GF(2n) bit-parallel squarer using generalised polynomial basis for new class of irreducible pentanomials
Explicit formulae and complexities of bit-parallel GF(2n) squarers for a new class of irreducible pentanomials xn + xn−1 + xk + x + 1, where n is odd and 1 < k < (n − 1)/2 are presented. The squarer is based on the generalised polynomial basis of GF(2n). Its gate delay matches the best results...
Uloženo v:
| Vydáno v: | Electronics letters Ročník 50; číslo 9; s. 655 - 657 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Stevenage
The Institution of Engineering and Technology
24.04.2014
Institution of Engineering and Technology John Wiley & Sons, Inc |
| Témata: | |
| ISSN: | 0013-5194, 1350-911X, 1350-911X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Explicit formulae and complexities of bit-parallel GF(2n) squarers for a new class of irreducible pentanomials xn + xn−1 + xk + x + 1, where n is odd and 1 < k < (n − 1)/2 are presented. The squarer is based on the generalised polynomial basis of GF(2n). Its gate delay matches the best results, whereas its XOR gate complexity is n + 1, which is only about two thirds of the current best results. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0013-5194 1350-911X 1350-911X |
| DOI: | 10.1049/el.2014.0006 |