Person re-identification by modelling principal component analysis coefficients of image dissimilarities

Signature-based matching has been the dominant choice for state-of-the-art person re-identification across multiple disjoint cameras. An approach that exploits image dissimilarities is proposed, treating re-identification as a binary classification problem. To achieve the objective, the person re-id...

Full description

Saved in:
Bibliographic Details
Published in:Electronics letters Vol. 50; no. 14; pp. 1000 - 1001
Main Authors: Martinel, N, Micheloni, C
Format: Journal Article
Language:English
Published: Stevenage The Institution of Engineering and Technology 03.07.2014
Institution of Engineering and Technology
John Wiley & Sons, Inc
Subjects:
ISSN:0013-5194, 1350-911X, 1350-911X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Signature-based matching has been the dominant choice for state-of-the-art person re-identification across multiple disjoint cameras. An approach that exploits image dissimilarities is proposed, treating re-identification as a binary classification problem. To achieve the objective, the person re-identification problem is addressed as follows: (i) first, compute the image dissimilarity between a pair of images acquired from two disjoint cameras; (ii) then learn the linear subspace where the image dissimilarities lie in an unsupervised fashion and (iii) lastly train a binary classifier in the linear subspace to discriminate between image dissimilarities computed for a positive pair (images are for the same person) and a negative pair (images are for different persons). An approach on two publicly available benchmark datasets is evaluated and compared with state-of-the-art methods for person re-identification.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0013-5194
1350-911X
1350-911X
DOI:10.1049/el.2014.0856