GF(2n) bit-parallel squarer using generalised polynomial basis for new class of irreducible pentanomials

Explicit formulae and complexities of bit-parallel GF(2n) squarers for a new class of irreducible pentanomials xn + xn−1 + xk + x + 1, where n is odd and 1 < k < (n − 1)/2 are presented. The squarer is based on the generalised polynomial basis of GF(2n). Its gate delay matches the best results...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics letters Ročník 50; číslo 9; s. 655 - 657
Hlavní autoři: Xiong, Xi, Fan, Haining
Médium: Journal Article
Jazyk:angličtina
Vydáno: Stevenage The Institution of Engineering and Technology 24.04.2014
Institution of Engineering and Technology
John Wiley & Sons, Inc
Témata:
ISSN:0013-5194, 1350-911X, 1350-911X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Explicit formulae and complexities of bit-parallel GF(2n) squarers for a new class of irreducible pentanomials xn + xn−1 + xk + x + 1, where n is odd and 1 < k < (n − 1)/2 are presented. The squarer is based on the generalised polynomial basis of GF(2n). Its gate delay matches the best results, whereas its XOR gate complexity is n + 1, which is only about two thirds of the current best results.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0013-5194
1350-911X
1350-911X
DOI:10.1049/el.2014.0006