: 2014
  ident: ref_76
  article-title: Relevance of the catalytic activity on the performance of a NiO/CaAl2O4 oxygen carrier in a CLC process
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2013.10.034
– volume: 2
  start-page: 148
  year: 2009
  ident: ref_11
  article-title: Review of solutions to global warming, air pollution, and energy security
  publication-title: Energy Environ. Sci.
  doi: 10.1039/B809990C
– volume: 228
  start-page: 96
  year: 2014
  ident: ref_14
  article-title: Chemical looping: To combustion and beyond
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2013.12.025
– volume: 288
  start-page: 54
  year: 2012
  ident: ref_140
  article-title: Fine-tunable Ni@porous silica core–shell nanocatalysts: Synthesis, characterization, and catalytic properties in partial oxidation of methane to syngas
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2012.01.004
– volume: 6
  start-page: 790
  year: 2014
  ident: ref_121
  article-title: Fe2O3@LaxSr1−xFeO3 core-shell redox catalyst for methane partial oxidation
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201301104
– volume: 115
  start-page: 374
  year: 2014
  ident: ref_85
  article-title: Studies on the redox reaction kinetics of Fe2O3-CuO/Al2O3 and Fe2O3/TiO2 oxygen carriers
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.10.064
– volume: 3
  start-page: 16251
  year: 2015
  ident: ref_89
  article-title: Mg–Fe–Al–O for advanced CO2 to CO conversion: Carbon monoxide yield vs. oxygen storage capacity
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02289D
– volume: 45
  start-page: 157
  year: 2006
  ident: ref_67
  article-title: Performance in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane in multicycle tests
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie050756c
– volume: 29
  start-page: 7612
  year: 2015
  ident: ref_99
  article-title: Performance of CeO2-modified iron-based oxygen carrier in the chemical looping hydrogen generation process
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.5b01444
– volume: 108
  start-page: 465
  year: 2013
  ident: ref_115
  article-title: The use of La1−xSrxFeO3 perovskite-type oxides as oxygen carriers in chemical-looping reforming of methane
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.11.035
– volume: 2
  start-page: 970
  year: 2009
  ident: ref_70
  article-title: NiO supported on Mg-ZrO2 as oxygen carrier for chemical-looping combustion and chemical-looping reforming
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b904370e
– volume: 12
  start-page: 147
  year: 1987
  ident: ref_24
  article-title: Evaluation of a chemical-looping combustion power-generation system by graphic exergy analysis
  publication-title: Energy
  doi: 10.1016/0360-5442(87)90119-8
– volume: 17
  start-page: 643
  year: 2003
  ident: ref_63
  article-title: Reactivity of some metal oxides supported on alumina with alternating methane and oxygen application for chemical-looping combustion
  publication-title: Energy Fuels
  doi: 10.1021/ef020151i
– volume: 165
  start-page: 367
  year: 2016
  ident: ref_150
  article-title: Ferrites as redox catalysts for chemical looping processes
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.10.049
– volume: 28
  start-page: 754
  year: 2014
  ident: ref_97
  article-title: Chemical-looping steam methane reforming over a CeO2-Fe2O3 oxygen carrier: Evolution of its structure and reducibility
  publication-title: Energy Fuels
  doi: 10.1021/ef402203a
– volume: 3
  start-page: 1353
  year: 2010
  ident: ref_103
  article-title: Chemical looping combustion of coke oven gas by using Fe2O3/CuO with MgAl2O4 as oxygen carrier
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b926193a
– volume: 27
  start-page: 5987
  year: 2013
  ident: ref_47
  article-title: Investigation of a canadian ilmenite as an oxygen carrier for chemical looping combustion
  publication-title: Energy Fuels
  doi: 10.1021/ef401513p
– volume: 234
  start-page: 221
  year: 2002
  ident: ref_129
  article-title: Catalytic oxidation of methane over CeO2-ZrO2 mixed oxide solid solution catalysts prepared via urea hydrolysis
  publication-title: Appl. Catal. A
  doi: 10.1016/S0926-860X(02)00230-2
– volume: 266
  start-page: 350
  year: 2013
  ident: ref_83
  article-title: Theoretical study of oxidation–reduction reaction of Fe2O3 supported on MgO during chemical looping combustion
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.12.023
– volume: 16
  start-page: 2023
  year: 2016
  ident: ref_86
  article-title: Fabrication of Fe2O3/TiO2 oxygen carriers for chemical looping combustion and hydrogen generation
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2015.10.0603
– volume: 164
  start-page: 184
  year: 2015
  ident: ref_23
  article-title: Catalyst-assisted chemical looping for CO2 conversion to CO
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2014.09.007
– volume: 92
  start-page: 2584
  year: 2014
  ident: ref_96
  article-title: Reduction and oxidation properties of Fe2O3/ZrO2 oxygen carrier for hydrogen production
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2014.04.001
– volume: 12
  start-page: 1272
  year: 1998
  ident: ref_62
  article-title: Development of a novel chemical-looping combustion synthesis of a looping material with a double metal oxide of CoO-NiO
  publication-title: Energy Fuels
  doi: 10.1021/ef980080g
– volume: 162
  start-page: 3030
  year: 2015
  ident: ref_141
  article-title: Self-assembly template combustion synthesis of a core–shell CuO@TiO2-Al2O3 hierarchical structure as an oxygen carrier for the chemical-looping processes
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2015.05.006
– volume: 40
  start-page: 7490
  year: 2015
  ident: ref_69
  article-title: NiO supported on Al2O3 and ZrO2 oxygen carriers for chemical looping steam methane reforming
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2014.12.130
– volume: 20
  start-page: 34
  year: 2006
  ident: ref_59
  article-title: Redox investigation of some oxides of transition-state metals Ni, Cu, Fe, and Mn supported on SiO2 and MgAl2O4
  publication-title: Energy Fuels
  doi: 10.1021/ef0501389
– volume: 18
  start-page: 371
  year: 2004
  ident: ref_58
  article-title: Selection of oxygen carriers for chemical-looping combusion
  publication-title: Energy Fuels
  doi: 10.1021/ef0301452
– volume: 222
  start-page: 59
  year: 2018
  ident: ref_125
  article-title: Bifunctional Co- and Ni-ferrites for catalyst-assisted chemical looping with alcohols
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.09.067
– volume: 70
  start-page: 12
  year: 2018
  ident: ref_91
  article-title: Processing and characterization of Fe-based oxygen carriers for chemical looping for hydrogen production
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2018.01.007
– volume: 210
  start-page: 124
  year: 2013
  ident: ref_66
  article-title: Ni based oxygen carrier over γ-Al2O3 for chemical looping combustion: Effect of preparation method on metal support interaction
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2013.02.005
– volume: 53
  start-page: 1817
  year: 2007
  ident: ref_102
  article-title: Reactivity and stability of Co-Ni/Al2O3 oxygen carrier in multicycle CLC
  publication-title: AIChE J.
  doi: 10.1002/aic.11188
– volume: 10
  start-page: 1885
  year: 2017
  ident: ref_39
  article-title: Biomass-based chemical looping technologies: The good, the bad and the future
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03718F
– volume: 5
  start-page: 1804
  year: 2015
  ident: ref_148
  article-title: Catalyst design with atomic layer deposition
  publication-title: ACS Catal.
  doi: 10.1021/cs501862h
– volume: 181
  start-page: 75
  year: 2016
  ident: ref_38
  article-title: Recent developments in oxygen carrier materials for hydrogen production via chemical looping processes
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.04.110
– volume: 27
  start-page: 2073
  year: 2013
  ident: ref_77
  article-title: Reducible supports for Ni-based oxygen carriers in chemical looping combustion
  publication-title: Energy Fuels
  doi: 10.1021/ef400184b
– volume: 36
  start-page: 6657
  year: 2011
  ident: ref_116
  article-title: La1−xSrxMyFe1−yO3−δ perovskites as oxygen-carrier materials for chemical-looping reforming
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.02.146
– volume: 20
  start-page: 2399
  year: 2006
  ident: ref_133
  article-title: Creating a synergy effect by using mixed oxides of iron- and nickel oxides in the combustion of methane in a chemical-looping combustion reactor
  publication-title: Energy Fuels
  doi: 10.1021/ef060068l
– volume: 63
  start-page: 18
  year: 2014
  ident: ref_12
  article-title: CO2 capture and storage from fossil fuel power plants
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.11.003
– volume: 202
  start-page: 175
  year: 2017
  ident: ref_112
  article-title: Phase transition of Fe2O3–NiO to NiFe2O4 in perovskite catalytic particles for enhanced methane chemical looping reforming-decomposition with CO2 conversion
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.09.020
– volume: 38
  start-page: 215
  year: 2012
  ident: ref_2
  article-title: Progress in chemical-looping combustion and reforming technologies
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2011.09.001
– volume: 9
  start-page: 187
  year: 2016
  ident: ref_9
  article-title: Geosciences after Paris
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2668
– volume: 346
  start-page: 1
  year: 2008
  ident: ref_32
  article-title: A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2008.05.018
– volume: 8
  start-page: 1
  year: 2018
  ident: ref_132
  article-title: Performance of a Cu-Fe-based oxygen carrier combined with a Ni-based oxygen carrier in a chemical-looping combustion process based on fixed-bed reactors
  publication-title: Greenh. Gas Sci. Technol.
  doi: 10.1002/ghg.1763
– volume: 23
  start-page: 3676
  year: 2011
  ident: ref_154
  article-title: Organosilane-assisted transformation from core–shell to yolk–shell nanocomposites
  publication-title: Chem. Mater.
  doi: 10.1021/cm201182d
– volume: 48
  start-page: 8418
  year: 2009
  ident: ref_56
  article-title: Effect of hydrogen sulfide on chemical looping combustion of coal-derived synthesis gas over bentonite-supported metal-oxide oxygen carriers
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie900638p
– volume: 4
  start-page: 1526
  year: 2014
  ident: ref_117
  article-title: Yolk–satellite–shell structured Ni–yolk@Ni@SiO2 nanocomposite: Superb catalyst toward methane CO2 reforming reaction
  publication-title: ACS Catal.
  doi: 10.1021/cs401027p
– ident: ref_127
– volume: 66
  start-page: 161
  year: 2011
  ident: ref_52
  article-title: Oxygen carriers for chemical looping combustion—4000 h of operational experience
  publication-title: Oil Gas Sci. Technol.
  doi: 10.2516/ogst/2010038
– volume: 28
  start-page: 168
  year: 2014
  ident: ref_53
  article-title: Performance of Cu- and Fe-based oxygen carriers in a 500 Wth CLC unit for sour gas combustion with high H2S content
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2014.06.026
– volume: 4
  start-page: 402
  year: 2011
  ident: ref_41
  article-title: Calcium looping for CO2 capture: Sorbent enhancement through doping
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2011.01.068
– volume: 157
  start-page: 391
  year: 2015
  ident: ref_122
  article-title: Effect of core and shell compositions on MeOx@LaySr1−yFeO3 core–shell redox catalysts for chemical looping reforming of methane
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.06.028
– volume: 26
  start-page: 62
  year: 1968
  ident: ref_155
  article-title: Controlled growth of monodisperse silica spheres in the micron size range
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(68)90272-5
– volume: 66
  start-page: 4636
  year: 2011
  ident: ref_73
  article-title: Reactivity of a spray-dried NiO/NiAl2O4 oxygen carrier for chemical-looping combustion
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.06.025
– volume: 59
  start-page: 597
  year: 2016
  ident: ref_26
  article-title: Present status and overview of chemical looping combustion technology
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.01.003
– volume: 176–177
  start-page: 513
  year: 2015
  ident: ref_138
  article-title: Coke-resistant Ni@SiO2 catalyst for dry reforming of methane
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2015.04.039
– volume: 49
  start-page: 4226
  year: 2013
  ident: ref_142
  article-title: A Ni@ZrO2 nanocomposite for ethanol steam reforming: Enhanced stability via strong metal-oxide interaction
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/C2CC37109J
– volume: 115
  start-page: 152
  year: 2013
  ident: ref_108
  article-title: Use of chemically and physically mixed iron and nickel oxides as oxygen carriers for gas combustion in a CLC process
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2013.05.013
– volume: 35
  start-page: 1281
  year: 2012
  ident: ref_120
  article-title: Chemical looping dry reforming as novel, intensified process for CO2 activation
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201100649
– volume: 4
  start-page: 1259
  year: 2010
  ident: ref_13
  article-title: Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons
  publication-title: ACS Nano
  doi: 10.1021/nn9015423
– volume: 354
  start-page: 449
  year: 2016
  ident: ref_15
  article-title: Super-dry reforming of methane intensifies CO2 utilization via le chatelier’s principle
  publication-title: Science
  doi: 10.1126/science.aah7161
– volume: 43
  start-page: 6978
  year: 2004
  ident: ref_88
  article-title: Investigation of Fe2O3 with MgAl2O4 for chemical-looping combustion
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie049813c
– volume: 102
  start-page: 1439
  year: 2013
  ident: ref_3
  article-title: Advances in CO2 capture technology: A patent review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.09.009
– volume: 189
  start-page: 57
  year: 2009
  ident: ref_49
  article-title: Inhibition and promotion: The effect of earth alkali metals and operating temperature on particle agglomeration/defluidization during incineration in fluidized bed
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2008.06.003
– volume: 2
  start-page: 18929
  year: 2014
  ident: ref_153
  article-title: Hollow nickel-coated silica microspheres containing rhodium nanoparticles for highly selective production of hydrogen from hydrous hydrazine
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03550J
– volume: 18
  start-page: 2733
  year: 2006
  ident: ref_146
  article-title: Highly monodisperse zirconia-coated silica spheres and zirconia-silica hollow spheres with remarkable textural properties
  publication-title: Chem. Mater.
  doi: 10.1021/cm052580a
– volume: 16
  start-page: 155
  year: 2007
  ident: ref_78
  article-title: Application of Fe2O3/Al2O3 composite particles as oxygen carrier of chemical looping combustion
  publication-title: J. Nat. Gas Chem.
  doi: 10.1016/S1003-9953(07)60041-3
– volume: 114
  start-page: 13385
  year: 2017
  ident: ref_37
  article-title: Solar thermochemical splitting of water to generate hydrogen
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1700104114
– volume: 86
  start-page: 113
  year: 2007
  ident: ref_84
  article-title: Titania-supported iron oxide as oxygen carrier for chemical-looping combustion of methane
  publication-title: Fuel
  doi: 10.1016/j.fuel.2006.05.026
– volume: 258
  start-page: 10022
  year: 2012
  ident: ref_95
  article-title: Synergetic effect of ZrO2 on the oxidation–reduction reaction of Fe2O3 during chemical looping combustion
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.06.067
– volume: 40
  start-page: 16021
  year: 2015
  ident: ref_110
  article-title: Performance of Fe–Ni bimetallic oxygen carriers for chemical looping gasification of biomass in a 10 kwth interconnected circulating fluidized bed reactor
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.09.128
– ident: ref_131
– volume: 144
  start-page: 289
  year: 2008
  ident: ref_19
  article-title: Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2008.06.004
– volume: 162
  start-page: 1141
  year: 2016
  ident: ref_33
  article-title: Characterization of catalytic partial oxidation of methane with carbon dioxide utilization and excess enthalpy recovery
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.01.056
– volume: 17
  start-page: 20
  year: 2017
  ident: ref_40
  article-title: A core-shell structured Fe2O3/ZrO2@ZrO2 nanomaterial with enhanced redox activity and stability for CO2 conversion
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2016.11.003
– ident: ref_90
  doi: 10.3390/catal8010027
– volume: 26
  start-page: 3091
  year: 2012
  ident: ref_123
  article-title: Development of sinter-resistant core–shell LaMnxFe1–xO3@mSiO2 oxygen carriers for chemical looping combustion
  publication-title: Energy Fuels
  doi: 10.1021/ef3003137
– volume: 56
  start-page: 2211
  year: 2010
  ident: ref_54
  article-title: Fe2O3 on Ce-, Ca-, or Mg-stabilized ZrO2 as oxygen carrier for chemical-looping combustion using NiO as additive
  publication-title: AIChE J.
  doi: 10.1002/aic.12143
– volume: 4
  start-page: 1305
  year: 2016
  ident: ref_134
  article-title: Performance of perovskite-type oxides as oxygen-carrier materials for chemical looping combustion in the presence of H2S
  publication-title: Energy Technol.
  doi: 10.1002/ente.201600177
– ident: ref_36
  doi: 10.1002/9783527621705
– volume: 5
  start-page: 3028
  year: 2015
  ident: ref_51
  article-title: Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00357
– volume: 53
  start-page: 536
  year: 2016
  ident: ref_28
  article-title: Solid sorbents for in-situ CO2 removal during sorption-enhanced steam reforming process: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.08.068
– volume: 119
  start-page: 24932
  year: 2015
  ident: ref_98
  article-title: The role of CeO2 as a gateway for oxygen storage over CeO2-grafted Fe2O3 composite materials
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b09876
– volume: 28
  start-page: 7043
  year: 2014
  ident: ref_80
  article-title: On a highly reactive Fe2O3/Al2O3 oxygen carrier for in situ gasification chemical looping combustion
  publication-title: Energy Fuels
  doi: 10.1021/ef501981g
– volume: 7
  start-page: 45
  year: 2013
  ident: ref_152
  article-title: Recent progress on synthesis of ceramics core/shell nanostructures
  publication-title: Process. Appl. Ceram.
  doi: 10.2298/PAC1302045S
– volume: 50
  start-page: 2613
  year: 2011
  ident: ref_113
  article-title: Catalytic consequence of oxygen of lanthanum ferrite perovskite in chemical looping reforming of methane
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie100651d
– volume: 179
  start-page: 122
  year: 2015
  ident: ref_118
  article-title: Alumina coated nickel nanoparticles as a highly active catalyst for dry reforming of methane
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2015.05.018
– volume: 272
  start-page: 32
  year: 2016
  ident: ref_68
  article-title: Activity study of NiO-based oxygen carriers in chemical looping steam methane reforming
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2015.10.027
– volume: 312
  start-page: 252
  year: 2017
  ident: ref_151
  article-title: Chemical looping combustion of biomass using metal ferrites as oxygen carriers
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.11.143
– volume: 185
  start-page: 687
  year: 2017
  ident: ref_31
  article-title: Energy-efficient biogas reforming process to produce syngas: The enhanced methane conversion by O2
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.10.114
– volume: 35
  start-page: 11787
  year: 2010
  ident: ref_34
  article-title: Thermodynamic analysis of hydrogen production from methane via autothermal reforming and partial oxidation followed by water gas shift reaction
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2010.08.126
– volume: 13
  start-page: 3511
  year: 2011
  ident: ref_145
  article-title: Synthesis and characterization of ZrO2 capsules and crystalline ZrO2 thin layers on Fe2O3 powders
  publication-title: CrystEngComm
  doi: 10.1039/c0ce00989j
– volume: 55
  start-page: 5911
  year: 2016
  ident: ref_100
  article-title: Deactivation study of Fe2O3–CeO2 during redox cycles for CO production from CO2
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.6b00963
– volume: 89
  start-page: 1265
  year: 2010
  ident: ref_114
  article-title: La1−xSrxFeO3−δ perovskites as redox materials for application in a membrane reactor for simultaneous production of pure hydrogen and synthesis gas
  publication-title: Fuel
  doi: 10.1016/j.fuel.2009.09.028
– volume: 150
  start-page: 30
  year: 2016
  ident: ref_107
  article-title: Investigation of Cu–Fe and Mn–Ni oxides as oxygen carriers for chemical-looping combustion
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2016.04.032
– volume: 84
  start-page: 807
  year: 2006
  ident: ref_61
  article-title: Investigation of Mn3O4 with stabilized ZrO2 for chemical-looping combustion
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/cherd.05206
– volume: 164
  start-page: 371
  year: 2015
  ident: ref_149
  article-title: Effect of support on redox stability of iron oxide for chemical looping conversion of methane
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2014.09.023
– volume: 17
  start-page: 598
  year: 2011
  ident: ref_147
  article-title: High-temperature stable, iron-based core-shell catalysts for ammonia decomposition
  publication-title: Chemistry
  doi: 10.1002/chem.201001827
– ident: ref_25
  doi: 10.1002/9780470872888
– volume: 277
  start-page: 70
  year: 2015
  ident: ref_50
  article-title: Interaction between biomass ash and iron ore oxygen carrier during chemical looping combustion
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.04.105
– volume: 3
  start-page: 22739
  year: 2013
  ident: ref_8
  article-title: Review of recent advances in carbon dioxide separation and capture
  publication-title: RSC Adv.
  doi: 10.1039/c3ra43965h
– volume: 51
  start-page: 2133
  year: 2011
  ident: ref_27
  article-title: Activation strategies for calcium-based sorbents for CO2 capture: A perspective
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie200802y
– volume: 51
  start-page: 16597
  year: 2012
  ident: ref_94
  article-title: The effect of addition of ZrO2 to Fe2O3 for hydrogen production by chemical looping
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie302626x
– volume: 20
  start-page: 1239
  year: 2010
  ident: ref_139
  article-title: Ni@SiO2 yolk-shell nanoreactor catalysts: High temperature stability and recyclability
  publication-title: J. Mater. Chem.
  doi: 10.1039/B918446E
– volume: 49
  start-page: 649
  year: 2015
  ident: ref_6
  article-title: New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5046309
– volume: 63
  start-page: 87
  year: 2014
  ident: ref_92
  article-title: The performance of Fe2O3-CaO oxygen carriers and the interaction of iron oxides with CaO during chemical looping combustion and H2 production
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.11.010
– volume: 63
  start-page: 2994
  year: 2008
  ident: ref_64
  article-title: Reactivity and stability of Ni/Al2O3 oxygen carrier for chemical-looping combustion (CLC)
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2008.02.021
– volume: Volume 147
  start-page: 199
  year: 2004
  ident: ref_136
  article-title: Methane oxidation to synthesis gas using lattice oxygen
  publication-title: Studies in Surface Science and Catalysis
  doi: 10.1016/S0167-2991(04)80051-X
– volume: 91
  start-page: 105
  year: 2011
  ident: ref_79
  article-title: Characterization and evaluation of Fe2O3/Al2O3 oxygen carrier prepared by sol–gel combustion synthesis
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2011.01.010
– volume: 3
  start-page: 856
  year: 2015
  ident: ref_104
  article-title: Mixed oxides of iron and manganese as potential low-cost oxygen carriers for chemical looping combustion
  publication-title: Energy Technol.
  doi: 10.1002/ente.201500035
– reference: 17091997 - J Phys Chem B. 2006 Nov 16;110(45):22525-31
– reference: 27738013 - Science. 2016 Oct 28;354(6311):449-452
– reference: 25485763 - Environ Sci Technol. 2015 Jan 6;49(1):649-56
– reference: 20141175 - ACS Nano. 2010 Mar 23;4(3):1259-78
– reference: 28522461 - Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13385-13393
– reference: 20453272 - Nanotechnology. 2010 Jun 4;21(22):225708
– reference: 19779188 - Science. 2009 Sep 25;325(5948):1652-4
– reference: 19779187 - Science. 2009 Sep 25;325(5948):1647-52
– reference: 21207578 - Chemistry. 2011 Jan 10;17(2):598-605
– reference: 23124111 - Chem Commun (Camb). 2013 May 14;49(39):4226-8
– reference: 25079636 - J Environ Sci (China). 2014 May 1;26(5):1062-70
– reference: 20652916 - Angew Chem Int Ed Engl. 2010 Aug 16;49(35):6058-82
– reference: 17624420 - Dent Mater. 2008 Mar;24(3):289-98
SSID ssj0000331829
Score 2.5328078
SecondaryResourceType review_article
Snippet Combining chemical looping with a traditional fuel conversion process yields a promising technology for low-CO2-emission energy production. Bridged by the...
Combining chemical looping with a traditional fuel conversion process yields a promising technology for low-CO₂-emission energy production. Bridged by the...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1187
SubjectTerms Carbon dioxide
Carbon sequestration
Catalysts
Catalytic converters
Chemicals
Climate change
Conversion
Decomposition
Efficiency
Emissions
Energy resources
Fluidized bed combustion
Fossil fuels
Fuels
Greenhouse gases
Industrial applications
Industrial plant emissions
Iron
Materials selection
Metal oxides
Nanomaterials
Natural gas
Nickel
Nuclear power plants
Organic chemistry
Oxygen
Reduction
Reforming
Review
Stability
Synthesis gas
Utilization
Value added
Title Advanced Chemical Looping Materials for CO2 Utilization: A Review
URI https://www.ncbi.nlm.nih.gov/pubmed/29996567
https://www.proquest.com/docview/2131650599
https://www.proquest.com/docview/2068912475
https://pubmed.ncbi.nlm.nih.gov/PMC6073161
Volume 11
WOSCitedRecordID wos000442117300138&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: KB.
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BwoEeKM-yFJARvfSQ4jgP21zQgkCtgO2qKmh7imI7FitBFtjA72e88QaWol56tDyKI8_Y883Y_gbgixWFRi_DAonuMYhTKwIRyzRwFSaV1DYy43drV-e82xX9vuz5hNvIX6uc7InjjdoMtcuR77MwChFNJFIe3t0HrmqUO131JTRmYc4xlcUtmDs66fZ-NVkWGqHNMlnzkkYY3-_f5i7icUW2pz3RX_Dy7S3JV27n9OP__vASLHrASTq1hSzDTFGuwIdXNISr0On4iwBkQh9Azofjh1TkIq9qEyUIbsnxT0Yuq8GNf7t5QDqkPltYg8vTk9_H3wNfWiHQMWcVbr7K0MLSnCdasFgloeU8VAzRmDUSQYrQ1GirY0MtN0kYaS5zpXB1m0RorqN1aJXDstgAgngvVlpJDBRNbCVVOkxVHlEcQVmZsDZ8nUxzpj3vuCt_cZNh_OFUkr2opA17jexdzbbxrtTWZMYzv-JG2ct0t2G36ca14g5A8rIYPqIMTYVEQMOTNnyqldsMw1zkl6T4cT6l9kbA8XBP95SD6zEfd0pd-a9w89-_9RkWEGwJlxcO6Ra0qofHYhvm9VM1GD3swCzvix1vvtg6O_qGrd6Pi96fZ37_-5o
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dTxQxEJ_gQSI-KILiKWKJ8ODDhm73o62JMReUcOHuuAcg8LRu2224BPaQWzT-U_6NTm8_4JD4xoPPbba7O7-Z-U3bmQHYtCLT6GWYJ9E9emFshSdCGXuuw6SS2gZmmrd23OODgTg5kcM5-F3nwrhrlbVNnBpqM9Zuj3yb-YGPbCKS8vPld891jXKnq3ULjRIW-9mvnxiyTT51v6B8txjb_Xq4s-dVXQU8HXJWoN1RhmaWpjzSgoUq8i3nvmJIRKyR6J-FpkZbHRpquYn8QHOZKoXANpHQXAf43EcwHyLYRQvmh93-8LTZ1aEB6giTZR3UIJB0-yJ1EZZr6j3r-f6is3dvZd5yc7vP_rcftARPK0JNOqUGPIe5LF-GJ7fKLK5Ap1NddCB1eQTSG08TxUg_LUoVJEjeyc4BI0fF6LzKTf1IOqQ8O3kBRw_yDS-hlY_z7BUQ5LOh0kpiIGxCK6nSfqzSgOIKysqIteFDLdZEV3XVXXuP8wTjKweB5AYCbXjfzL0sq4ncO2utlnBSWZRJciPeNmw0w2gL3AFPmmfja5xDYyGRsPGoDaslmJplmItsoxgfzmdg1kxwdcZnR_LR2bTeeExdezP_9b9f6x083jvs95Jed7D_BhaRWAq3B-7TNWgVV9fZW1jQP4rR5Gq9UhoC3x4ahn8Ao3RWKA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT9wwFH6iUFX0AHQBhqV11fbQQzSOs9hGQmgEHXXEMJ1Dqegpje1YjAQZyoRW_Wv9dTxPFhhacePQs5_iJG_7nv0WgHdWZBq9DPMkukcvjK3wRChjz02YVFLbwEzr1r72-WAgTk7kcA7-1LUwLq2ytolTQ23G2p2Rt5kf-IgmIinbtkqLGB509y5-eG6ClLtprcdplCJymP3-heHbZLd3gLx-z1j345f9T141YcDTIWcF2iBlaGZpyiMtWKgi33LuK4agxBqJvlpoarTVoaGWm8gPNJepUijkJhKa6wCf-wgWEJKHqGMLw97R8FtzwkMD1Bcmy56oQSBp-zx10ZYb8D3rBf-CtnczNG-5vO7y__yzVmCpAtqkU2rGM5jL8ufw9Fb7xRfQ6VQJEKRum0D642kBGTlKi1I1CYJ6sv-ZkeNidFbVrO6QDinvVF7C8YN8wyrM5-M8WweCODdUWkkMkE1oJVXaj1UaUNxBWRmxFnyoWZzoqt-6G_txlmDc5cQhuRGHFrxtaC_KLiP_pNqquZ1UlmaS3LC6BW-aZbQR7uInzbPxFdLQWEgEcjxqwVopWM02zEW8UYwP5zMi1xC4_uOzK_nodNqHPKZu7Jm_cf9rvYYnKHtJvzc43IRFxJvCHY37dAvmi8urbBse65_FaHL5qtIfAt8fWgqvAdpWXug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Chemical+Looping+Materials+for+CO%E2%82%82+Utilization%3A+A+Review&rft.jtitle=Materials&rft.au=Hu%2C+Jiawei&rft.au=Galvita%2C+Vladimir+V&rft.au=Poelman%2C+Hilde&rft.au=Marin%2C+Guy+B&rft.date=2018-07-10&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=11&rft.issue=7&rft_id=info:doi/10.3390%2Fma11071187&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon