Flavones, Flavonols, and Glycosylated Derivatives—Impact on Candida albicans Growth and Virulence, Expression of CDR1 and ERG11, Cytotoxicity

Due to the high incidence of fungal infections worldwide, there is an increasing demand for the development of novel therapeutic approaches. A wide range of natural products has been extensively studied, with considerable focus on flavonoids. The antifungal capacity of selected flavones (luteolin, a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pharmaceuticals (Basel, Switzerland) Ročník 14; číslo 1; s. 27
Hlavní autoři: Ivanov, Marija, Kannan, Abhilash, Stojković, Dejan S., Glamočlija, Jasmina, Calhelha, Ricardo C., Ferreira, Isabel C. F. R., Sanglard, Dominique, Soković, Marina
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI 30.12.2020
MDPI AG
Témata:
ISSN:1424-8247, 1424-8247
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Due to the high incidence of fungal infections worldwide, there is an increasing demand for the development of novel therapeutic approaches. A wide range of natural products has been extensively studied, with considerable focus on flavonoids. The antifungal capacity of selected flavones (luteolin, apigenin), flavonols (quercetin), and their glycosylated derivatives (quercitrin, isoquercitrin, rutin, and apigetrin) along with their impact on genes encoding efflux pumps (CDR1) and ergosterol biosynthesis enzyme (ERG11) has been the subject of this study. Cytotoxicity of flavonoids towards primary liver cells has also been addressed. Luteolin, quercitrin, isoquercitrin, and rutin inhibited growth of Candida albicans with the minimal inhibitory concentration of 37.5 µg/mL. The application of isoquercitrin has reduced C. albicans biofilm establishing capacities for 76%, and hyphal formation by yeast. In vitro treatment with apigenin, apigetrin, and quercitrin has downregulated CDR1. Contrary to rutin and apigenin, isoquercitrin has upregulated ERG11. Except apigetrin and quercitrin (90 µg/mL and 73 µg/mL, respectively inhibited 50% of the net cell growth), the examined flavonoids did not exhibit cytotoxicity. The reduction of both fungal virulence and expression of antifungal resistance-linked genes was the most pronounced for apigenin and apigetrin; these results indicate flavonoids’ indispensable capacity for further development as part of an anticandidal therapy or prevention strategy.
AbstractList Due to the high incidence of fungal infections worldwide, there is an increasing demand for the development of novel therapeutic approaches. A wide range of natural products has been extensively studied, with considerable focus on flavonoids. The antifungal capacity of selected flavones (luteolin, apigenin), flavonols (quercetin), and their glycosylated derivatives (quercitrin, isoquercitrin, rutin, and apigetrin) along with their impact on genes encoding efflux pumps (CDR1) and ergosterol biosynthesis enzyme (ERG11) has been the subject of this study. Cytotoxicity of flavonoids towards primary liver cells has also been addressed. Luteolin, quercitrin, isoquercitrin, and rutin inhibited growth of Candida albicans with the minimal inhibitory concentration of 37.5 µg/mL. The application of isoquercitrin has reduced C. albicans biofilm establishing capacities for 76%, and hyphal formation by yeast. In vitro treatment with apigenin, apigetrin, and quercitrin has downregulated CDR1. Contrary to rutin and apigenin, isoquercitrin has upregulated ERG11. Except apigetrin and quercitrin (90 µg/mL and 73 µg/mL, respectively inhibited 50% of the net cell growth), the examined flavonoids did not exhibit cytotoxicity. The reduction of both fungal virulence and expression of antifungal resistance-linked genes was the most pronounced for apigenin and apigetrin; these results indicate flavonoids' indispensable capacity for further development as part of an anticandidal therapy or prevention strategy.Due to the high incidence of fungal infections worldwide, there is an increasing demand for the development of novel therapeutic approaches. A wide range of natural products has been extensively studied, with considerable focus on flavonoids. The antifungal capacity of selected flavones (luteolin, apigenin), flavonols (quercetin), and their glycosylated derivatives (quercitrin, isoquercitrin, rutin, and apigetrin) along with their impact on genes encoding efflux pumps (CDR1) and ergosterol biosynthesis enzyme (ERG11) has been the subject of this study. Cytotoxicity of flavonoids towards primary liver cells has also been addressed. Luteolin, quercitrin, isoquercitrin, and rutin inhibited growth of Candida albicans with the minimal inhibitory concentration of 37.5 µg/mL. The application of isoquercitrin has reduced C. albicans biofilm establishing capacities for 76%, and hyphal formation by yeast. In vitro treatment with apigenin, apigetrin, and quercitrin has downregulated CDR1. Contrary to rutin and apigenin, isoquercitrin has upregulated ERG11. Except apigetrin and quercitrin (90 µg/mL and 73 µg/mL, respectively inhibited 50% of the net cell growth), the examined flavonoids did not exhibit cytotoxicity. The reduction of both fungal virulence and expression of antifungal resistance-linked genes was the most pronounced for apigenin and apigetrin; these results indicate flavonoids' indispensable capacity for further development as part of an anticandidal therapy or prevention strategy.
Due to the high incidence of fungal infections worldwide, there is an increasing demand for the development of novel therapeutic approaches. A wide range of natural products has been extensively studied, with considerable focus on flavonoids. The antifungal capacity of selected flavones (luteolin, apigenin), flavonols (quercetin), and their glycosylated derivatives (quercitrin, isoquercitrin, rutin, and apigetrin) along with their impact on genes encoding efflux pumps (CDR1) and ergosterol biosynthesis enzyme (ERG11) has been the subject of this study. Cytotoxicity of flavonoids towards primary liver cells has also been addressed. Luteolin, quercitrin, isoquercitrin, and rutin inhibited growth of Candida albicans with the minimal inhibitory concentration of 37.5 µg/mL. The application of isoquercitrin has reduced C. albicans biofilm establishing capacities for 76%, and hyphal formation by yeast. In vitro treatment with apigenin, apigetrin, and quercitrin has downregulated CDR1. Contrary to rutin and apigenin, isoquercitrin has upregulated ERG11. Except apigetrin and quercitrin (90 µg/mL and 73 µg/mL, respectively inhibited 50% of the net cell growth), the examined flavonoids did not exhibit cytotoxicity. The reduction of both fungal virulence and expression of antifungal resistance-linked genes was the most pronounced for apigenin and apigetrin; these results indicate flavonoids’ indispensable capacity for further development as part of an anticandidal therapy or prevention strategy.
Due to the high incidence of fungal infections worldwide, there is an increasing demand for the development of novel therapeutic approaches. A wide range of natural products has been extensively studied, with considerable focus on flavonoids. The antifungal capacity of selected flavones (luteolin, apigenin), flavonols (quercetin), and their glycosylated derivatives (quercitrin, isoquercitrin, rutin, and apigetrin) along with their impact on genes encoding efflux pumps ( ) and ergosterol biosynthesis enzyme ( ) has been the subject of this study. Cytotoxicity of flavonoids towards primary liver cells has also been addressed. Luteolin, quercitrin, isoquercitrin, and rutin inhibited growth of with the minimal inhibitory concentration of 37.5 µg/mL. The application of isoquercitrin has reduced biofilm establishing capacities for 76%, and hyphal formation by yeast. In vitro treatment with apigenin, apigetrin, and quercitrin has downregulated . Contrary to rutin and apigenin, isoquercitrin has upregulated . Except apigetrin and quercitrin (90 µg/mL and 73 µg/mL, respectively inhibited 50% of the net cell growth), the examined flavonoids did not exhibit cytotoxicity. The reduction of both fungal virulence and expression of antifungal resistance-linked genes was the most pronounced for apigenin and apigetrin; these results indicate flavonoids' indispensable capacity for further development as part of an anticandidal therapy or prevention strategy.
Author Ivanov, Marija
Stojković, Dejan S.
Glamočlija, Jasmina
Sanglard, Dominique
Kannan, Abhilash
Calhelha, Ricardo C.
Soković, Marina
Ferreira, Isabel C. F. R.
AuthorAffiliation 3 Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; calhelha@ipb.pt (R.C.C.); iferreira@ipb.pt (I.C.F.R.F.)
1 Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; marija.smiljkovic@ibiss.bg.ac.rs (M.I.); dejanbio@ibiss.bg.ac.rs (D.S.S.); jasna@ibiss.bg.ac.rs (J.G.)
2 Institute of Microbiology, University Hospital Lausanne and University Hospital Center, Rue du Bugnon 48, 1011 Lausanne, Switzerland; abhilifescizurich@gmail.com (A.K.); dominique.sanglard@chuv.ch (D.S.)
AuthorAffiliation_xml – name: 2 Institute of Microbiology, University Hospital Lausanne and University Hospital Center, Rue du Bugnon 48, 1011 Lausanne, Switzerland; abhilifescizurich@gmail.com (A.K.); dominique.sanglard@chuv.ch (D.S.)
– name: 1 Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; marija.smiljkovic@ibiss.bg.ac.rs (M.I.); dejanbio@ibiss.bg.ac.rs (D.S.S.); jasna@ibiss.bg.ac.rs (J.G.)
– name: 3 Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; calhelha@ipb.pt (R.C.C.); iferreira@ipb.pt (I.C.F.R.F.)
Author_xml – sequence: 1
  givenname: Marija
  orcidid: 0000-0002-2480-5490
  surname: Ivanov
  fullname: Ivanov, Marija
– sequence: 2
  givenname: Abhilash
  surname: Kannan
  fullname: Kannan, Abhilash
– sequence: 3
  givenname: Dejan S.
  orcidid: 0000-0002-4159-1471
  surname: Stojković
  fullname: Stojković, Dejan S.
– sequence: 4
  givenname: Jasmina
  orcidid: 0000-0001-6823-1137
  surname: Glamočlija
  fullname: Glamočlija, Jasmina
– sequence: 5
  givenname: Ricardo C.
  orcidid: 0000-0002-6801-4578
  surname: Calhelha
  fullname: Calhelha, Ricardo C.
– sequence: 6
  givenname: Isabel C. F. R.
  orcidid: 0000-0003-4910-4882
  surname: Ferreira
  fullname: Ferreira, Isabel C. F. R.
– sequence: 7
  givenname: Dominique
  surname: Sanglard
  fullname: Sanglard, Dominique
– sequence: 8
  givenname: Marina
  orcidid: 0000-0002-7381-756X
  surname: Soković
  fullname: Soković, Marina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33396973$$D View this record in MEDLINE/PubMed
BookMark eNptUs9uFCEYJ6bGtqsXH8BwNGZXYWAG5mLSTLfrJk1MGvVKGGC6NOwwArt2br6BF5_QJ5HdbbU1XuAL_P7A9_tOwVHvewPAS4zeElKjd8MKU4QRKtgTcIJpQWe8oOzoQX0MTmO8QahkmOJn4JhkXlUzcgJ-XDi5zXJxCg-Vd7mUvYYLNyofRyeT0fDcBLuVyW5N_PX953I9SJWg72GTkVZLKF1rlewjXAT_La32Al9s2DjTKzOF89shmBhtZvgONudXeI-YXy0wnsJmTD75W6tsGp-Dp5100by42yfg88X8U_NhdvlxsWzOLmeKMpRmLemIUZhWpKUt7vI_Ceel7lSpCZUMma7iuKu0kRS3SLcFUyz3oTRcsaqrDJmA5UFXe3kjhmDXMozCSyv2Bz5cCxmSVc4IiupW1QrRgmvK81phqRCveXbmMhtOwPuD1rBp10Yr06cg3SPRxze9XYlrvxUsZ4NyFhPw-k4g-K8bE5NY26iMc7I3fhPF7uWkLuuSZeirh15_TO4TzQB0AKjgYwymE7mtOTm_s7ZOYCR2QyP-Dk2mvPmHcq_6H_Bvi0nDlQ
CitedBy_id crossref_primary_10_1002_cbdv_202200837
crossref_primary_10_3390_nano12010051
crossref_primary_10_1016_j_ejmech_2021_114068
crossref_primary_10_3390_plants12173091
crossref_primary_10_24319_jtpk_16_221_234
crossref_primary_10_1007_s10658_025_03128_8
crossref_primary_10_1080_22311866_2024_2434939
crossref_primary_10_3390_antibiotics10111373
crossref_primary_10_3390_antibiotics10060655
crossref_primary_10_1128_spectrum_02355_21
crossref_primary_10_3390_jof8050525
crossref_primary_10_3390_jof9030355
crossref_primary_10_3390_ph15060754
crossref_primary_10_1002_ptr_7397
crossref_primary_10_1007_s13205_022_03126_1
crossref_primary_10_3390_jof8111147
crossref_primary_10_3390_ijms22020483
crossref_primary_10_2174_1381612829666230413085029
crossref_primary_10_1016_j_comtox_2022_100247
crossref_primary_10_3390_antiox10111678
crossref_primary_10_3390_ph15030385
crossref_primary_10_3390_ijms23052756
crossref_primary_10_3390_plants11141796
crossref_primary_10_5812_jssc_142360
crossref_primary_10_3389_fcimb_2023_1245808
crossref_primary_10_3390_ph16010021
crossref_primary_10_1016_j_mycmed_2024_101513
crossref_primary_10_3390_microorganisms11010037
crossref_primary_10_1016_j_funbio_2022_05_002
crossref_primary_10_3390_pharmaceutics14112469
crossref_primary_10_3390_molecules28114304
crossref_primary_10_3390_jof10050334
crossref_primary_10_1007_s40415_023_00927_3
crossref_primary_10_2174_0929867329666220209103538
crossref_primary_10_1016_j_ijbiomac_2025_139788
crossref_primary_10_1016_j_jff_2023_105617
crossref_primary_10_3390_pharmaceutics14040698
crossref_primary_10_1002_fsn3_3325
crossref_primary_10_1016_j_fitote_2024_106115
crossref_primary_10_1016_j_archoralbio_2024_106133
crossref_primary_10_1186_s42483_024_00296_z
Cites_doi 10.1128/AAC.43.11.2753
10.1038/sj.onc.1208874
10.1590/S1517-83822011000300027
10.3389/fpls.2020.00357
10.1248/bpb.28.253
10.1186/s12917-020-02460-x
10.1159/000453134
10.3390/microorganisms8060857
10.1155/2017/2850947
10.1093/jac/dkv140
10.3390/metabo10030106
10.1016/j.sajb.2018.09.010
10.1186/s12944-018-0738-0
10.1039/D0FO00319K
10.3390/jof6010015
10.1016/j.foodchem.2012.08.025
10.3389/fcimb.2020.00094
10.1093/femsyr/foy003
10.1016/j.fitote.2011.11.021
10.1016/j.foodchem.2013.10.007
10.1016/j.jep.2013.04.043
10.1128/AAC.45.4.999-1007.2001
10.1016/j.bbamem.2014.11.019
10.3390/molecules201017903
10.1186/s13578-017-0179-x
10.1371/journal.pone.0124814
10.1016/j.ijantimicag.2014.05.017
10.1128/EC.00245-13
10.1002/cmdc.201700602
10.1016/j.intimp.2008.11.002
10.1128/AAC.03599-14
10.3390/jof6040267
10.3390/jof3040057
10.1055/s-0040-1701215
10.1074/jbc.M114.621599
10.1080/13102818.2017.1348255
10.3109/13880209.2010.519390
10.2217/fmb.13.147
10.2174/0929867325666180629133218
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/ph14010027
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1424-8247
ExternalDocumentID oai_doaj_org_article_409bc9c0428d4842861ac08984b18a5d
PMC7824033
33396973
10_3390_ph14010027
Genre Journal Article
GrantInformation_xml – fundername: Ministarstvo prosvete nauke i tehnološkog razvoja
  grantid: 451-03-68/2020-14/200007
– fundername: Foundation for Science and Technology (FCT, Portugal)
  grantid: R. Calhelha´s contract
– fundername: Foundation for Science and Technology (FCT, Portugal)
  grantid: UIDB/00690/2020
– fundername: FEMS
  grantid: FEMS-GO-2017-015
GroupedDBID ---
2WC
53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACUHS
ADBBV
AEAQA
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DIK
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HH5
HYE
IHR
KQ8
M2O
M48
MK0
MODMG
M~E
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
TUS
3V.
NPM
7X8
5PM
ID FETCH-LOGICAL-c470t-b3f3ec1463b4b1f4243885dfc5d34a70ef681f6dea41b0db27c72475e8c76f6e3
IEDL.DBID DOA
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000610683900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8247
IngestDate Fri Oct 03 12:53:44 EDT 2025
Tue Nov 04 02:05:26 EST 2025
Sun Nov 09 12:39:11 EST 2025
Thu Jan 02 22:58:46 EST 2025
Sat Nov 29 07:13:10 EST 2025
Tue Nov 18 21:25:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords antifungal
biofilm
flavonoids
efflux pumps
cytotoxicity
isoquercitrin
antivirulence
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-b3f3ec1463b4b1f4243885dfc5d34a70ef681f6dea41b0db27c72475e8c76f6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2480-5490
0000-0001-6823-1137
0000-0002-7381-756X
0000-0003-4910-4882
0000-0002-6801-4578
0000-0002-4159-1471
OpenAccessLink https://doaj.org/article/409bc9c0428d4842861ac08984b18a5d
PMID 33396973
PQID 2475395957
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_409bc9c0428d4842861ac08984b18a5d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7824033
proquest_miscellaneous_2475395957
pubmed_primary_33396973
crossref_citationtrail_10_3390_ph14010027
crossref_primary_10_3390_ph14010027
PublicationCentury 2000
PublicationDate 20201230
PublicationDateYYYYMMDD 2020-12-30
PublicationDate_xml – month: 12
  year: 2020
  text: 20201230
  day: 30
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Pharmaceuticals (Basel, Switzerland)
PublicationTitleAlternate Pharmaceuticals (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Kartal (ref_16) 2011; 49
Alves (ref_27) 2014; 9
Mot (ref_30) 2020; 11
Lohberger (ref_41) 2014; 13
Yan (ref_33) 2017; 7
Mail (ref_15) 2017; 31
Zajdel (ref_13) 2012; 83
ref_32
Jun (ref_20) 2015; 1848
Gao (ref_18) 2016; 40
Smiljkovic (ref_39) 2018; 13
Ivanov (ref_31) 2020; 19
Horinaka (ref_36) 2005; 24
ref_38
Banjanac (ref_21) 2014; 147
(ref_11) 2019; 26
Sekita (ref_19) 2017; 2017
Singh (ref_1) 2020; 10
Shahzad (ref_25) 2014; 44
Johann (ref_23) 2011; 42
Guimaraes (ref_42) 2013; 136
Lewis (ref_29) 2001; 45
(ref_12) 2017; 16
(ref_4) 2020; 41
(ref_14) 2015; 20
Singh (ref_28) 2015; 59
Kytidou (ref_24) 2020; 11
Han (ref_22) 2009; 9
Gehrke (ref_17) 2013; 148
ref_3
ref_2
Hadrich (ref_35) 2018; 17
Sanglard (ref_40) 1999; 43
Jensen (ref_7) 2015; 70
Lee (ref_26) 2018; 18
Matsuo (ref_34) 2005; 28
ref_9
ref_8
(ref_10) 2019; 120
ref_5
Amado (ref_37) 2014; 289
ref_6
References_xml – volume: 16
  start-page: 795
  year: 2017
  ident: ref_12
  article-title: Apigenin-7-O-glucoside versus apigenin: Insight into the modes of anticandidal and cytotoxic actions
  publication-title: EXCLI J.
– volume: 43
  start-page: 2753
  year: 1999
  ident: ref_40
  article-title: The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.43.11.2753
– volume: 24
  start-page: 7180
  year: 2005
  ident: ref_36
  article-title: Luteolin induces apoptosis via death receptor 5 upregulation in human malignant tumor cells
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1208874
– volume: 42
  start-page: 1065
  year: 2011
  ident: ref_23
  article-title: Antifungal activity of five species of Polygala
  publication-title: Braz. J. Microbiol.
  doi: 10.1590/S1517-83822011000300027
– volume: 19
  start-page: 1436
  year: 2020
  ident: ref_31
  article-title: Revealing the astragalin mode of anticandidal action
  publication-title: EXCLI J.
– volume: 11
  start-page: 357
  year: 2020
  ident: ref_24
  article-title: Plant Glycosides and Glycosidases: A Treasure-Trove for Therapeutics
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00357
– volume: 28
  start-page: 253
  year: 2005
  ident: ref_34
  article-title: Cytotoxicity of flavonoids toward cultured normal human cells
  publication-title: Biol. Pharm. Bull.
  doi: 10.1248/bpb.28.253
– ident: ref_5
  doi: 10.1186/s12917-020-02460-x
– volume: 40
  start-page: 727
  year: 2016
  ident: ref_18
  article-title: Quercetin assists fluconazole to inhibit biofilm formations of fluconazole-resistant Candida albicans in in vitro and in vivo antifungal managements of vulvovaginal candidiasis
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000453134
– ident: ref_6
  doi: 10.3390/microorganisms8060857
– volume: 2017
  start-page: 2850947
  year: 2017
  ident: ref_19
  article-title: Antibiofilm and anti-inflammatory activities of houttuynia cordata decoction for oral care
  publication-title: Evid. Based Complement. Altern. Med.
  doi: 10.1155/2017/2850947
– volume: 70
  start-page: 2551
  year: 2015
  ident: ref_7
  article-title: Stepwise emergence of azole, echinocandin and amphotericin B multidrug resistance in vivo in Candida albicans orchestrated by multiple genetic alterations
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkv140
– ident: ref_9
  doi: 10.3390/metabo10030106
– volume: 120
  start-page: 65
  year: 2019
  ident: ref_10
  article-title: Natural products as biofilm formation antagonists and regulators of quorum sensing functions: A comprehensive review update and future trends
  publication-title: S. Afr. J. Bot.
  doi: 10.1016/j.sajb.2018.09.010
– volume: 17
  start-page: 95
  year: 2018
  ident: ref_35
  article-title: Apigetrin inhibits adipogenesis in 3T3-L1 cells by downregulating PPARγ and CEBP-α
  publication-title: Lipids Health Dis.
  doi: 10.1186/s12944-018-0738-0
– volume: 11
  start-page: 5293
  year: 2020
  ident: ref_30
  article-title: Sugar matters: Sugar moieties as reactivity-tuning factors in quercetin O-glycosides
  publication-title: Food Funct.
  doi: 10.1039/D0FO00319K
– ident: ref_3
  doi: 10.3390/jof6010015
– volume: 136
  start-page: 718
  year: 2013
  ident: ref_42
  article-title: Nutrients, phytochemicals and bioactivity of wild Roman chamomile: A comparison between the herb and its preparations
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2012.08.025
– volume: 10
  start-page: 94
  year: 2020
  ident: ref_1
  article-title: Mechanisms of Pathogenic Candida Species to Evade the Host Complement Attack
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2020.00094
– volume: 18
  start-page: foy003
  year: 2018
  ident: ref_26
  article-title: Apigenin induces cell shrinkage in Candida albicans by membrane perturbation
  publication-title: FEMS Yeast Res.
  doi: 10.1093/femsyr/foy003
– volume: 83
  start-page: 373
  year: 2012
  ident: ref_13
  article-title: Chemical analysis of Penstemon campanulatus (Cav.) Willd. antimicrobial activities
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2011.11.021
– volume: 147
  start-page: 367
  year: 2014
  ident: ref_21
  article-title: Centauries as underestimated food additives: Antioxidant and antimicrobial potential
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2013.10.007
– volume: 148
  start-page: 486
  year: 2013
  ident: ref_17
  article-title: Antimicrobial activity of Schinus lentiscifolius (Anacardiaceae)
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2013.04.043
– volume: 45
  start-page: 999
  year: 2001
  ident: ref_29
  article-title: Riddle of biofilm resistance
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.45.4.999-1007.2001
– volume: 1848
  start-page: 695
  year: 2015
  ident: ref_20
  article-title: Fungicidal effect of isoquercitrin via inducing membrane disturbance
  publication-title: BBA-Biomembranes
  doi: 10.1016/j.bbamem.2014.11.019
– volume: 20
  start-page: 17903
  year: 2015
  ident: ref_14
  article-title: Activity of polyphenolic compounds against Candida glabrata
  publication-title: Molecules
  doi: 10.3390/molecules201017903
– volume: 7
  start-page: 1
  year: 2017
  ident: ref_33
  article-title: Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action
  publication-title: Cell Biosci.
  doi: 10.1186/s13578-017-0179-x
– ident: ref_32
  doi: 10.1371/journal.pone.0124814
– volume: 44
  start-page: 269
  year: 2014
  ident: ref_25
  article-title: Utilising polyphenols for the clinical management of Candida albicans biofilms
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2014.05.017
– volume: 13
  start-page: 127
  year: 2014
  ident: ref_41
  article-title: Distinct roles of Candida albicans drug resistance transcription factors TAC1, MRR1, and UPC2 in virulence
  publication-title: Eukaryot. Cell.
  doi: 10.1128/EC.00245-13
– volume: 13
  start-page: 251
  year: 2018
  ident: ref_39
  article-title: Nitrate Esters of Heteroaromatic Compounds as Candida albicans CYP51 Enzyme Inhibitors
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.201700602
– volume: 9
  start-page: 207
  year: 2009
  ident: ref_22
  article-title: Rutin has therapeutic effect on septic arthritis caused by Candida albicans
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2008.11.002
– volume: 59
  start-page: 2153
  year: 2015
  ident: ref_28
  article-title: Quercetin sensitizes fluconazole-resistant Candida albicans to induce apoptotic cell death by modulating quorum sensing
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.03599-14
– ident: ref_2
  doi: 10.3390/jof6040267
– ident: ref_8
  doi: 10.3390/jof3040057
– ident: ref_38
– volume: 41
  start-page: 3
  year: 2020
  ident: ref_4
  article-title: Invasive Candidiasis
  publication-title: Semin. Respir. Crit. Care Med.
  doi: 10.1055/s-0040-1701215
– volume: 289
  start-page: 35456
  year: 2014
  ident: ref_37
  article-title: Isoquercitrin suppresses colon cancer cell growth in vitro by targeting the Wnt/β-catenin signaling pathway
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.621599
– volume: 31
  start-page: 989
  year: 2017
  ident: ref_15
  article-title: Anti-hyphal properties of potential bioactive compounds for oral rinse in suppression of Candida growth
  publication-title: Biotechnol. Biotechnol. Equip.
  doi: 10.1080/13102818.2017.1348255
– volume: 49
  start-page: 396
  year: 2011
  ident: ref_16
  article-title: Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids
  publication-title: Pharm. Biol.
  doi: 10.3109/13880209.2010.519390
– volume: 9
  start-page: 139
  year: 2014
  ident: ref_27
  article-title: Antifungal activity of phenolic compounds identified in flowers from North Eastern Portugal against Candida species
  publication-title: Future Microbiol.
  doi: 10.2217/fmb.13.147
– volume: 26
  start-page: 2536
  year: 2019
  ident: ref_11
  article-title: Could Flavonoids Compete with Synthetic Azoles in Diminishing Candida albicans Infections? A Comparative Review Based on In Vitro Studies
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867325666180629133218
SSID ssj0057141
Score 2.4534194
Snippet Due to the high incidence of fungal infections worldwide, there is an increasing demand for the development of novel therapeutic approaches. A wide range of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 27
SubjectTerms antifungal
antivirulence
biofilm
efflux pumps
flavonoids
isoquercitrin
Title Flavones, Flavonols, and Glycosylated Derivatives—Impact on Candida albicans Growth and Virulence, Expression of CDR1 and ERG11, Cytotoxicity
URI https://www.ncbi.nlm.nih.gov/pubmed/33396973
https://www.proquest.com/docview/2475395957
https://pubmed.ncbi.nlm.nih.gov/PMC7824033
https://doaj.org/article/409bc9c0428d4842861ac08984b18a5d
Volume 14
WOSCitedRecordID wos000610683900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057141
  issn: 1424-8247
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057141
  issn: 1424-8247
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057141
  issn: 1424-8247
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057141
  issn: 1424-8247
  databaseCode: PIMPY
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1424-8247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057141
  issn: 1424-8247
  databaseCode: M2O
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZg8MALGteVQWUEmoSUaknsxM4j69oyiZWoGqg8RfElaqUomZq0Wt74B7zwC_klHDu9rGgSL7xYlmPFx_bx8fkS-zsIvQ81J8rVUY9nAFepAjuYZqE5I2ZCvbgSDKCNWvKZjcd8Oo3iW6G-zJmwlh64HbhTwB9CRtK49opySEMvlS6POBUeTwNlrK_Log2Yam1wwDzqtWSkBED96fXM4AgDwfa2H8vSf5dr-fcJyVtbzvAQPV77ivhjK-MTdE8XT9FJ3JJNNw6-2t2dqhx8guMdDXXzDP0c5unKMPE7uM2VOWTTQuFR3siyanJwMxU-BxVcWfbv6vePXxf20iQuC9w3911UitNcGEtZ4REA9npmX_Btvljay0oOHtysT9IWuMxw_3zi2RqDycjzHNxv6rIub-YSfP3n6OtwcNX_1FuHX-hJyty6J0hGtARLSgSMdUZ9SjgPVCYDRWjKXJ2F3MtCpVPqCVcJn0nmUxZoLlmYhZq8QAcFdPMIYV8ACA-oxzWRNKBCSDALQaiZBDAsaNhBHzazksg1N7kJkZEngFHMDCa7Geygd9u61y0jx521zszkbmsYFm1bALqVrHUr-ZduddDbjWoksOrMr5S00OWySkw_SRREATT0slWVbVMERAkjRjqI7SnRniz7T4r5zDJ7g7tGXUJe_Q_hj9Ej33wbMKSU7mt0UC-W-g16KFf1vFp00X025V304Gwwjiddu3ggvfS_QFl8cRl__wPWbCDT
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flavones%2C+Flavonols%2C+and+Glycosylated+Derivatives%E2%80%94Impact+on+Candida+albicans+Growth+and+Virulence%2C+Expression+of+CDR1+and+ERG11%2C+Cytotoxicity&rft.jtitle=Pharmaceuticals+%28Basel%2C+Switzerland%29&rft.au=Marija+Ivanov&rft.au=Abhilash+Kannan&rft.au=Dejan+S.+Stojkovi%C4%87&rft.au=Jasmina+Glamo%C4%8Dlija&rft.date=2020-12-30&rft.pub=MDPI+AG&rft.eissn=1424-8247&rft.volume=14&rft.issue=1&rft.spage=27&rft_id=info:doi/10.3390%2Fph14010027&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_409bc9c0428d4842861ac08984b18a5d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8247&client=summon