Backpropagation Algorithms for a Broad Class of Dynamic Networks

This paper introduces a general framework for describing dynamic neural networks-the layered digital dynamic network (LDDN). This framework allows the development of two general algorithms for computing the gradients and Jacobians for these dynamic networks: backpropagation-through-time (BPTT) and r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on neural networks Ročník 18; číslo 1; s. 14 - 27
Hlavní autoři: Orlando De Jesus, Hagan, M.T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.01.2007
Institute of Electrical and Electronics Engineers
Témata:
ISSN:1045-9227
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper introduces a general framework for describing dynamic neural networks-the layered digital dynamic network (LDDN). This framework allows the development of two general algorithms for computing the gradients and Jacobians for these dynamic networks: backpropagation-through-time (BPTT) and real-time recurrent learning (RTRL). The structure of the LDDN framework enables an efficient implementation of both algorithms for arbitrary dynamic networks. This paper demonstrates that the BPTT algorithm is more efficient for gradient calculations, but the RTRL algorithm is more efficient for Jacobian calculations
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1045-9227
DOI:10.1109/TNN.2006.882371