Laplacian Sparse Coding, Hypergraph Laplacian Sparse Coding, and Applications

Sparse coding exhibits good performance in many computer vision applications. However, due to the overcomplete codebook and the independent coding process, the locality and the similarity among the instances to be encoded are lost. To preserve such locality and similarity information, we propose a L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 35; H. 1; S. 92 - 104
Hauptverfasser: Shenghua Gao, Tsang, Ivor Wai-Hung, Liang-Tien Chia
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Los Alamitos, CA IEEE 01.01.2013
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Sparse coding exhibits good performance in many computer vision applications. However, due to the overcomplete codebook and the independent coding process, the locality and the similarity among the instances to be encoded are lost. To preserve such locality and similarity information, we propose a Laplacian sparse coding (LSc) framework. By incorporating the similarity preserving term into the objective of sparse coding, our proposed Laplacian sparse coding can alleviate the instability of sparse codes. Furthermore, we propose a Hypergraph Laplacian sparse coding (HLSc), which extends our Laplacian sparse coding to the case where the similarity among the instances defined by a hypergraph. Specifically, this HLSc captures the similarity among the instances within the same hyperedge simultaneously, and also makes the sparse codes of them be similar to each other. Both Laplacian sparse coding and Hypergraph Laplacian sparse coding enhance the robustness of sparse coding. We apply the Laplacian sparse coding to feature quantization in Bag-of-Words image representation, and it outperforms sparse coding and achieves good performance in solving the image classification problem. The Hypergraph Laplacian sparse coding is also successfully used to solve the semi-auto image tagging problem. The good performance of these applications demonstrates the effectiveness of our proposed formulations in locality and similarity preservation.
AbstractList Sparse coding exhibits good performance in many computer vision applications. However, due to the overcomplete codebook and the independent coding process, the locality and the similarity among the instances to be encoded are lost. To preserve such locality and similarity information, we propose a Laplacian sparse coding (LSc) framework. By incorporating the similarity preserving term into the objective of sparse coding, our proposed Laplacian sparse coding can alleviate the instability of sparse codes. Furthermore, we propose a Hypergraph Laplacian sparse coding (HLSc), which extends our Laplacian sparse coding to the case where the similarity among the instances defined by a hypergraph. Specifically, this HLSc captures the similarity among the instances within the same hyperedge simultaneously, and also makes the sparse codes of them be similar to each other. Both Laplacian sparse coding and Hypergraph Laplacian sparse coding enhance the robustness of sparse coding. We apply the Laplacian sparse coding to feature quantization in Bag-of-Words image representation, and it outperforms sparse coding and achieves good performance in solving the image classification problem. The Hypergraph Laplacian sparse coding is also successfully used to solve the semi-auto image tagging problem. The good performance of these applications demonstrates the effectiveness of our proposed formulations in locality and similarity preservation.
Sparse coding exhibits good performance in many computer vision applications. However, due to the overcomplete codebook and the independent coding process, the locality and the similarity among the instances to be encoded are lost. To preserve such locality and similarity information, we propose a Laplacian sparse coding (LSc) framework. By incorporating the similarity preserving term into the objective of sparse coding, our proposed Laplacian sparse coding can alleviate the instability of sparse codes. Furthermore, we propose a Hypergraph Laplacian sparse coding (HLSc), which extends our Laplacian sparse coding to the case where the similarity among the instances defined by a hypergraph. Specifically, this HLSc captures the similarity among the instances within the same hyperedge simultaneously, and also makes the sparse codes of them be similar to each other. Both Laplacian sparse coding and Hypergraph Laplacian sparse coding enhance the robustness of sparse coding. We apply the Laplacian sparse coding to feature quantization in Bag-of-Words image representation, and it outperforms sparse coding and achieves good performance in solving the image classification problem. The Hypergraph Laplacian sparse coding is also successfully used to solve the semi-auto image tagging problem. The good performance of these applications demonstrates the effectiveness of our proposed formulations in locality and similarity preservation.Sparse coding exhibits good performance in many computer vision applications. However, due to the overcomplete codebook and the independent coding process, the locality and the similarity among the instances to be encoded are lost. To preserve such locality and similarity information, we propose a Laplacian sparse coding (LSc) framework. By incorporating the similarity preserving term into the objective of sparse coding, our proposed Laplacian sparse coding can alleviate the instability of sparse codes. Furthermore, we propose a Hypergraph Laplacian sparse coding (HLSc), which extends our Laplacian sparse coding to the case where the similarity among the instances defined by a hypergraph. Specifically, this HLSc captures the similarity among the instances within the same hyperedge simultaneously, and also makes the sparse codes of them be similar to each other. Both Laplacian sparse coding and Hypergraph Laplacian sparse coding enhance the robustness of sparse coding. We apply the Laplacian sparse coding to feature quantization in Bag-of-Words image representation, and it outperforms sparse coding and achieves good performance in solving the image classification problem. The Hypergraph Laplacian sparse coding is also successfully used to solve the semi-auto image tagging problem. The good performance of these applications demonstrates the effectiveness of our proposed formulations in locality and similarity preservation.
Author Liang-Tien Chia
Shenghua Gao
Tsang, Ivor Wai-Hung
Author_xml – sequence: 1
  surname: Shenghua Gao
  fullname: Shenghua Gao
  email: gaos0004@ntu.edu.sg
  organization: Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore
– sequence: 2
  givenname: Ivor Wai-Hung
  surname: Tsang
  fullname: Tsang, Ivor Wai-Hung
  email: ivortsang@ntu.edu.sg
  organization: Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore
– sequence: 3
  surname: Liang-Tien Chia
  fullname: Liang-Tien Chia
  email: asltchia@ntu.edu.sg
  organization: Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27677736$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22392702$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1r3DAQBmBRUpJNmmNPhWAogR7qjUaSZfu4LPmCDS00OYvRh1MFr-xI3kP-fZXspoVA6Gkuz7ww8x6SvTAER8hnoHMA2p7d_lzcXM8ZBTaX_AOZMZC0bFnL9siMgmRl07DmgBym9EApiIryfXLAGG9ZTdmM3Kxw7NF4DMWvEWNyxXKwPtx_L66eRhfvI46_i3cNBlssxrH3Bic_hPSJfOywT-54N4_I3cX57fKqXP24vF4uVqURNZ1Kq51wHRct18y62nIm88BOQGM4F7apdEWtlNhqITrhXGO1RkAwnW4r3fAj8m2bO8bhcePSpNY-Gdf3GNywSQo4VJDzBfs_ZVLWABIg069v6MOwiSEfkhUVsmJUtlmd7NRGr51VY_RrjE_q9acZnO4AJoN9FzEYn_65WtZ1zWV2fOtMHFKKrlPGTy9_nCL6XgFVzw2rl4bVc8NK8rxVvtl6DX7Pf9l675z7ayXIiueT_wBL5K2y
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TNNLS_2018_2856096
crossref_primary_10_1109_LGRS_2013_2290531
crossref_primary_10_1109_TIP_2014_2353814
crossref_primary_10_1109_TSIPN_2016_2631890
crossref_primary_10_1080_01431161_2016_1277042
crossref_primary_10_1016_j_patcog_2015_12_005
crossref_primary_10_1016_j_ins_2017_12_025
crossref_primary_10_1016_j_ins_2015_07_005
crossref_primary_10_1016_j_ins_2017_12_020
crossref_primary_10_1016_j_neucom_2021_12_063
crossref_primary_10_1016_j_cviu_2016_10_012
crossref_primary_10_1109_TIP_2019_2934576
crossref_primary_10_1109_JSTARS_2016_2602305
crossref_primary_10_1109_TCSVT_2017_2678443
crossref_primary_10_1016_j_neucom_2015_03_086
crossref_primary_10_1002_wics_1646
crossref_primary_10_1109_TGRS_2015_2399978
crossref_primary_10_1109_TSP_2016_2550016
crossref_primary_10_1109_TIE_2014_2378735
crossref_primary_10_1109_TMM_2013_2284755
crossref_primary_10_1016_j_future_2021_09_044
crossref_primary_10_1016_j_neucom_2015_10_048
crossref_primary_10_1109_TPAMI_2022_3168882
crossref_primary_10_1109_ACCESS_2023_3331592
crossref_primary_10_1109_TCSVT_2019_2963862
crossref_primary_10_1016_j_patcog_2017_04_030
crossref_primary_10_1109_ACCESS_2017_2730281
crossref_primary_10_1109_TIP_2015_2465171
crossref_primary_10_1016_j_neucom_2015_07_084
crossref_primary_10_1109_TGRS_2017_2761893
crossref_primary_10_1186_s13640_017_0178_1
crossref_primary_10_3390_rs8120985
crossref_primary_10_1109_TIP_2016_2526910
crossref_primary_10_1016_j_patcog_2016_09_011
crossref_primary_10_1109_ACCESS_2020_2984941
crossref_primary_10_1109_TGRS_2016_2643166
crossref_primary_10_1016_j_cviu_2013_03_007
crossref_primary_10_1049_iet_ipr_2016_0391
crossref_primary_10_1007_s00521_016_2269_9
crossref_primary_10_1109_TIE_2016_2552147
crossref_primary_10_1016_j_neunet_2013_11_009
crossref_primary_10_1016_j_patcog_2019_01_015
crossref_primary_10_1109_TCSVT_2018_2879833
crossref_primary_10_1016_j_neucom_2020_04_138
crossref_primary_10_1109_TCYB_2017_2726079
crossref_primary_10_2139_ssrn_5183492
crossref_primary_10_1109_TAFFC_2018_2854166
crossref_primary_10_1109_TIP_2020_3024728
crossref_primary_10_1109_TCSVT_2020_2989659
crossref_primary_10_1109_TIP_2015_2472277
crossref_primary_10_1016_j_ins_2016_06_029
crossref_primary_10_3390_rs11091039
crossref_primary_10_1109_TKDE_2018_2880448
crossref_primary_10_1007_s10462_018_9673_8
crossref_primary_10_1007_s13042_019_00992_9
crossref_primary_10_1007_s11263_017_1007_9
crossref_primary_10_1016_j_neucom_2015_06_064
crossref_primary_10_3390_app8112175
crossref_primary_10_1016_j_optlaseng_2023_107526
crossref_primary_10_1109_TASLP_2015_2412466
crossref_primary_10_1007_s00138_013_0536_7
crossref_primary_10_1049_iet_ipr_2017_0251
crossref_primary_10_1007_s11042_016_3500_5
crossref_primary_10_1016_j_jvcir_2020_102763
crossref_primary_10_1016_j_neucom_2015_06_096
crossref_primary_10_1109_TCSVT_2016_2527380
crossref_primary_10_1109_TGRS_2019_2952383
crossref_primary_10_1186_s12859_021_04333_y
crossref_primary_10_1109_TAFFC_2021_3077489
crossref_primary_10_1016_j_ins_2018_05_048
crossref_primary_10_1016_j_ins_2020_08_097
crossref_primary_10_3390_rs13071372
crossref_primary_10_1007_s11265_014_0907_y
crossref_primary_10_1016_j_neucom_2019_10_074
crossref_primary_10_1007_s11042_014_2257_y
crossref_primary_10_1016_j_sigpro_2020_107569
crossref_primary_10_1109_TCSVT_2018_2856827
crossref_primary_10_1109_ACCESS_2017_2739807
crossref_primary_10_1109_TPAMI_2015_2462360
crossref_primary_10_1109_TCSVT_2017_2694060
crossref_primary_10_1109_TCYB_2018_2869789
crossref_primary_10_1109_TNNLS_2016_2545112
crossref_primary_10_1109_TGRS_2023_3294884
crossref_primary_10_1109_TIP_2016_2639438
crossref_primary_10_3390_electronics12194083
crossref_primary_10_1016_j_neucom_2017_07_003
crossref_primary_10_1109_TSIPN_2022_3169633
crossref_primary_10_1109_TIP_2015_2467315
crossref_primary_10_1016_j_engappai_2013_11_002
crossref_primary_10_1016_j_patcog_2018_03_027
crossref_primary_10_1109_TIP_2015_2485783
crossref_primary_10_1371_journal_pone_0173613
crossref_primary_10_1109_TPAMI_2019_2893953
crossref_primary_10_1016_j_eswa_2019_01_017
crossref_primary_10_1364_AO_56_006094
crossref_primary_10_1109_TIP_2018_2889960
crossref_primary_10_1016_j_neucom_2019_05_103
crossref_primary_10_1109_LSP_2014_2358853
crossref_primary_10_1016_j_knosys_2013_09_004
crossref_primary_10_1016_j_ins_2015_03_011
crossref_primary_10_1016_j_patcog_2014_09_002
crossref_primary_10_1109_TIP_2015_2447735
crossref_primary_10_1016_j_imavis_2014_07_001
crossref_primary_10_1016_j_neucom_2019_01_004
crossref_primary_10_1016_j_neucom_2020_04_063
crossref_primary_10_1007_s10489_022_03406_6
crossref_primary_10_1109_ACCESS_2018_2884027
crossref_primary_10_1016_j_knosys_2015_10_019
crossref_primary_10_1109_TMM_2017_2759500
crossref_primary_10_3390_math12111733
crossref_primary_10_1016_j_eswa_2016_12_012
crossref_primary_10_3390_app122211628
crossref_primary_10_1080_24725579_2020_1716115
crossref_primary_10_1007_s11263_014_0739_z
crossref_primary_10_3390_rs9040335
crossref_primary_10_1109_TIP_2016_2554320
crossref_primary_10_1007_s13042_020_01203_6
crossref_primary_10_1016_j_neucom_2018_06_067
crossref_primary_10_1109_ACCESS_2018_2878553
crossref_primary_10_1007_s00521_023_09335_w
crossref_primary_10_1109_TCYB_2018_2810806
crossref_primary_10_1016_j_ijleo_2015_08_168
crossref_primary_10_1016_j_patcog_2019_06_015
crossref_primary_10_3390_rs11131552
crossref_primary_10_1109_TIP_2015_2451953
crossref_primary_10_1016_j_neucom_2015_11_112
crossref_primary_10_1155_2022_1992429
crossref_primary_10_1109_TCSVT_2023_3266801
crossref_primary_10_1016_j_cosrev_2021_100374
crossref_primary_10_1109_JSTARS_2015_2508448
crossref_primary_10_1080_01431161_2016_1249302
crossref_primary_10_1109_LSP_2017_2764103
crossref_primary_10_1080_01431161_2020_1783711
crossref_primary_10_1109_TMM_2017_2685179
crossref_primary_10_1109_TMI_2020_2968770
crossref_primary_10_1016_j_patcog_2015_02_003
crossref_primary_10_1016_j_neucom_2016_05_021
crossref_primary_10_1016_j_knosys_2020_105482
crossref_primary_10_1007_s00521_015_2042_5
crossref_primary_10_1016_j_neucom_2014_11_067
crossref_primary_10_1007_s11432_015_5289_7
crossref_primary_10_1016_j_neucom_2016_05_039
crossref_primary_10_1016_j_neucom_2013_12_027
crossref_primary_10_1109_TCSVT_2015_2389413
crossref_primary_10_1007_s11042_020_09668_x
crossref_primary_10_1016_j_sigpro_2014_08_020
crossref_primary_10_3390_math11102359
crossref_primary_10_1109_TMM_2013_2291214
crossref_primary_10_1016_j_neucom_2018_01_011
crossref_primary_10_1109_ACCESS_2017_2695239
crossref_primary_10_1109_TCSVT_2016_2613125
crossref_primary_10_1016_j_physa_2018_09_093
crossref_primary_10_1145_3078846
crossref_primary_10_1109_TMM_2020_3003747
crossref_primary_10_1109_TCSVT_2023_3241172
crossref_primary_10_1109_TNNLS_2019_2953675
crossref_primary_10_1109_JBHI_2022_3151333
crossref_primary_10_1016_j_patcog_2015_03_012
crossref_primary_10_3390_math9243259
crossref_primary_10_1016_j_dsp_2015_12_013
crossref_primary_10_1109_TNNLS_2017_2748952
crossref_primary_10_1371_journal_pcbi_1012448
crossref_primary_10_3390_s19122809
crossref_primary_10_1016_j_neucom_2015_07_139
crossref_primary_10_1007_s11760_014_0701_0
crossref_primary_10_1109_TCYB_2015_2433926
crossref_primary_10_1109_ACCESS_2018_2845298
crossref_primary_10_1007_s11042_015_2626_1
crossref_primary_10_1016_j_dsp_2013_11_013
crossref_primary_10_1109_TMM_2021_3111500
crossref_primary_10_1016_j_acha_2019_03_003
crossref_primary_10_1016_j_imavis_2016_10_009
crossref_primary_10_1016_j_patcog_2018_11_005
crossref_primary_10_1016_j_patcog_2022_109067
crossref_primary_10_1016_j_neucom_2014_12_083
crossref_primary_10_1016_j_neucom_2015_09_116
crossref_primary_10_1109_JSTARS_2020_3011431
crossref_primary_10_1109_TNNLS_2015_2490080
crossref_primary_10_1016_j_neucom_2015_01_035
crossref_primary_10_1016_j_inffus_2024_102546
crossref_primary_10_1007_s11042_017_4399_1
crossref_primary_10_1016_j_patcog_2015_11_016
crossref_primary_10_1007_s11063_019_10015_x
crossref_primary_10_1109_TCYB_2018_2870487
crossref_primary_10_1109_TIP_2014_2344296
crossref_primary_10_1109_TCYB_2018_2802934
crossref_primary_10_1109_TNNLS_2017_2728060
crossref_primary_10_1109_TIP_2016_2623487
crossref_primary_10_1109_TCSVT_2020_2967424
crossref_primary_10_1016_j_neucom_2015_02_014
crossref_primary_10_1109_TPAMI_2019_2921031
crossref_primary_10_1007_s13042_019_01035_z
crossref_primary_10_1145_2601408
crossref_primary_10_1016_j_gene_2019_04_060
crossref_primary_10_1016_j_neucom_2013_08_040
crossref_primary_10_1109_LGRS_2014_2362512
crossref_primary_10_1109_TNNLS_2020_2979685
crossref_primary_10_1007_s11042_019_08152_5
crossref_primary_10_1007_s11063_018_9809_5
crossref_primary_10_1109_TIP_2013_2259837
crossref_primary_10_1109_TKDE_2022_3144952
crossref_primary_10_1007_s13042_023_02012_3
crossref_primary_10_1007_s11431_021_1957_3
crossref_primary_10_1016_j_knosys_2015_06_001
crossref_primary_10_1155_2021_6699335
crossref_primary_10_1109_JSTSP_2016_2555239
crossref_primary_10_1109_TIP_2014_2316373
crossref_primary_10_1016_j_neucom_2014_11_028
crossref_primary_10_1109_LGRS_2015_2430871
crossref_primary_10_1155_2014_632871
crossref_primary_10_1109_TNNLS_2016_2572204
crossref_primary_10_1109_TMM_2014_2299516
crossref_primary_10_1016_j_neunet_2019_07_013
crossref_primary_10_1016_j_patcog_2018_05_024
crossref_primary_10_1016_j_apor_2023_103515
crossref_primary_10_1016_j_patcog_2016_12_015
crossref_primary_10_1016_j_ins_2019_03_012
crossref_primary_10_1016_j_patcog_2014_02_007
crossref_primary_10_1016_j_neucom_2015_12_130
crossref_primary_10_1016_j_jvcir_2014_12_002
crossref_primary_10_1109_TIP_2014_2311377
crossref_primary_10_1109_TIP_2019_2903294
crossref_primary_10_1109_ACCESS_2020_3021081
crossref_primary_10_1109_JSTARS_2014_2339298
crossref_primary_10_1109_JSTARS_2020_3014493
crossref_primary_10_1109_TIP_2014_2330792
crossref_primary_10_1016_j_compmedimag_2014_06_002
Cites_doi 10.1145/1390334.1390423
10.1145/1553374.1553431
10.1109/CVPR.2009.5206861
10.1145/1367497.1367542
10.1016/S0042-6989(97)00169-7
10.1007/s11222-007-9033-z
10.1109/CVPR.2010.5540033
10.1109/ICASSP.2009.4960432
10.1109/CVPR.2007.383172
10.1109/ICCV.2003.1238663
10.1109/CVPR.2006.68
10.1109/CVPR.2009.5206816
10.1109/CVPR.2008.4587598
10.1109/TPAMI.2008.79
10.1109/CVPR.2009.5206757
10.1109/ICCV.2007.4408872
10.1109/CVPR.2009.5206866
10.1002/cpa.20124
10.1109/ICCV.2009.5459267
10.1109/CVPR.2010.5540018
10.1109/ICCV.2009.5459178
10.1109/CVPR.2010.5539943
10.1023/b:visi.0000029664.99615.94
10.1109/TSP.2006.881199
10.7551/mitpress/7503.003.0105
10.1007/s11263-010-0338-6
10.1109/cvpr.2010.5540139
10.1109/ICCV.2005.239
10.1109/CVPR.2010.5539963
10.1007/978-3-540-88690-7_52
10.1145/1873951.1874164
10.1109/ICCV.2009.5459452
10.1007/978-3-642-15561-1_1
10.1145/1646396.1646452
10.1145/1143844.1143847
10.1109/CVPR.2009.5206851
10.1109/TIP.2006.881969
10.7551/mitpress/7503.003.0205
10.1111/j.1467-9868.2005.00532.x
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TPAMI.2012.63
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE - Academic
Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 2160-9292
1939-3539
EndPage 104
ExternalDocumentID 2825187981
22392702
27677736
10_1109_TPAMI_2012_63
6165311
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
AAYOK
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c470t-dbe4ef3493b2de7d326de7af418c334d85b50d66a9b44f4ee8dbba1a1cfb95b83
IEDL.DBID RIE
ISICitedReferencesCount 308
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000311127700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 09:00:39 EDT 2025
Sat Sep 27 22:00:28 EDT 2025
Sun Nov 09 08:15:41 EST 2025
Thu Apr 03 06:56:41 EDT 2025
Wed Apr 02 07:35:46 EDT 2025
Tue Nov 18 22:30:36 EST 2025
Sat Nov 29 08:12:21 EST 2025
Tue Aug 26 16:41:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hypergraph
Computer vision
Image processing
Laplacian sparse coding
locality preserving
Locality
Information retrieval
Laplacian
Bag of words
Codebook
semi-auto image tagging
Signal quantization
Tagging
hypergraph Laplacian sparse coding
Sparse representation
Robustness
Image classification
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-dbe4ef3493b2de7d326de7af418c334d85b50d66a9b44f4ee8dbba1a1cfb95b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 22392702
PQID 1204652069
PQPubID 85458
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TPAMI_2012_63
proquest_journals_1204652069
proquest_miscellaneous_1315134942
proquest_miscellaneous_1266711611
pascalfrancis_primary_27677736
ieee_primary_6165311
pubmed_primary_22392702
crossref_primary_10_1109_TPAMI_2012_63
PublicationCentury 2000
PublicationDate 2013-Jan.
2013-01-00
2013
2013-Jan
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-Jan.
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2013
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
Chen (ref22) 2010
ref15
Mairal (ref13)
ref14
ref53
ref52
ref11
ref10
Kavukcuoglu (ref48) 2008
ref16
Friedman (ref18) 2010
Donoho (ref2) 2004
ref46
ref45
ref47
Mosci (ref19)
ref42
ref41
Kim (ref21)
ref44
Lee (ref34)
ref49
ref8
Griffin (ref43) 2007
ref7
ref9
Bengio (ref17)
ref4
ref3
ref6
ref5
ref35
Chen (ref54)
ref37
ref36
ref31
ref30
ref33
ref32
Ameesh (ref51) 2010; 90
ref38
Mairal (ref39) 2010; 11
Ameesh (ref50)
ref24
ref23
ref26
ref25
ref20
Boureau (ref40)
ref28
ref27
Donoho (ref1) 2004
Liu (ref29)
References_xml – ident: ref33
  doi: 10.1145/1390334.1390423
– ident: ref20
  doi: 10.1145/1553374.1553431
– ident: ref46
  doi: 10.1109/CVPR.2009.5206861
– volume-title: technical report
  year: 2010
  ident: ref18
  article-title: A Note on the Group Lasso and a Sparse Group Lasso
– ident: ref32
  doi: 10.1145/1367497.1367542
– ident: ref36
  doi: 10.1016/S0042-6989(97)00169-7
– ident: ref35
  doi: 10.1007/s11222-007-9033-z
– volume-title: Proc. Advances in Neural Information Processing Systems
  ident: ref17
  article-title: Group Sparse Coding
– volume-title: technical report
  year: 2007
  ident: ref43
  article-title: Caltech-256 Object Category Data Set
– volume-title: Proc. Advances in Neural Information Processing Systems
  ident: ref19
  article-title: A Primal-Dual Algorithm for Group Sparse Regularization with Overlapping Groups
– ident: ref52
  doi: 10.1109/CVPR.2010.5540033
– ident: ref53
  doi: 10.1109/ICASSP.2009.4960432
– volume-title: technical report
  year: 2010
  ident: ref22
  article-title: An Efficient Proximal-Gradient Method for Single and Multi-Task Regression with Structured Sparsity
– ident: ref26
  doi: 10.1109/CVPR.2007.383172
– ident: ref23
  doi: 10.1109/ICCV.2003.1238663
– ident: ref27
  doi: 10.1109/CVPR.2006.68
– ident: ref30
  doi: 10.1109/CVPR.2009.5206816
– volume-title: Proc. Advances in Neural Information Processing Systems
  ident: ref13
  article-title: Supervised Dictionary Learning
– ident: ref25
  doi: 10.1109/CVPR.2008.4587598
– ident: ref10
  doi: 10.1109/TPAMI.2008.79
– ident: ref8
  doi: 10.1109/CVPR.2009.5206757
– volume-title: technical report
  year: 2004
  ident: ref2
  article-title: For Most Large Underdetermined Systems of Linear Equations, the Minimal l1-Norm Near-Solution Approximates the Sparsest Near-Solution
– volume-title: Proc. Int’l Conf. Machine Learning
  ident: ref21
  article-title: Tree-Guided Group Lasso for Multi-Task Regression with Structured Sparsity
– ident: ref45
  doi: 10.1109/ICCV.2007.4408872
– ident: ref11
  doi: 10.1109/CVPR.2009.5206866
– ident: ref3
  doi: 10.1002/cpa.20124
– ident: ref12
  doi: 10.1109/ICCV.2009.5459267
– ident: ref14
  doi: 10.1109/CVPR.2010.5540018
– ident: ref24
  doi: 10.1109/ICCV.2009.5459178
– ident: ref15
  doi: 10.1109/CVPR.2010.5539943
– ident: ref42
  doi: 10.1023/b:visi.0000029664.99615.94
– volume-title: Proc. Conf. Uncertainty in Artificial Intelligence
  ident: ref54
  article-title: Super-Samples from Kernel Herding
– ident: ref6
  doi: 10.1109/TSP.2006.881199
– volume-title: Proc. Advances in Neural Information Processing Systems
  ident: ref34
  article-title: Efficient Sparse Coding Algorithms
  doi: 10.7551/mitpress/7503.003.0105
– volume: 90
  start-page: 88
  year: 2010
  ident: ref51
  article-title: A New Baseline for Image Annotation
  publication-title: Int’l J. Computer Vision
  doi: 10.1007/s11263-010-0338-6
– ident: ref4
  doi: 10.1109/cvpr.2010.5540139
– ident: ref29
  article-title: Textual Query of Consumer Photos Facilitated by Large-Scale Web Data
  publication-title: IEEE Trans. Pattern Analysis and Machine Intelligence
– ident: ref28
  doi: 10.1109/ICCV.2005.239
– volume-title: Proc. Int’l Conf. Machine Learning
  ident: ref40
  article-title: A Theoretical Analysis of Feature Pooling in Visual Recognition
– ident: ref41
  doi: 10.1109/CVPR.2010.5539963
– ident: ref44
  doi: 10.1007/978-3-540-88690-7_52
– volume: 11
  start-page: 19
  year: 2010
  ident: ref39
  article-title: Online Learning for Matrix Factorization and Sparse Coding
  publication-title: J. Machine Learning Research
– ident: ref31
  doi: 10.1145/1873951.1874164
– ident: ref5
  doi: 10.1109/ICCV.2009.5459452
– volume-title: Proc. European Conf. Computer Vision
  ident: ref50
  article-title: A New Baseline for Image Annotation
– ident: ref9
  doi: 10.1007/978-3-642-15561-1_1
– ident: ref49
  doi: 10.1145/1646396.1646452
– ident: ref38
  doi: 10.1145/1143844.1143847
– volume-title: technical report
  year: 2004
  ident: ref1
  article-title: For Most Large Underdetermined Systems of Linear Equations, the Minimal l1-Norm Solution Is Also the Sparsest Solution
– ident: ref47
  doi: 10.1109/CVPR.2009.5206851
– ident: ref7
  doi: 10.1109/TIP.2006.881969
– volume-title: technical report
  year: 2008
  ident: ref48
  article-title: Fast Inference in Sparse Coding Algorithms with Applications to Object Recognition
– ident: ref37
  doi: 10.7551/mitpress/7503.003.0205
– ident: ref16
  doi: 10.1111/j.1467-9868.2005.00532.x
SSID ssj0014503
Score 2.5617855
Snippet Sparse coding exhibits good performance in many computer vision applications. However, due to the overcomplete codebook and the independent coding process, the...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 92
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Coding
Coding, codes
Computer science; control theory; systems
Data Compression - methods
Data processing. List processing. Character string processing
Decision Support Techniques
Encoding
Exact sciences and technology
Graphs
hypergraph Laplacian sparse coding
Image classification
Image coding
Image Interpretation, Computer-Assisted - methods
Image reconstruction
Information retrieval. Graph
Information, signal and communications theory
Laplace equations
Laplacian sparse coding
locality preserving
Memory organisation. Data processing
Pattern analysis
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Preserves
Quantization
Representations
Robustness
semi-auto image tagging
Signal and communications theory
Similarity
Software
Sparse matrices
Studies
Tagging
Telecommunications and information theory
Theoretical computing
Title Laplacian Sparse Coding, Hypergraph Laplacian Sparse Coding, and Applications
URI https://ieeexplore.ieee.org/document/6165311
https://www.ncbi.nlm.nih.gov/pubmed/22392702
https://www.proquest.com/docview/1204652069
https://www.proquest.com/docview/1266711611
https://www.proquest.com/docview/1315134942
Volume 35
WOSCitedRecordID wos000311127700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7S0EN7aNqkD7fp4kLpaZ1ItizJxyU0pJCEQFPYm9FjBIXiDfvo7-9I9joJdAs92aA5iHkwMxrp-wA-S-OCVlgXDo0sRCOqwnodiohNTuW1VaVN6PqX6vpaz-fNzR5Mx7cwiJgun-FJ_E2zfL9wm3hUdiq5JJehXueJUrJ_qzVODESdWJCpgqEIpzbiHk_z9PZmdvUt3uIqT2TkzaGM2MRnWI9SUeJWiTcjzYqUE3pWi91lZ0o_5wf_t_GX8GIoM_NZ7xevYA-7QzjYUjjkQ0QfwvMHeIRHcHVp4h0t8pj8-x11vJifLWJum-YX1K4uE7h1vlPGdD6fPZiHv4Yf519vzy6KgW-hcEKxdeEtCgxkpcqWHpWnyo4-JgiuXVUJr2tbMy-laawQQSBqb63hhrtgm9rq6g3sd4sO30HOuTG20Uw5S7KsMmgDo87ECxOQBcxgulV96wYw8siJ8atNTQlr2mS0NhqtlVUGX0bxux6FY5fgUdT-KDQoPoPJI7uO66WSSqlKZnC8NXQ7BPGq5SUTsi6ZbDL4NC5T-MWZiulwsYkyUipOZTP_h0xFZVWEASozeNs70f0GBl98__eNf4BnZeLfiGc-x7C_Xm7wIzx1v9c_V8sJxcFcT1Ic_AHBPgNv
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB5CGmh7aNqkSd2mqQulp3Ui2bJkH5eQsCG7S6BbyM1I1ggKxRv20d_fkex1EugWcrJBcxDzYGY00vcBfJO6doXCPKlRy0SUIkuMLVziscmpvDYqNQFdf6ym0-LurrzdgUH_FgYRw-UzPPO_YZZv5_XaH5WdSy7JZajXeZELkbL2tVY_MxB54EGmGoZinBqJB0TN89ntcHLt73GlZ9Iz51BOLP1DrCfJKLCr-LuReknqcS2vxfbCMySgq_3nbf0tvOkKzXjYesY72MHmAPY3JA5xF9MH8PoRIuEhTMba39Iin4l_3FPPi_HF3Ge3QTyihnUR4K3jrTK6sfHw0UT8Pfy8upxdjJKOcSGphWKrxBoU6MhOmUktKku1HX20E7yos0zYIjc5s1Lq0gjhBGJhjdFc89qZMjdFdgS7zbzBDxBzrrUpC6ZqQ7Is02gco97ECu2QOYxgsFF9VXdw5J4V43cV2hJWVsFolTdaJbMIvvfi9y0OxzbBQ6_9XqhTfASnT-zar6dKKqUyGcHJxtBVF8bLiqdMyDxlsozga79MAeinKrrB-drLSKk4Fc78PzIZFVYeCCiN4Lh1oocNdL748d8b_wIvR7PJuBpfT28-was0sHH4E6AT2F0t1vgZ9uo_q1_LxWmIhr9BOQXO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laplacian+Sparse+Coding%2C+Hypergraph+Laplacian+Sparse+Coding%2C+and+Applications&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=SHENGHUA+GAO&rft.au=TSANG%2C+Ivor+Wai-Hung&rft.au=CHIA%2C+Liang-Tien&rft.date=2013&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=35&rft.issue=1&rft.spage=92&rft.epage=104&rft_id=info:doi/10.1109%2FTPAMI.2012.63&rft.externalDBID=n%2Fa&rft.externalDocID=27677736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon