Maximal Soft Compact and Maximal Soft Connected Topologies

In various articles, it is said that the class of all soft topologies on a common universe forms a complete lattice, but in this paper, we prove that it is a complete lattice. Some soft topologies are maximal, and some are minimal with respect to specific soft topological properties. We study the pr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied Computational Intelligence and Soft Computing Ročník 2022; s. 1 - 7
Hlavní autoři: Al Ghour, Samer, Ameen, Zanyar A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Hindawi 08.02.2022
John Wiley & Sons, Inc
Wiley
Témata:
ISSN:1687-9724, 1687-9732
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In various articles, it is said that the class of all soft topologies on a common universe forms a complete lattice, but in this paper, we prove that it is a complete lattice. Some soft topologies are maximal, and some are minimal with respect to specific soft topological properties. We study the properties of soft compact and soft connected topologies that are maximal. Particularly, we prove that a maximal soft compact topology has identical families of soft compact and soft closed sets. We further show that a maximal soft compact topology is soft T1, while a maximal soft connected topology is soft T0. Lastly, we establish that each soft connected relative topology to a maximal soft connected topology is maximal.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-9724
1687-9732
DOI:10.1155/2022/9860015